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Abstract Understanding how topics within a document evolve over the structure of the
document is an interesting and potentially important problem in exploratory and predictive
text analytics. In this article, we address this problem by presenting a novel variant of latent
Dirichlet allocation (LDA): Sequential LDA (SeqLDA). This variant directly considers the
underlying sequential structure, i.e. a document consists of multiple segments (e.g. chap-
ters, paragraphs), each of which is correlated to its antecedent and subsequent segments.
Such progressive sequential dependency is captured by using the hierarchical two-param-
eter Poisson–Dirichlet process (HPDP). We develop an efficient collapsed Gibbs sampling
algorithm to sample from the posterior of the SeqLDA based on the HPDP. Our experimen-
tal results on patent documents show that by considering the sequential structure within a
document, our SeqLDA model has a higher fidelity over LDA in terms of perplexity (a stan-
dard measure of dictionary-based compressibility). The SeqLDA model also yields a nicer
sequential topic structure than LDA, as we show in experiments on several books such as
Melville’s ‘Moby Dick’.
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476 L. Du et al.

1 Introduction

Probabilistic topic modelling, a methodology for reducing high-dimensional data vectors to
low dimensional representations, has a successful history in exploring and predicting the
underlying semantic structure of documents, based on a hierarchical Bayesian analysis of
the original texts [6,10]. Its fundamental idea is that documents can be taken as mixtures of
latent topics, each of which is a probability distribution over words in a vocabulary, under the
‘bag-of-words’ assumption. The topic distributions provide an explicit representation of the
subject matter of a document. Indeed, the probabilistic procedures specified by topic models,
as shown in Fig. 2, describe a way by which words in documents can be generated on the basis
of these latent topics. Those procedures can be inverted with standard statistical techniques
to infer the latent topics. Although topic modelling is a probabilistic generative process, it
can also be viewed as non-negative matrix factorisation (NMF) [20,25,35], finding a non-
negative matrix product close in Kullback–Leibler divergence. In this sense, topic models
break the document–word frequency matrix into a topic–word matrix and a document–topic
matrix.

Nowadays, topic modelling has been receiving increasing attention in both data mining
and machine learning communities. A variety of topic models have been developed to ana-
lyse the content of documents and the meaning of words. These include models of words
only [6,17], of topic trends over time [2,5,23,38], of word-order with Markov dependencies
[15], of words and supervised information [7,21], e.g. authors [29], class labels [37], of the
intra-topic correlation (i.e. the hierarchical structure of topics) [3,4], of segments in docu-
ments [30], and so on. Although assumptions made by these models are slightly different,
they share the same general format: mixtures of topics, probability distributions over words
and hierarchical graphical model structures.

It is known that many documents in corpora come naturally with structure. They consists
of meaningful segments (e.g. chapters, sections, or paragraphs), each containing a group of
words, i.e. document-segment-word structure. For instance, an article has sections; a novel
has chapters; and these themselves contain paragraphs, each of which is also composed of
sentences. Thus, a big challenge in text mining is the problem of understanding the subject
structure of a document, and of further incorporating this structure into the analysis of the
original text.

With reference to the way in which people normally compose documents, each document
will have a main idea, and its segments should be associated with some ideas that we call
sub-ideas. These kinds of ideas expressed in the document do not occur in isolation. They
should be well organised, accessible and understandable to readers. As we read and interpret
documents, we should bear in mind correlations between main idea and sub-ideas (which
have been studied by the segmented topic model (STM) [11]), and correlations between sub-
ideas of adjacent segments. Apparently, a good document structure, as exemplified in Fig. 1,
should have the aforementioned features, which can make, for instance, the arguments of an
essay cohesive and flow logically. Therefore, we believe segments not only have meaningful
content but also provide contextual information for subsequent segments.

Can we statistically analyse documents by explicitly modelling the document structure in
a sequential manner? We adopt probabilistic generative models called topic models to test
this hypothesis. Thus, the main idea of a document and sub-ideas of its segments can be
modelled here by the distributions over latent topics. However, most of the existing topic
models are not aware of the underlying document structure. They only consider one level,
i.e. document-words, and simply neglect the contextual information buried in the document
structure. Although the latent Dirichlet co-clustering (LDCC) Model [30], as shown in Fig. 2b,
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Fig. 2 Graphical model representations for the SeqLDA model, the LDCC model and the LDA model

has taken into consideration the segmented structure of a document, the authors ignore the
topical dependencies between segments, and those between segments and the whole doc-
ument. Griffiths et al. [15] proposed a model that captures both syntactic (i.e. word-order)
and semantic (i.e. topic) dependencies, by using Markov dependencies and topic models,
respectively. But, topical dependency buried in the higher levels of document structure, such
as amongst paragraphs, is not modelled.

Different from previous topic models, this article presents a new variant of the latent
Dirichlet allocation (LDA) model [6], a topic model, called sequential latent Dirichlet allo-
cation (SeqLDA), that explicitly models the underlying document structure. In this work, we
restrict ourselves to the study of the sequential topic structure of a document, that is how a
sub-idea in a segment is closely related to its antecedent and subsequent segments. In our
SeqLDA model, a document and its segments are modelled as random mixtures of the same
set of latent topics, each of which is a distribution over words; and the topic distribution
of each segment depends on that of its preceding segment, the one for the first segment
will depend on the initial topic distribution (i.e. the document topic distribution). The pro-
gressive topical dependency is captured using the two-parameter Poisson–Dirichlet process
(PDP) [18,26] in a hierarchical way, based on theoretical results in the finite discrete space
[8,9,11].
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478 L. Du et al.

The PDP is also known as the Pitman–Yor Process, and related to the Chinese restaurant
process (CRP). The PDP is here denoted as u ∼ PDP(a, b, v), where a is called the discount
parameter, b the strength parameter and v a discrete base distribution (whilst the PDP applies
to general distributions, only discrete distributions are considered here). In our case, the base
distribution v is to be a probability vector and the hierarchical PDP is used to create a distribu-
tion over a hierarchy of probability vectors. From an introductory perspective, the PDP can be
understood as being approximately like the Dirichlet, so u ∼ PDP(a, b, v) is somewhat like
u ∼ Dirichlet( 1−a

1+b v) [9]. This means u has a mean of v and a variance proportional to 1+b
1−a .

Our reason for using the Pitman–Yor Process instead of the Dirichlet is pragmatic. When
we sample from u ∼ PDP(a, b, v), especially where we have a network of these probability
vectors, the Dirichlet would yield an intractable posterior whereas the PDP allows tractable
Gibbs sampling with auxiliary variables. The Dirichlet posterior contains terms like uαvi

i (for
some constant α), which then combined with some terms from a hierarchy like v

mi
i yield an

intractable posterior. In contrast, the PDP posterior has terms like v
ti
i , where ti is an auxiliary

variable, a latent integer count, usually much less than the data count. The PDP posterior
introduces latent counts t called table counts corresponding to the data counts n occurring in
the form of v

ti
i , which is conjugate to a multinomial with parameter v. When combined with

some terms from a hierarchy like v
mi
i , the probability vector v can even be integrated out of

the posterior [9,11,32].
The hierarchical PDP (HPDP) is defined on a singly connected network of probability

vectors ui for nodes i . In our case, the network is a chain and ui−1 is the parent of ui . The
HPDP is defined by placing PDP distributions on the network so ui ∼ PDP(ai , bi , ui−1),
where ai is discount parameter, bi is strength parameter and ui−1 is base distribution for
ui , as done in [32,33]. As just explained, the advantage of using the HPDP is that it allows
us to integrate out the real valued probability vectors ui , i.e. the PDP is conjugate to itself
when applied to the discrete data. In this article, we use the term self-conjugate to refer to
this property. We also develop here a collapsed Gibbs sampling algorithm for the HPDP in
its linear form used here.

