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A. The proof for main theorem
In (Chen, Ding, and Carin 2015), the authors provide the
convergence property for general SG-MCMC, here we fol-
low their assumptions and proof techniques, with specific
treatment on the 1st-order numerical integrator, and the case
of preconditioner.

Details on the assumption
Before the proof, we detail the assumptions needed for The-
orem 1. For pSGLD, its associated Stochastic Differential
Equation (SDE) has an invariant measure ρ(θ), the poste-
rior average is defined as: φ̄ ,

∫
X φ(θ)ρ(θ)dθ for some

test function φ(θ) of interest. Given samples (θt)
T
t=1 from

pSGLD, we use the sample average φ̂ to approximate φ̄. In
the analysis, we define a functional ψ that solves the follow-
ing Poisson Equation:

Lψ(θt) = φ(θt)− φ̄ . (1)

The solution functional ψ(θt) characterizes the difference
between φ(θt) and the posterior average φ̄ for every θt, thus
would typically possess a unique solution, which is at least
as smooth as φ under the elliptic or hypoelliptic settings
(Mattingly, Stuart, and Tretyakov 2010). In the unbounded
domain of θt, to make the presentation simple, we follow
(Chen, Ding, and Carin 2015) and make certain assumptions
on the solution functional, ψ, of the Poisson equation (1),
which are used in the detailed proofs.

The mild assumptions of smoothness and boundedness
made in the main paper are detailed as follows.

Assumption 1 ψ and its up to 3rd-order derivatives, Dkψ,
are bounded by a function V , i.e., ‖Dkψ‖ ≤ CkVpk for
k = (0, 1, 2, 3), Ck, pk > 0. Furthermore, the expecta-
tion of V on {θt} is bounded: supt EVp(θt) < ∞, and
V is smooth such that sups∈(0,1) Vp (sθ + (1− s)Y ) ≤
C (Vp (θ) + Vp (Y )), ∀θ, Y, p ≤ max{2pk} for some C >
0.

Proof of Theorem 1
Based on Assumption 1, we prove the main theorem.
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Proof First let us denote

L̃t =

(
G(θt)

(
∇θ log p(θt) +

N

n

n∑
i=1

∇θ log p(dti |θt)
)

+ Γ(θt)) · ∇θ +
1

2
G(θ)

(
G(θ)T

)
: ∇θ∇Tθ , (2)

the local generator of our proposed pSGLD with stochas-
tic gradients, where a · b , a>b is the vector inner prod-
uct, A : B , tr{A>B} is the matrix double dot product.
Furthermore, let L be the true generator of the Langevin
dynamic corresponding to the pSGLD, e.g., replacing the
stochastic gradient in L̃t with the true gradient. As a result,
we have the relation:

L̃t = L+ ∆Vt , (3)

where ∆Vt , (Nḡ(θt;Dt) − g(θt;Dt))>G(θt)∇θ,
g(θt;Dt) is the full gradient, ḡ(θt;Dt) is the stochatic gra-
dient calculated from the t-th minibatch.

In pSGLD, we use the Euler integrator, which is a first
order integrator. As a result, according to (Chen, Ding, and
Carin 2015), for a test function φ, we can decompose it as:

E[ψ(θt)] = eεtL̃tψ(θ(t−1)) +O(ε2t )

=
(
I + εtL̃t

)
ψ(θ(t−1)) +O(ε2t ) , (4)

where I is the identity map, i.e., If(x) = f(x).
According to the assumptions, there exists a functional ψ

that solves the following Poisson Equation:

Lψ(θt) = φ(θt)− φ̄ , (5)

where φ̄ is defined in the main text.
Sum over t = 1, · · · , T in the above equation, take ex-

pectation on both sides, and use the Poisson Equation (5)
and the relation T̃t = L + ∆Vt to expand the first order
term. We obtain

T∑
t=1

E (ψ(θt)) =

T∑
t=1

ψ(θ(t−1)) +

T∑
t=1

εtTtψ(θ(t−1))

+

T∑
t=1

εt∆Vlψ(θ(t−1)) + C

T∑
t=1

ε2t . (6)

chunyuan.li@duke.edu,
cchangyou@gmail.com,
david.edwin.carlson@gmail.com,
lcarin@duke.edu


Divide both sides by ST , we have

φ̂− φ̄ =
Eψ(θt)− ψ(θ0)