Using the HPDP chain of probability vectors let us model sequential structure. We can
explore how topics are evolving amongst, for example, paragraphs in an essay, or chapters
in a novel; and detect the rising and falling of a topic in prominence. The evolvement can be
estimated by exploring how the topic proportion changes in segments. Tackling topic mod-
elling together with the topical structure buried in a document provides a solution for going
beyond the bag-of-words assumption, which is widely used in text analytics (e.g. natural
language processing and information retrieval).

The rest of the article, which extends an earlier contribution [12], is organised as follows.
We first briefly discuss the related work in Sect. 2. Then, we describe the SeqLDA model
in detail, and compare it with some related models (e.g. LDA, LDCC and STM) in Sect. 3.
Section 4 elaborates an efficient collapsed Gibbs sampling algorithm based on the PDP for
our SeqLDA. We present in Sect. 5, qualitative results that demonstrate how the SeqLDA
allows the exploration of a document in a new way, and quantitative results that demonstrate
greater predictive accuracy when compared with the LDA model. Section 6 gives a brief
discussion and concluding comments.

2 Related work

To capture topic evolvement in temporal data, the integration of timestamps into topic mod-
els has been around for a while. Existing work focuses mainly on learning topic evolvement
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patterns from a time-varying corpus, instead of exploring how topics progress within each
individual document by following the latent document structure. These works explore how
topics change, rise and fall, by considering timestamps associated with a corpus. In general,
they can be put into two categories, Markov chain-based models and non-Markov chain-based
models.

In the Markov chain-based models, the dynamic behaviours (i.e. topic evolvement in our
perspective) are captured by state transitions. The state at time t + �t is dependent on the
state of t . For instance, the dynamic topic model (DTM) [5], the dynamic mixture models
(DMM) [39], the dynamic hierarchical Dirichlet process [1,28], the evolutionary Hierarchical
Dirichlet Process (EvoHDP) [40] and so on.

The DTM captures the topic evolution in a document collection that is organised sequen-
tially into several discrete time periods, and then within each period an LDA model is trained
on its documents. The Gaussian distributions are used to tie a collection of LDAs by chaining
the Dirichlet prior and the natural parameters of each topic. However, Gaussian distributions
are not conjugate to multinomial distributions. Wang et al. [36] extend DTM to a continuous
time space to resolve the problem of discretisation by adopting the Brownian motion model.
The DMM assumes that the mixture of latent variables (i.e. topic distribution) for all streams
is dependent on the mixture of the previous timetamp. We note that even though the structure
of the DMM is similar to the SeqLDA (i.e. both put first-order Markov assumptions on topic
distributions), our model capitalises on the self-conjugacy of the PDP to chain a series of
LDAs, instead of using Dirichlet distributions. The problem with the Dirichlet distribution
is that it is not self-conjugate, which could not facilitate an efficient inference algorithm.

Recently, the hierarchical Dirichlet process (HDP) [34] has been extended to incorporate
time dependence to model the time-evolving properties of sequential data sets. The dynamic
HDP model (DHDP) [28] ties a series of HDP by using Dirichlet processes (DP). The DP is
used to generate innovation distributions at different timestamps. Then, at each timestamp,
the corresponding innovation distribution is mixed with the distribution at its previous time-
stamp to yield the target distribution. Since the DHDP only models the evolutionary patterns
in a single dynamic corpus, Zhang et al. [40] propose the EvoHDP model by extending the
HDP to handle multiple correlated time-varying corpora. They put the Markov assumption
on both global and local measures, which results in one more layer than the DHDP. Further-
more, the infinite dynamic topic model (IDTM) proposed in [1] is another dynamic version
of HDP, which can handle the birth/death of topics, as declared by the authors.

The other type of models do not assume the Markovian dependence over time, but instead
treat time as an observed variable that can be jointly generated with words by the latent topics,
for example, the topics over time (ToT) model [38]. In the ToT, the topic over time is captured
by a beta distribution. Drawing all time stamps from the same beta distribution might be not
appropriate for, such as, stream data [39]. Some other approaches are, for instance, He et al.
[16] develop inheritance topic model to understand topic evolution by leveraging the citation
information; Kandylas et al. [19] analyse the evolution of knowledge communities based on
the clustering over time method, called Streemer.

Significantly, the difference between these models and our SeqLDA model is that, instead
of modelling topic trends in document collections based on documents’ timestamps, we
model topic progress within each individual document by capitalising on the correlations
amongst its segments, i.e. the underlying sequential topic structure, according to the original
document layout. The Markov dependencies are put on the topic distributions. In this way,
we can directly model the topical dependency between a segment and its successor.

Although one may argue that the models we just discussed can also be applied to the
individual document by treating the sequence of segments as timestamps, the computation
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complexity and space complexity of those models can be significantly increased with the
growth of the latent variables and hyper-parameters. In contrast, we use a single integrated
model based on the HPDP, in which the real valued parameters can be integrated out because
of self-conjugacy.

Note that collapsed Gibbs sampling has been widely adopted in topic modelling [2,4,29–
31,40], since it was first proposed by Griffiths and Steyvers in 2004 [14]. It can give us a
relatively simple algorithm for approximate inference, because some latent variables can be
integrated out due to the conjugacy. Recently, it has been improved to handle the challenge
caused by the scalability of various data sets, such as a distributed Gibbs sampling algorithm
[24] and fast Gibbs sampling algorithm [27].

In regard to the PDP, the existing Gibbs sampling algorithms are built on top of either the
CRP [4,32–34] or the stick breaking construction [18,28,40]. Here, we consider those based
on the CRP. The standard implementation of Gibbs sampling for the PDP needs to record
the full configuration of the customer seating plan, which is termed ‘sampling for seating
arrangement’ by Teh [32]. In contrast, our Gibbs sampling algorithm has summed out all the
seating arrangement by introducing a new auxiliary latent variable, similar to that proposed
in [11]. It can further facilitate the development of a hierarchical version. Details will be
discussed later in this article.

3 Sequential latent Dirichlet allocation

In this section, we present the novel Sequential Latent Dirichlet Allocation model (SeqLDA)
which models how topics evolve amongst segments in a document. We assume that there
could be some latent sequential topic structures within each individual document, i.e. the
ideas within a document evolve smoothly from one segment to another, especially in various
books (e.g. novels and textbooks). This assumption intuitively originates from the way in
which people normally organise ideas in their writing. Before specifying the SeqLDA model,
we list notation and terminology used in this article. Notation is depicted in Table 1. We define
the following terms and dimensions:

− A word is the basic unit of our data, selected from a vocabulary indexed by {1, . . . , W }.
− A segment is a group of L words. It can be a chapter, section, paragraph or sentence. In

this work, we assume segments are either paragraphs or chapters.
− A document is a sequence of J segments.
− A corpus is a collection of I documents.

The basic idea of our model is to assume that each document i is a certain mixture of
latent topics, denoted by the distribution μi,0, and is composed of a sequence of meaningful
segments; each of these segments also has a mixture over the same set of latent topics as those
for the document, and these are indicated by distribution μi, j for segment j . Obviously, both
the document and its segments share the same topic space. Note that the index of a segment
complies with its position in the original document layout, which means the first segment is
indexed by j = 1, the second segment is indexed by j = 2, and so on. Both the main idea
of a document and the sub-ideas of its segments are modelled here by these distributions
over topics. Take the book, called ‘The Prince’, as a example. The whole book is treated as
a document, each chapter is a segment in our experiments, refer to Sect. 5.3. The subject
of each chapter is simulated by the distribution (i.e. μi, j ) over latent topics. The linkage
between subjects is modelled by the change between topic distributions.
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Table 1 List of notations

Notation Description

K Number of topics

I Number of documents

Ji Number of segments in document i

Li, j Number of words in document i , segment j

W Number of words in dictionary

α K -Dimensional vector for the Dirichlet prior for document topic distributions

μi,0 Document topic distribution for document i

μi, j Segment topic distribution for document i and segment j

� Word probability vectors as a K × W matrix

φk Word probability vector for topic k, entries in �

γ W -Dimensional vector for the Dirichlet prior for each φk

wi, j,l Word in document i , segment j , at position l

zi, j,l Topic for word in document i , segment j , at position l

The development of a sequential structural generative model according to the above idea
is based on the HPDP, and models how the sub-idea of a segment is correlated to its pre-
vious and following segment. Specifically, the correlation is simulated by the progressive
dependency amongst topic distributions. That is, the j th segment topic distribution μi, j is
the base distribution of the PDP for drawing the ( j + 1)th segment topic distribution μi, j+1;
for the first segment, we draw its topic distribution μi,1 from the PDP with document topic
distribution μi,0 as the base distribution. The strength parameter bi and discount parameter
ai control the variation between the adjacent topic distributions. Figure 2a shows the graphi-
cal representation of the SeqLDA model. Shaded and unshaded nodes indicate observed and
latent variables respectively. An arrow indicates a conditional dependency between variables,
and plates indicate repeated sampling.

In terms of a generative process, the SeqLDA model can be also viewed as a probabilistic
sampling procedure that describes how words in documents can be generated based on the
latent topics. It can be depicted as follows: Step 1 samples the word distribution for topics,
and Step 2 samples each document by breaking it up into segments:

1. For each topic k in {1, …, K}

(a) Draw φk ∼ DirichletW (γ )

2. For each document i

(a) Draw μi,0 ∼ DirichletK (α)

(b) For each segment j ∈ {1, . . . , Ji }
i Draw μi, j ∼ PDP(ai , bi ,μi, j−1)

ii For each word wi, j,l , where l ∈ {1, . . . , Li, j }
A draw zi, j,l ∼ multinomialK (μi, j )

B draw wi, j,l ∼ multinomialW (φzi, j,l
)

We have assumed the number of topics (i.e. the dimensionality of the Dirichlet distribution)
is known and fixed, and the word probabilities are parameterized by a K × W matrix � =
(φ1, . . . ,φK ), and will be estimated through the learning process. μi,0 is sampled from the
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Dirichlet distribution with prior α, and others are sampled from the PDP. Both the Dirichlet
distribution and the PDP are conjugate priors for the multinomial distribution, but the PDP
is also self-conjugate. Choosing these conjugate priors makes the statistical inference easier,
as discussed in the next section. The joint distribution of all observed and latent variables
can be constructed directly from Fig. 2a using the distributions given in the above generative
process, as below:

p(μi,0,μi,1:J , z,w|α,�, ai , bi )

= p(μi,0|α)

Ji∏

j=1

p(μi, j |ai , bi ,μi, j−1)

L j∏

l=1

p(zi, j,l |μi, j )p(wi, j,l |φzi, j,l
) (1)

where p(μi, j |ai , bi ,μi, j−1) is given by PDP(ai , bi ,μi, j−1).
From the notion of the proposed model, we can find the obvious distinction between the

SeqLDA model and the LDA model (shown in Fig. 2c): the SeqLDA model takes into account
the sequential structure of each document, i.e. the position of each segment that the LDA
model ignores. Our SeqLDA model aims to capitalise on the information conveyed in the
document layout, to explore how topics evolve within a document, and further to assist in
understanding the original text. Although the LDA model can also be applied to segments
directly, the progressive topical dependency between two adjacent segments would be lost by
treating segments independently. Similar to the LDA model, the LDCC model [30], as shown
in Fig. 2b, still has an implicit assumption that segments within a document are exchange-
able, not always appropriate, so does STM [11]. Furthermore, assigning just one topic to
each segment in the LDCC cannot capture the evolvement of each topic depicted in the doc-
ument. Like the SeqLDA model, the STM assumes each segment has a topic distribution,
and each segment topic distribution is drawn from document topic distribution by the PDP.
As discussed earlier, the STM is developed to explore only the relationship between a main
idea and its corresponding sub-ideas. The exchangeability assumption posed by the STM
may make it unsuitable for describing the sequential topic structure and detecting the topic
evolvement.

Thus, if documents indeed have some latent sequential structure, considering this depen-
dency means a higher fidelity of SeqLDA over LDA and LDCC. However, if the correlation
amongst sub-ideas of segments is not obvious, taking the topic distribution of the j th seg-
ment as the base distribution of the ( j + 1)th segment may misinterpret the document topic
structure. In this sense, the SeqLDA model may be a deficient generative model, but it is
still a prominent model and remains powerful if the progressive dependency is dynamically
changed by optimising strength and discount parameters (a and b) for each individual seg-
ment within each document. Though for simplicity, we first fix a and b for each corpus, and
then optimise bi for each document i with a fixed in all our reported experiments.

4 Inference algorithm

In order to use the SeqLDA model, we need to solve the key inference problem which is to
compute the posterior distribution of latent variables (i.e. topic distributions μ0:J and topic
assignment z) given the inputs (i.e. α,�, a and b) and observations w, that is:

p(μ0:J , z|w,α,�, a, b) = p(μ0:J , z,w|α,�, a, b)

p(w|α,�, a, b)
.
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Table 2 List of statistics

Statistic Description

Mi,k,w Topic by word total sum in document i , the number of words with dictionary index w and topic k

Mk,w Mi,k,w Totalled over documents i , i.e.,
∑

i Mi,k,w

Mk Vector of W values Mk,w

ni, j,k Topic total in document i and segment j for topic k ni, j,k = ∑
l 1zi, j,l=k

Ni, j Topic total sum in document i and segment j , i.e.,
∑

k ni, j,k

ti, j,k Table count in the CRP for document i and segment j , for topic k. This is the number of
tables active for the kth value. Necessarily, ti, j,k ≤ ni, j,k and ti, j,k > 0 whenever ti, j,k > 0.
In particular, if ni, j,k = 1 then ti, j,k = 1

Ti, j Total table count in the CRP for document i and segment j , i.e.
∑

k ti, j,k

t i, j Table count vector, i.e., (ti, j,1, . . . , ti, j,K ) for segment j

ui,k The smallest segment index j ′ in i , where ti, j ′,k = 0

Unfortunately, this posterior distribution cannot be computed directly because of the
intractable computation of marginal probabilities. As a consequence, we must appeal to
approximate inference techniques, where some of the parameters (i.e. μ0:J and � in our
case) can be marginalised out, rather than explicitly estimated. In topic modelling literature,
two standard approximation methods have often been used: variational inference [6] and
Gibbs sampling [14]. Here, we pursue an alternative approximating strategy using the latter
by taking advantage of the collapsed Gibbs sampler for the PDP [9,11].