ST
+

1

ST

T−1∑
l=1

(
Eψ(θ(t−1)) + ψ(θ(t−1))

)
+

T∑
t=1

εt
ST

∆Vtψ(θ(t−1)) + C

∑T
t=1 ε

2
t

ST
. (7)

As a result, there exists some positive constant C, such
that:(
φ̂− φ̄

)2

≤ C

 1

S2
T

(ψ(θ0)− Eψ(θT ))
2︸ ︷︷ ︸

A1

+
1

S2
T

T∑
t=1

(
Eψ(θ(t−1))− ψ(θ(t−1))

)2
︸ ︷︷ ︸

A2

+

T∑
t=1

ε2t
S2
T

‖∆Vt‖2

+

(∑T
t=1 ε

2
t

ST

)2
 (8)

A1 can be bounded by assumptions, and A2 can be easily
shown to be bounded by O(

√
εt) due to the Gaussian noise.

It turns out that the resulting terms have order higher than
those from the other terms, thus can be ignored in the ex-
pression below. After some simplifications, (8) is bounded
by:

E
(
φ̂− φ̄

)2
.
∑
t

ε2t
S2
T

E ‖∆Vt‖2 +
1

ST
+

1

S2
T

+

(∑L
t=1 ε

2
t

ST

)2

= C

(∑
t

ε2t
S2
T

E ‖∆Vt‖2 +
1

ST
+

(
∑T

t=1 ε
2
t )2

S2
T

)
(9)

for some C > 0. It is easy to show under the assumptions,
all the terms in the above bound approach zero. This com-
pletes the first part of the theorem. �

B. The proof for Corollary 2
To prove Corollary 2, we first show the following results.

Lemma 1 Assume that the 1st-order and 2nd-order gradi-
ent are bounded, then there exists some constant M , for k-th
component of Γ(θt), we have∣∣∣∣∣

T∑
t=1

Γk(θt)

∣∣∣∣∣ ≤MT
(1− α)

α
3
2

. (10)

Proof Since Γ(θ) is a diagnal matrix, we focus on one of its
elements thus omit the index k in the following.

First, the iterative form of exponential moving average
can be written as a function of the gradients at all the previ-
ous timesteps:

V (θt) = αV (θt−1) + (1− α)ḡ2(θt) (11)

= (1− α)

t∑
i=1

αt−iḡ2(θi) (12)

Based on this, for each component of Γ(θt), we have∣∣∣∣∣
T∑
t=1

Γ(θt)

∣∣∣∣∣ =

∣∣∣∣∣
T∑
t=1

(1− α)V −
3
2 (θt)ḡ(θt)

∂ḡ(θt)

∂θt

∣∣∣∣∣ (13)

=

∣∣∣∣∣∣
T∑
t=1

(1− α)
ḡ(θt)(

αV (θt−1) + (1− α)ḡ2(θt)
) 3

2

∂ḡ(θt)

∂θt

∣∣∣∣∣∣
(14)

�

∣∣∣∣∣
T∑
t=1

(1− α)

α
3
2V

3
2 (θt−1)

∂ḡ(θt)

∂θt

∣∣∣∣∣ (15)

With the assumption that the 1st-order and 2nd-order
gradient are bounded, we have

∣∣∣V − 3
2 (θt−1)∂ḡ(θt)∂θt

∣∣∣ ≤ M ,
where M is a constant independent of {εt}. Therefore,∣∣∣∑T

t=1 εtΓ(θt)
∣∣∣�MT (1− α)/α

3
2 . �

Based on Lemma 1, we now proceed to the proof of
Corollary 2.

Proof By dropping the Γ(θt) terms, we get a modified ver-
sion of the local generator corresponding to the SDE of the
pSGLD, defined as

L̃t = L+ ∆Ṽt ,

where ∆Ṽt = ∆Vt + Γ(θt) · ∇θ with ∆Vt defined in the
proof of Theorem 1.