Gibbs sampling is a special form of Markov chain Monte Carlo (MCMC) simulation which
should proceed until the Markov chain has ‘converged’ to its stationary state. Although, in
practice, we run it for a fixed number of iterations. Collapsed Gibbs sampling capitalises on
the conjugacy of priors to compute the conditional posteriors. Thus, it always yields relatively
simple algorithms for approximate inference in high-dimensional probability distributions.
Note that we use conjugate priors in our model, i.e. Dirichlet prior α on μ0 and γ on �, PDP
prior on μ j (PDP is self-conjugate); thus μ0:J and � can be integrated out. Although the
proposed sampling algorithm does not directly estimate μ0:J and �, we will show how they
can be approximated using the posterior sample statistics.

In this section, we derive the collapsed Gibbs sampling algorithm for doing inference,
and parameter estimation in the proposed model. Table 2 lists all the statistics required in
our algorithm. Our SeqLDA sampling is a collapsed version of what is known as the nested
Chinese restaurant process (CRP) used as a component of different topic models [4]. The
basic theory of the CRP and our collapsed version of it are summarised in the ‘Appendix A’.
The CRP model goes as follows: a Chinese restaurant has an infinite number of tables, each
of which has infinite seating capacity. Each table serves a dish k = 1, . . . , K , so multiple
tables can serve the same dish. In modelling, we only consider tables which have at least one
customer, called active tables. We have one Chinese restaurant for each segment in a docu-
ment (shown in Fig. 3) that models the topic proportions for the segment, and each restaurant
serves up to K topics as dishes. The statistic ti, j,k , called ‘table count’, is introduced for the
PDP in the CRP configuration [9,32] and represents the number of active tables in the restau-
rant for segment i, j that are serving dish k. The table counts are treated as constrained latent
variables that make it possible to design a collapsed Gibbs sampler. However, constraints
hold on table counts: the total number of customers sitting at the ti, j,k tables serving dish k
must be greater than or equal to the number of tables ti, j,k .
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Fig. 3 The Chinese restaurant construction of the SeqLDA. Each restaurant is represented by a rectangle.
Customers (c j,n ’s) are seated at tables (circles) in the restaurants. At each table a dish is served as indicated
by t j,m = k, which means the kth dish is served at the mth table in restaurant j . Note that in the hierarchical
Chinese restaurant there are two types of customers, ci,n who arrive by themselves, and t j,m who are sent by
the child restaurant

4.1 The model likelihoods

To derive a collapsed Gibbs sampler for the above model, we need to compute the marginal
distribution over the observation w, the corresponding topic assignment z, and the newly
introduced latent variable, table counts t . We do not need to include, i.e. can integrate out,
the parameter sets μ0:J and �, since they can be interpreted as statistics of the associations
amongst w, z and t . Hence, we first recursively apply the collapsed Gibbs sampling func-
tion for the PDP, i.e., Eq. (13) in the ‘Appendix A’, to integrating out the segment topic
distributions μi,1:J from Eq. (1), we derive p(z1:I ,w1:I , t1:I ,μ1:I,0 | α, γ ,�, a1:I , b1:I )

∏

i

1

BetaK (α)

∏

k

μ
αk+ti,1,k−1
i,0,k

∏

j

(bi |ai )Ti, j

(bi )Ni, j +Ti, j+1

∏

j,k

S
ni, j,k+ti, j+1,k
ti, j,k ,ai

∏

w,k

φ
Mi,k,w

k,w (2)

where ti, j,k ≤ ni, j,k + ti, j+1,k and ti, j,k = 0 iff ni, j,k + ti, j+1,k = 0; BetaK (α) is a K
dimensional beta function that normalises the Dirichlet; (x)N is given by (x |1)N , and (x |y)N

denotes the Pochhammer symbol with increment y, it is defined as

(x |y)N = x(x + y) . . . (x + (N − 1)y) =
{

x N if y = 0

yN × �(x/y+N )
�(x/y)

if y > 0,

where �(·) denotes the standard gamma function; SN
M,a is a generalised Stirling number given

by the linear recursion [9,32]

SN+1
M,a = SN

M−1,a + (N −Ma)SN
M,a,

for M ≤ N . It is 0 otherwise and SN
0,a = δN ,0. These numbers rapidly become very large so

computation needs to be done in log space using a logarithmic addition.
Figure 3 shows how the segment level topic distributions can be marginalised out in a

recursive way to yield Eq. (2), especially the middle three products. The arrows indicated
the tables in the child restaurant are sent to its parent restaurant as proxy customers, so the
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total number of customers in restaurant j (or segment j) now is Ni, j + Ti, j+1. This is how
the third and fourth products in the middle of Eq. (2) can be derived with Eq. (13).

Finally, integrate out the document topic distributions μi,0 and the topic–word matrix �,
as is usually done for collapsed Gibbs sampling in topic models. we can compute the joint
conditional distribution of z1:I ,w1:I , t1:I,1:Ji as

p(z1:I ,w1:I , t1:I | α, γ , a1:I , b1:I )

=
∏

i

BetaK
(
α + t i,1

)

BetaK (α)

∏

i, j

(bi |ai )Ti, j

(bi )Ni, j +Ti, j+1

∏

i, j,k

S
ni, j,k+ti, j+1,k
ti, j,k ,ai

∏

k

BetaW (γ + Mk)

BetaW (γ )
(3)

The derivations are provided in detail in ‘Appendix B’.

4.2 The collapsed gibbs sampler

In each cycle of the Gibbs sampling algorithm, a subset of variables are sampled from their
conditional distributions with the values of all the other variables given. In our case, the distri-
butions that we want to sample from is the posterior distribution of topics (z), and table counts
(t), given a collection of documents. Since the full joint posterior distribution is intractable
and difficult to sample from, in each cycle of Gibbs sampling we will sample respectively
from two conditional distributions: (1) the conditional distribution of topic assignment (zi, j,l)

of a single word (wi, j,l) given the topics assignments for all the other words and all the table
counts; (2) the conditional distribution of table count (ti, j,k) of the current topic given all
the other table counts and all the topic assignments. Note that sampling table counts from
the latter can be taken as a stochastic process of rearranging the seating plan of a Chinese
restaurant in the CRP representation of the PDP.

In our model, documents are indexed by i , segments of each document are indexed by j
according to their original layout, and words are indexed by l. Thus, with documents indexed
by the above method, we can readily yield a Gibbs sampling algorithm for the SeqLDA model
as: for each word, the algorithm computes the probability of assigning the current word to
topics from the first conditional distribution, whilst topic assignments of all the other words
and table counts are fixed. Then, the current word would be assigned to a sampled topic,
and this assignment will be stored for being used when the Gibbs sampling cycles through
other words. Whilst scanning through the list of words, we should also keep track of the table
counts for each segment. For each new topic that the current word is assigned to, the Gibbs
sampling algorithm estimates the probabilities of changing the corresponding table count
to different values by fixing all the topic assignments and all the other table counts. These
probabilities are computed from the second conditional distribution. Then, a new value will
be sampled and assigned to the current table count. Note that the values for the table count
should be subject to some constraints that we will discuss in detail when we derive the two
conditional distributions below.

Consequently, the aforementioned two conditional distributions we need to compute are,
respectively,

1. p(zi, j,l = k | z1:I − {zi, j,l},w1:I , t1:I,1:Ji ,α, a1:I , b1:I )
2. p(ti, j,k | z1:I ,w1:I , t1:I,1:Ji − {ti, j,k},α, a1:I , b1:I )

where zi, j,l = k indicates the assignment of the lth word in the j th segment of document
i to topic k, z1:I − {zi, j,l} presents all the topic assignments not including the lth word,
and t1:I,1:Ji − {ti, j,k} denotes all the table counts except for the current table count ti, j,k .
Before elaborating the derivation of these two distributions, we discuss the aforementioned
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constraints on the table count (ti, j,k) and the word count (ni, j,k) for each topic. Following
the CRP formulation, customers are words, dishes are topics and restaurants are segments
in our case. All restaurants share a finite number of dishes, i.e. K dishes. From Eq. (3) and
also seen from Eq. (13) in the ‘Appendix A’, tables of ( j + 1)th restaurant are customers of
j th restaurant in nested CRPs, as depicted in Fig. 3. These counts have to comply with the
following constraints:

1. ti, j,k = 0 iff ni, j,k + ti, j+1,k = 0;
2. ti, j,k > 0 if ni, j,k > 0 or ti, j+1,k > 0;
3. ni, j,k + ti, j+1,k ≥ ti, j,k ≥ 0.

For instance, the third constraint says that the total number of occupied tables serving dish
k must be less than or equal to the total number of customers eating dish k. That is because
each active table at least has one customer. Handling the constraints on all table counts ti, j,k

is the key challenge in the development of our Gibbs algorithm.
Considering the procedure of sampling a new topic for a word wi, j,l , we need to remove

the current topic (referred to as old topic) from the statistics. Assume the value of old topic
zi, j,l is k, the number of words assigned to k in the j th segment of document i, ni, j,k , should
decrease by one; then recursively check the table count ti, j ′,k for 1 ≤ j ′ ≤ j according to
the constraints, and remove one if needed to satisfy the constraints, this check will proceed
till somewhere the constraints hold; and finally assign the smallest j ′ to ui,k where the first
constraint holds. Similarly, the same process should be done when assigning the current word
to a new topic. We can prove, by recursion, that no ti, j,k go from zero to non-zero or vice
versa unless an ni, j,k does, so one only needs to consider the case where ni, j,k + ti, j+1,k > 0.
Moreover, the zero ti, j,k forms a complete suffix of the list of segments, so ti, j,k = 0 if and
only if ui,k ≤ j ≤ Ji for some ui,k .

Now, beginning with the conditional distribution, Eq. (3), using the chain rule, and taking
into account all cases, we obtain the final full conditional distribution

p(zi, j,l = k | z1:I − {zi, j,l},w1:I , t1:I,1:Ji ,α, a1:I , b1:I )

= p(z1:I ,w1:I , t1:I,1:Ji | α, a1:I , b1:I )
p(z1:I − {zi, j,l},w1:I , t1:I,1:Ji | α, a1:I , b1:I )

with three different cases according to the value of ui,k as follows: when ui,k = 1, which
means all the table counts ti, j ′,k for 1 ≤ j ′ ≤ Ji are zero, we have

p(zi, j,l = k | z1:I − {zi, j,l},w1:I , t1:I,1:Ji ,α, a1:I , b1:I )

=
(
αk + t ′i,1,k

) (
bi + ai T ′

i,1

)

∑
k αk + ∑

k t ′i,1,k

j∏

j ′=2

(
bi + ai T ′

i, j ′

bi + Ni, j ′−1 + T ′
i, j ′

)
γwi, j,l + M ′

k,wi, j,l∑
w(γw + M ′

k,w)
(4)

When 1 < ui,k ≤ j , which means all the table counts ti, j ′,k for ui,k ≤ j ′ ≤ Ji are zero,
the conditional probability is

p(zi, j,l = k | z1:I − {zi, j,l},w1:I , t1:I,1:Ji ,α, a1:I , b1:I )

=
j∏

j ′=ui,k

(
bi + ai T ′

i, j ′

bi + Ni, j ′−1 + T ′
i, j ′

)
S

ni,ui,k −1,k+1
ti,ui,k −1,k ,ai

S
ni,ui,k −1,k

ti,ui,k −1,k ,ai

γwi, j,l + M ′
k,wi, j,l∑

w(γw + M ′
k,w)

(5)
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When j < ui,k , which means the current table count ti, j,k > 0 (no recursive check), it is
simplified to

p(zi, j,l = k | z1:I − {zi, j,l},w1:I , t1:I,1:Ji ,α, a1:I , b1:I )

=
S

n′
i, j,k+1+ti, j+1,k

t ′i, j,k ,ai

S
n′

i, j,k+ti, j+1,k

t ′i, j,k ,ai

γwi, j,l + M ′
k,wi, j,l∑

w(γw + M ′
k,w)

(6)

where the dash indicates statistics after excluding the current topics assignment zi, j,l .
After sampling the new topic for a word, we need to stochastically sample the table count

for this new topic, say k. Although we have summed out the specific seating arrangements
(i.e. different tables and specific table assignments) of the customers in the collapsed Gibbs
sampler, we still need to sample how many tables are serving dish k (i.e. topic k in our model),
given the current number of customers (i.e. words) eating dish k. The value of ti, j,k should
be in the following interval:

ti, j,k ∈
[

max
(
1, ti, j−1,k − ni, j−1,k

)
, ni, j,k + ti, j+1,k

]

Thus, given the current state of topic assignment of each word, the conditional distribution
for table count ti, j,k can be obtained by similar arguments, as below.

p(ti, j,k | z1:I ,w1:I , t1:I,1:Ji − {ti, j,k},α, a1:I , b1:I )

= p(z1:I ,w1:I , t1:I,1:Ji | α, a1:I , b1:I )
p(z1:I ,w1:I , t1:I,1:Ji − {ti, j,k} | α, a1:I , b1:I )

∝
(

�
(
αk + ti,1,k

)

�
(∑

k αk + ∑
k ti,1,k

)
)δ j,1

⎛

⎝ S
ni, j−1,k+ti, j,k
ti, j−1,k ,ai

(bi )Ni, j−1+T ′
i, j

⎞

⎠
1−δ j,1

(bi |ai )T ′
i, j

S
ni, j,k+ti, j+1,k
ti, j,k ,ai

(7)

Now, we can easily estimate the topic distribution μ and topic–word distribution �, from
the statistics obtained after the convergence of Markov chain. They can be approximated from
the following mean posterior expected values (using the mean of a Dirichlet distribution and
the mean of the PDP) via sampling. For the document topic distribution μi,0, we have

μ̂i,0,k = Ezi ,t i,1:Ji | wi ,α,�,ai ,bi

[
αk + ti,0,k∑

k αk + ∑
k ti,0,k

]
(8)

And the segment topic distribution μi, j (1 ≤ j ≤ Ji ) can be estimated as

μ̂i, j,k

= Ezi ,t i,1:Ji | wi ,α,�,ai ,bi

[
ai Ti, j + bi

bi + Ni, j + Ti, j+1
μi, j−1,k + (ni, j,k + ti, j+1,k) − ai ti, j,k

bi + Ni, j + Ti, j+1

]
(9)