Following the proof of Theorem 1, we can derive the
bound for (φ̂− φ̄)2, which is no more than (8) with an extra
term as:

(
φ̂− φ̄

)2

≤ C

 1

S2
T

(ψ(θ0)− Eψ(θT ))
2︸ ︷︷ ︸

A1

+
1

S2
T

T∑
t=1

(
Eψ(θ(t−1))− ψ(θ(t−1))

)2
︸ ︷︷ ︸

A2

+

T∑
t=1

ε2t
S2
T

‖∆Vt‖2

+

∥∥∥∥∥
T∑
t=1

εt
ST

Γ(θt)

∥∥∥∥∥
2

︸ ︷︷ ︸
A3

+

(∑T
t=1 ε

2
t

ST

)2

 (16)

We can further relax A3 above as:

A3 ≤

(∑
k

∣∣∣∣∣
T∑
t=1

εt
ST

Γk(θt)

∣∣∣∣∣
)2

≤

(∑
k

ε1
TεT

∣∣∣∣∣
T∑
t=1

Γk(θt)

∣∣∣∣∣
)2

≤ O
(

(1− α)2

α3

)
, (17)



where the last inequality follows by using the bound from
Lemma 1. Taking expectation on both sides, we arrive at the
MSE:

E
(
φ̂− φ̄

)2
≤

C

∑
t

ε2t
S2
T

E ‖∆Vt‖2 +
1

ST

+
(
∑T

t=1 ε
2
t )2

S2
T

+ E

∥∥∥∥∥
T∑

t=1

εt

ST

Γ(θt)

∥∥∥∥∥
2


≤ Bmse +O

(
(1− α)2

α3

)
. (18)

for some C > 0. �

C. The proof for Corollary 3
Proof By thinning samples from the pSGLD, we obtain a
sequence of subsamples {θt1 , · · · ,θtm} from the original
samples {θ1, · · · ,θn} where m ≤ n and (t1, · · · , tm) is
a subsequence of (1, 2, · · · , n). Since we use the 1st-order
Euler integrator, based on the definition in (Chen, Ding, and
Carin 2015), we have for the original samples:

P̃lf(θl) , Ef(θl) = eεlL̃lf(θl) +O(ε2l ) , (19)

where P̃l denotes the Kolmogorov operator. Now for sam-
ples between ti and tj , i.e., {θti , · · · ,θtj}, we have

P̃tjf(θi) = P̃tj ◦ · · · ◦ P̃tif(θi) , (20)
where A ◦ B denotes the composition of the two operators
A andB, i.e.,A is evaluated on the output of B. Now substi-
tute (19) into (20), and use the Baker-Campbell-Hausdorff
formula (Bakhturin 2001) for commutators, we have

P̃tjf(θi) = e
∑j

l=i εlL̃lf(θi) +O(

j∑
l=i

ε2l )

≤ eSijL̃ijf(θi) +O(S2
ij) , (21)

where Sij ,
∑j
l=i εl, L̃ij ,

∑j
l=i

εl
Sij
L̃l. This means by

thinning the samples, going from θi to θj corresponds to a
1st-order local integrator with stepsize Sij and a modified
generator of the corresponding SDE as L̃ij , which is in the
same form as the original generator L.

By performing the same derivation with the new generator
L̃ij , we obtain the same MSE as in Theorem 1 in the main
text. �

D. The proof for bias-variance tradeoff
Bias-variance decomposition

Risk : R = E[(φ̄− φ̂)2] = B2 + V (22)
Proof
R = E[(φ̄− φ̂)2]

= E[(φ̄− φ̄η + φ̄η − φ̂)2]

= E[(φ̄− φ̄η)2 + (φ̄η − φ̂)2 + 2(φ̄− φ̄η)(φ̄η − φ̂)]

= E[(φ̄− φ̄η)2] + E[(φ̄η − φ̂)2]

+ 2E[(φ̄− φ̄η)(φ̄η − φ̂)]

= (φ̄− φ̄η)2 + E[(φ̄η − φ̂)2]

= B2 + V

where

Bias : B = φ̄η − φ̄ (23)

Variance : V = E[(φ̄η − φ̂)2] (24)

�

Variance term in risk of estimator

Variance : V = E[(φ̄− φ̂)2] ≈ A(0)

M
(25)

Proof

V = E[(φ̄η − φ̂)2]

= E
[(
φ̄η −

1

T

T∑
i=1

φ(θi)
)2]

(26)

=
1

T 2
E
[ T∑
i=1

T∑
j=1

(
φ̄η − φ(θi)

)(
φ̄η − φ(θj)

)]

=
1

T 2

T∑
i=1

T∑
j=1

A(|i− j|) (27)

=
1

T 2

T∑
i=1

 ∞∑
t=−∞

A(|t|)−
∑
|t|>2T

A(|t|)

 (28)

≈ 1

T 2

T∑
i=1

∞∑
t=−∞

A(|t|) (29)

=
1

T

(
A(0) + 2

∞∑
t=1

A(t)
)

(30)

=
A(0)

T

(
1 + 2

∞∑
t=1

A(t)

A(0)

)
(31)

where the term
∑
|t|>2T A(|t|) is omitted from (28) to (29),

which is usually small according to the property of autoco-
variance function.