Then, the topic–word distribution is given by

φ̂k,w = Ezi ,t i,1:Ji | wi ,α,�,ai ,bi

[
γw + Mk,w∑
w(γw + Mk,w)

]
(10)

The collapsed Gibbs sampling algorithm for our proposed model is outlined in Fig. 4.
We start this algorithm by randomly assigning words to topics in [1, . . . , K ], and if the total
number of customer, ni, j,k + ti, j+1,k , is greater than zero, the table count ti, j,k is initialised
to 1. Each Gibbs sampler then constitutes applying Eqs. (4), (5) or (6) to every word in the
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Fig. 4 Collapsed Gibbs sampling algorithm for the SeqLDA model

document collection; and applying Eq. (7) to each table count. A number of initial samples,
i.e. samples before burn-in period, have to be discarded. After that, the Gibbs samples should
theoretically approximate our target distribution (i.e. the posterior distribution of topics (z),
and table counts (t)). Now, we pick a number of Gibbs samples at regularly spaced intervals.
In this article, we average these samples to obtain the final sample, as done in [29]. This
collapsed Gibbs sampling algorithm is easy to implement and requires little memory.

4.3 Estimating hyperparameters

Since the PDP is extremely sensitive to the strength parameters (i.e. b1:I ), which was observed
in our initial experiments, we thus propose an algorithm to sample bi for each documents
using the Beta/Gamma auxiliary variable trick, as those in [8,32,34]. The sampling routine
is based on the joint distribution Eq. (3).

We first consider the case when the discount parameter a = 0. The posterior for bi is
proportional to

∏

j

b
Ti, j
i �(bi )

�(bi + Ni, j + Ti, j+1)
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Introduce an auxiliary variable qi, j ∼ Beta(bi , Ni, j +Ti, j+1) for each segment i, j . Then,
the joint posterior distribution for qi, j and b is proportional to

a
∑Ji

j Ti, j

i

Ji∏

j

qb−1
i, j (1 − qi, j )

Ni, j +Ti, j+1−1 (11)

Given sampled values of all the auxiliary variables, we can now sample bi according to
their conditional distributions,

qi, j ∼ Beta(bi , Ni, j + Ti, j+1)

bi ∼ Gamma

⎛

⎝
∑

j

Ti, j + 1,
∑

j

log(1/qi, j )

⎞

⎠

For the case when a > 0, the sampling scheme become a bit more elaborate. Now, the
posterior for bi is proportional to

a
∑Ji

j Ti, j

i

∏

j

�(bi/ai + Ti, j )

�(bi/ai )

�(bi )

�(bi + Ni, j + Ti, j+1)

Introducing the same auxiliary variables, as those for a = 0, yields a joint posterior
distribution proportional to

a
∑Ji

j Ti, j

i

Ji∏

j

�(bi/ai ) + Ti, j

�(bi/ai )
qbi −1

i, j (1 − qi, j )
Ni, j +Ti, j+1−1 (12)

It is easy to show that the above distribution is log concave in b, so we here adopted
an adaptive rejection sampling algorithm [13]. Sampling the strength parameter b allows a
different value for each document, even for each segment with only a slight modification of
Eq. (11) and Eq. (12). In addition, although we did not study the discount parameter ai in
this work, it could also be optimised or sampled.

Instead of using symmetrical Dirichlet prior α, we can use a non-symmetrical Dirichlet
prior whose components have to be estimated. The estimation algorithms proposed in the
literature are base on either maximum likelihood or maximum a posteriori, such as the
Moment–Match and the Newton–Raphson iteration. Here, we adopt the Newton–Raphson
method following the early work by Minka [22]. According to Eq. (3), the gradient of the
log-likelihood is

d f (α)

dαk
=

∑

i

(
	

(
∑

k

αk

)
− 	

(
∑

k

αk +
∑

k

ti,1,k

))

+
∑

i

(
	

(
αk + ti,1,k

) − 	 (αk)
)

where 	() is known as the digamma function that is the first derivative of log gamma function,

and f (α) is the model log-likelihood parameterised with α, f (α) ∝ log
(∏

i
BetaK (α+t i,1)

BetaK (α)

)
.
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Then, the Hessian of the log-likelihood is

d f (α)

dα2
k

=
∑

i

(
	 ′

(
∑

k

αk

)
− 	 ′

(
∑

k

αk +
∑

k

ti,1,k

))

+
∑

i

(
	 ′ (αk + ti,1,k

) − 	 ′ (αk)
)

d f (α)

dαk dαk′
=

∑

i

(
	 ′

(
∑

k

αk

)
− 	 ′

(
∑

k

αk +
∑

k

ti,1,k

))
where k �= k′,

and 	 ′() is the trigamma function, i.e. the second derivative of gamma function. Now, a
Newton iteration can be computed to optimise Dirichlet prior α. In our experiments, we
interchangeably upgrade b and α after each main Gibbs sampling iteration. For example, we
optimise α for the first 300 iterations with b fixed; then, optimise b for the next 300 iterations
with α fixed, and so on. As can be seen, we indeed adopt a greedy approach to optimise the
two hyperparamters at the same time, which may not give a global optimum.

5 Experiment settings and results

We implemented the LDA model, the LDCC model and the SeqLDA model in C, and ran
them on a desktop with Intel(R) Core(TM) Quad CPU (2.4 GHz), though our code is not
multi-threaded. Our previous comprehensive experimental results [11] on several well-known
corpora as well as several patent document sets show that, though LDCC often outperforms
LDA working on the document level, it performs quite similarly to LDA working on the
segment level, in terms of document modelling. On the other hand, LDCC is not designed to
uncover sequential topic structure either, neither does STM. Thus, we compare our SeqLDA
directly with LDA working on both the document and the segment levels to facilitate easy
comparison.

In this section, we first discuss the perplexity comparison between SeqLDA and LDA on
a patent dataset. The held-out perplexity measure [29] is employed to evaluate the gener-
alisation capability to the unseen data. Then, we present topic evolvement analysis on two
books, available at http://www.gutenberg.org. The former will show that our SeqLDA model
is significantly better than LDA with respect to document modelling accuracy as measured
by perplexity; and the latter will typically demonstrate the superiority of SeqLDA in topic
evolvement analysis.

5.1 Data sets

The patent dataset (i.e. Pat-1000) has 1,000 patents that are randomly selected from 8,000
U.S. patents.1 They are granted between Jan. and Apr. 2009 under the class ‘computing;
calculating; counting’. All patents are split into paragraphs according to the original layout
in order to preserve the document structure. We remove all stop-words, extremely common
words (i.e. most frequent 50 words), and less common words (i.e. words appear in less than
5 documents). No stemming has been done. We here treat paragraphs as segments in the
SeqLDA model. The two books we choose for topic evolvement analysis are ‘The Prince’
by Niccolò Machiavelli and ‘Moby Dick’ by Herman Melville, also known as ‘The Whale’.

1 All patents are from Cambia, http://www.cambia.org/daisy/cambia/home.html.
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Table 3 Dataset statistics The Prince Moby Dick Pat-1000

Training Testing

No. documents 1 1 800 200

No. segments 26 135 49,200 11,360

No. words 10,705 88,802 2,048,600 464,460

Vocabulary 3,315 16,223 10,385

They are split into chapters which are treated as segments, and only stop-words are removed.
Table 3 shows the statistics of these datasets.

5.2 Document modelling

We follow the standard way in document modelling to evaluate the per-word predicative
perplexity of the SeqLDA model and the LDA model on the Pat-1000 dataset with 20% held
out for testing. The perplexity of a collection of documents is formally defined as:

perplexity(Dtest) = exp
{

−
∑I

i=1 ln p(wi )∑I
i=1 Ni

}

where wi indicates all words and Ni indicates the total number of words in document i
respectively. A lower perplexity over unseen documents means better generalisation capabil-
ity. In our experiments, it is computed based on the held-out method introduced in [29]. In
order to calculate the likelihood of each unseen word in SeqLDA, we need to integrate out
the sampled distributions (i.e. μ and �) and sum over all possible topic assignments. Here,
we approximate the integrals using a Gibbs sampler with Eqs. (8)–(10) for each sample of
assignments z, t . In our experiments, we run each Gibbs sampler for 2,000 iterations with
1,500 burn-in. After the burn-in period, a total number of 5 samples are drawn at a lag of 100
iterations. These samples are averaged to yield the final trained model.

We first investigate the performance of our SeqLDA model with or without the hyperpa-
rameter estimation proposed in Sect. 4.3. Four sets of experiments2 have been done. They are,
respectively, the SeqLDA model with α = 0.10 (i.e. symmetrical α), b = 10 and a = 0.2
(SeqLDA); with α optimised by Newton–Raphson method, b = 10 and a = 0.2 (Se-
qLDA_alpha); with α = 0.10, b optimised by sampling method and a = 0.2 (SeqLDA_b);
and with both α and b optimised and a = 0.2 (SeqLDA_alpha_b). Note that for simplicity, b
is optimised for each document, even though we can optimise b for each segment. Figure 5
shows the results in terms of perplexity.

According to the p-values of the paired t-test (as shown in Table 4), there is no significant
difference between the manually optimised SeqLDA model and the automatically optimised
models. We have observed that the average value of the optimised asymmetrical α is close
to 0.10. The perplexity of the SeqLDA with only alpha optimised becomes lower than others
when k is getting larger (k > 50). In contrast, the SeqLDA with both α and b optimised
yields slightly higher perplexity. This might be because the way that we used to carry out
the optimisation is kind of greedy, which cannot reach a global optimum for both α and b.

2 We have first done a series of experiments with the value of α ranging from 0.01 to 0.90 to manually
choose the optimal one, which is 0.10. And, the values of b and a are chosen empirically based on our initial
experiments. They are b = 10 and a = 0.20
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Fig. 5 Perplexity comparison amongst different optimisation approaches on the Pat-1000 dataset with 20%
hold out for testing

Table 4 p-values for paired
t-test for results in Fig. 5

Pat-1000

SeqLDA_alpha SeqLDA_b SeqLDA_alpha_b

SeqLDA 2.2e-1 2.8e-1 1.3e-2

We can therefore conclude that our hyperparameter optimisation algorithms work as well
as the manual optimisation. And, we can further claim that these hyperparamters are not
difficult to set up in order to get nice results.

In addition, we ran another set of experiments to verify whether there indeed exists a
sequential topical dependency amongst segments of each document. Instead of retaining the
original layout of segments (i.e. the original order of paragraphs in a patent), we have ran-
domly permuted the order of the segments for both the training dataset and the testing dataset.
In Fig. 6, ‘NP’ indicates the seqLDA model trained and tested without permutation, ‘PTrTe’
indicates the model trained and tested with permutation, and ‘PTe’ indicates the model tested
with permutation but trained without permutation. Take k = 25 as an example, the perplexity
corresponding to the original layout (1,905.2) is much lower than that corresponding to the
randomly permuted order (2,009.8). Thus, the significant difference shows that the sequen-
tial topical structure does exist in the patents, and considering this structure can improve the
accuracy of text analysis in terms of the perplexity.

Next, we compare the SeqLDA model with the LDA model (the bench mark model in
our view). In order to make a fair comparison, we set hyper-parameters fairly, since they are
important for the two models. We employ the moment–match algorithm [22] to optimise α for
the LDA model, and fix all parameters for our SeqLDA model as: a = 0.2, b = 10, α = 0.1.
And γ is set to 200/W for both models. Note that we seek to automatically optimise the
parameter settings for the LDA model, which enables us to draw fair conclusions on SeqLDA’s
performance.

Figure 7 demonstrates the perplexity comparison for different number of topics. The
LDA model has been tested on document level (LDA_D) and paragraph level (LDA_P) sep-
arately. We have also run the SeqLDA model with or without being boosted by either LDA_D
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Fig. 6 Perplexity comparison to verify the existence of the sequential topical dependency
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Fig. 7 Perplexity comparison amongst the SeqLDA model and the LDA model on the Pat-1000 dataset

(SeqLDA_D) or LDA_P (SeqLDA_P). The boosting is done by using the topic assignments
learnt by the LDA model to initialise the SeqLDA model. As shown in the figure, our SeqLDA
model, either with or without boosting, consistently performs better than both LDA_D and
LDA_P. The p-values from the paired t test shown in Table 5 are always smaller than 0.05,
which has clearly indicated that the advantage of the SeqLDA model over the LDA model is
statistically significant. Evidently, the topical dependencies information propagated through
the document structure, for the patent dataset, indeed exists; and explicitly considering the
dependency structure in topic modelling, as our SeqLDA model does, can be valuable to help
understand the original text content.

In our second set of experiments, we show the perplexity comparison by changing the
proportion of training data. In these experiments, the number of topics for both LDA and
SeqLDA are assumed to be fixed and equal to 50. As shown in Fig. 8, the SeqLDA model
(without boosting) always performs better than the LDA model as the proportion of train-
ing data increases. The training time, for example, with 80% patents for training and 2,000
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Table 5 p-values for paired
t-test for results in Fig. 7

Pat-1000

SeqLDA SeqLDA_D SeqLDA_P

LDA_D 7.5e-4 3.3e-4 3.2e-5

LDA_P 3.0e-3 1.9e-2 3.6e-3
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Fig. 8 Perplexity comparison on the Pat-1000 dataset with different percentages of training data (K = 50)

Gibbs iterations, is approximately 5 h for LDA, and 25 h for SeqLDA, which indicates that
the SeqLDA is still reasonably manageable in terms of training time.

5.3 Topic distribution profile over segments

Besides better modelling perplexity, another key contribution of our SeqLDA model is the
ability to discover underlying sequential topic evolvement within a document. With this, we
can further perceive how the author organises, for instance, her stories in a book or her ideas
in an essay. Here, we test SeqLDA on the two books with following parameter settings:
a = 0, α = 0.5, k = 20, b = 25 for “The Prince”, and b = 50 for “Moby Dick”.

To compare the topics of the SeqLDA and LDA models, we have to solve the problem of
topic alignment, since topics learnt in separate runs have no intrinsic alignment. The approach
we adopt is to start the SeqLDA’s Gibbs sampling with the topic assignments learnt from
the LDA model. Figure 9a and b show the confusion matrices between the topic distribu-
tions generated by the SeqLDA model and the LDA model with Hellinger Distance, where
SeqLDA topics run along the X-axis. Most topics are well aligned (with blue on the diago-
nal and yellow off-diagonal), especially those for ‘Moby Dick’. For ‘The Prince’, the major
confusion is with topic-0 and 9 yielding some blueish off-diagonal.