We repeat some defintions from the main paper (Gamer-
man and Lopes 2006).

A(t) = E[(φ̄η − φ(θ0))(φ̄η − φ(θt))] (32)

is the autocovariance function, manifesting how strong two
samples with a time lag t are correlated. Its normalized ver-
sion

ACF : γ(t) =
A(t)

A(0)
(33)

is called the autocorrelation function (ACF).

ACT : τ =
1

2
+

∞∑
t=1

γ(t) (34)

is the integrated autocorrelation time (ACT), which mea-
sures the interval between independent samples.

Note that effective sample size (ESS) is defined as
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(a) a = 2, ε = 0.3 (b) a = 2, ε = 0.1
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(c) a = 0.5, ε = 0.3 (d) a = 0.5, ε = 0.1

Figure 1: Simulation.

ESS : M =
T

1 + 2
∑∞
t=1

A(t)
A(0)

(35)

Plugin the definition into the derivation for variance, we
have

V ≈ A(0)

T

(
1 + 2

∞∑
t=1

A(t)

A(0)

)
=
A(0)

M
(36)

�

E. More results on simulation
We demonstrate our pSGLD on a simple 2D gaussian exam-

ple, N
([ 0

0

]
,

[
0.16 0

0 a

])
. The first 600 samples of both

methods for different a and ε are shown in Fig. 1.
Comparing the results for different stepsize ε at the same

a, it can be seen that pSGLD can adapt stepsizes acorrding
to the manifold geometry of different dimensions.

When a is rescaled from 0.5 to 2, stepsize ε = 0.1 is ap-
propriate for SGLD at a = 0.5, but not a good choice at
a = 2, because the space is not fully explored. This also im-
plies that even if the covariance matrix of a target distribu-
tion is mildly rescaled, we do not have to choose a new step-
size for pSGLD. Whilst, the stepsize of the standard SGLD
needs to be fine-tuned in order to obtain decent samples.

F. More results on
Feedforward Neural Networks

Learning curves for network sizes of 400-400 and 800-800
on MNIST are provided in Fig. 2 (a) and (b), respectively.
Similar with results of network size 1200-1200 in the main
paper, stochastic sampling methods take less iterations to
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Figure 2: Learning curves of FNN at different network sizes.

converge, and the results are more stable than their optimiza-
tion counterparts. Moreover, it can be seen that pSGLD con-
sistently converges faster and better than SGLD and others.

G. More results on
Convolutional Neural Networks

We use another fairly standard network configuration con-
taining 2 convolutional layers on MNIST dataset. It is fol-
lowed by a single fully-connected layer (Chen-Yu et al.
2015), containing 500 hidden nodes that uses ReLU. Both
convolutional layers use 5 × 5 filter size with 32 and 64
channels, respectively, 2 × 2 max pooling are used after
each convolutional layer. 100 epochs are used, and L is set
to 20. The stepsizes for pSGLD and RSMprop are set to
ε = {1, 2} × 10−3 via grid search. For SGLD and SGD,
this is ε = {1, 2} × 10−1.

A comparison of test errors is shown in Table 1, with
the corresponding learning curves in Fig. 3. Again, under
the same network architecture, CNN trained with traditional
SGD gives an error of 0.81%, while pSGLD has a significant
improvement, with an error of 0.56%.

Method Test error
pSGLD 0.56%
SGLD 0.76%

RMSprop 0.64%
SGD 0.81%

Table 1: Results of CNN.
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Figure 3: Learning curves.

We also tested a similar 3-layer CNN with 32-32-64 chan-
nels on Cifar-10 RGB image dataset (Krizhevsky and Hinton
2009), which consists of 50, 000 samples for training and
10, 000 samples for testing. No data augmentation is em-
ployed for the dataset. We keep the same setting for pSGLD
and SGLD from MNIST, and show the comparison on Cifar-
10 in Fig. 4. pSGLD converges faster and reach a lower er-
ror.
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Figure 4: Test learning curves of CNN on Cifar-10 dataset.
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