After aligning the topics, we plot the topic distributions (i.e. sub-ideas) as a function of
chapter to show how each topic evolves, as shown in Figs. 10 and 11 respectively. Immedi-
ately, we see that the topic evolving patterns over chapters learnt by SeqLDA are much clearer
that those learnt by LDA. For example, compare the subfigures in these two figures, it is hard
to find the topic evolvement patterns in Fig. 10b learnt by LDA; in contrast, we can find the
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Fig. 9 Topic alignment by confusion matrix

Fig. 10 Topic evolvement analysis by LDA

Fig. 11 Topic evolvement analysis by SeqLDA

patterns in Fig. 11b, for example, topic-7, which is about men on board ship generally, and
topic-12, which is about the speech of old (‘thou,’ ‘thee,’ ‘aye,’ ‘lad’) co-occur together from
Chaps. 15–40 and again around Chaps. 65–70, which is coherent with the book.
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Fig. 12 Topic evolvement by Hellinger Distance

Table 6 Typical topics learnt from ‘The Prince’

LDA Topic-0 Servant servants pandolfo good opinion cares honours recognise hon-
est comprehends venafro trust attention fails praise judgment honouring
form thinking correct error clever choosing rank disposed prime useless
Since a faithfull study

Topic-9 Truth emperor flatterers opinions counsel’s wisdom contempt advice
listen preserved bold counsel resolutions speaking maximilian
patient unite born deceived case affairs short anger prove receive
support steadfast guarding discriminating inferred

SeqLDA Topic-0 Servant flatterers pandolfo opinions truth good hones question emperor
counsels form cares opinion servants wisdom comprehends enable
interests honours contempt fails venafro preserved maximilian
choosing advantageous listen thinking capable recognise

Topic-9 Support cardinals labours fortify walls temporal fortified courageous
pontificate spirits resources damage town potentates character barons
burnt ecclesiastical principalities defence year firing hot attack
pursuit loss showed enemy naturally

Topic-15 People nobles principality favour government times hostile ways
oppressed enemies secure give messer friendly rule security courage
authority satisfy arises fail rome receive finds adversity civil builds
aid expect cities

Topic-16 Prince men great good state princes man things make time fear
considered subject found long wise army people affaires defend
whilst actions life fortune difficulty present mind faithful examples
roman

Top 30 words are listed as examples

Moreover, Fig. 12a and b depict the Hellinger distances (also as a function of chapter)
between the topic distributions of two consecutive chapters (i.e. between chapter i and chap-
ter i + 1) to measure how smoothly topics evolve through the books. Obviously, the topic
evolvement learnt by SeqLDA is much better than that learnt by LDA. SeqLDA always yields
smaller Hellinger distances and smaller variance of distances. The big topic shifts found by
LDA are also highlighted by SeqLDA, such as Chaps. 7–10 in Fig. 12a. Evidently, the
SeqLDA model has avoided heavy topic drifting, and makes the topic flow between chapters
much smoother than LDA does. An immediate and obvious effect is that this can help readers
understand more precisely how a book is organised.

Consider ‘The Prince’ in more detail. The topic that is most unchanged in ‘The Prince’
is topic-16 (having the lightest yellow in off-diagonal in Fig. 9a), also show in Table 6. This
topic occurs consistently through the chapters in both models and can be seen to really be
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the core topic of the book. Topic-15 is another topic that has not changed much, and it has
its occurrence broadened considerably; for the SeqLDA model it now occurs throughout
the second half of the book starting at Chap. 10; the topic is about the nature of governing
principalities as opposed to the first 9 chapters which cover how principalities are formed
and how princes gain their titles. Now consider the issue of topic-0 and 9. Inspection shows
topic-9 learnt by LDA occurring in Chaps. 2 and 16 is split into two by SeqLDA: the Chap. 16
part joins topic-0 which has its strength in the neighbouring Chap. 15, and the topic-0 part
broadens out amongst the three Chaps. 1–3. These topics are illustrated in Table 6 and it can
be seen that topic-0 and topic-9 by LDA talk about related themes.

Now consider ‘Moby Dick’ in more detail. In some cases, SeqLDA can be seen to refine
the topics and make them more coherent. Topic-6, for instance, in SeqLDA is refined to be
about the business of processing the captured whale with hoists, oil, blubber and so forth.
This occurs starting at Chap. 98 of the book. For the LDA model, this topic was also sprinkled
about earlier. In other cases, SeqLDA seems to smooth out the flow of otherwise unchanged
topics, as seen for topic-0, 1 and 2 at the bottom of Fig. 11b.

6 Conclusion

In this article, we have proposed a novel generative model, the sequential latent Dirichlet
allocation (SeqLDA) model by explicitly considering the document structure in the hierar-
chical modelling. The sequential topical dependencies buried in the higher level of document
structure are captured by the dependencies amongst the segments’ subjects (or ideas) which
are further approximated by topic distributions. Thus, the topic evolvements can be estimated
by observing how topic distributions change amongst segments. Unlike other Markov chain-
based models, the SeqLDA model detects the rise and fall of topics within each individual
document by putting the Markov assumption on the topic distributions.

We have developed for the SeqLDA model an efficient collapsed Gibbs sampling algo-
rithm based on the hierarchical two-parameter Poisson–Dirichlet process (HPDP) on top of
the corresponding Chinese Restaurant Process. Instead of sampling the full customer seating
arrangement, our algorithm introduces an auxiliary latent variable, i.e. table count, to sum
out the exact customer partitions in the restaurants. In this way, the real valued parameter of
the PDP can easily be integrated out. Having observed the PDP is sensitive to the strength
parameters (i.e. b), we proposed an adaptive rejection sampling method to optimise b. Besides
the advantage over LDA in terms of improved perplexity, the ability of the SeqLDA model to
discover more coherent sequential topic structure (i.e. how topics evolves amongst segments
within a document) has been demonstrated in our experiments. The experimental results also
indicate that the document structure can aid in the statistical text analysis, and structure-aware
topic modelling approaches provide a solution going beyond the bag-of-words assumption.

There are various ways to extend the SeqLDA model which we hope to explore in the
future. The model can be applied to conduct document summarisation, text segmentation
or document classifications, where sequential structures could play an important role. The
two parameters a and b in the PDP can be optimised dynamically for each segment, instead
of fixed for each corpus or each document in order to handle sizeable topic drift between
segments i.e. where the correlations between two successive segments are not very strong.
The SeqLDA model currently uses the first-order Markov chain to tie a sequence of LDA
models, which means the topic distribution of a segment is drawn from the PDP with that
of its preceding segment as a basis. The Markov chain could be extended to a more general
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graph, for example, by taking both document topic distribution and preceding segment topic
distribution as a base distribution in the PDP.
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Appendix A: Two-parameter Poisson–Dirichlet process and Chinese restaurants

The two-parameter Poisson–Dirichlet process (PDP), is a generalisation of the Dirichlet pro-
cess. In regard to SeqLDA, let μ be a distribution over topics (i.e. topic proportion). We
recursively place a PDP prior on μ j ( j ≥ 1):

μ j ∼ PDP(a, b,μ j−1),

where the three parameters are: a base distribution μ j−1; a (0 ≤ a < 1) and b (b > −a).
The parameters a and b can be understood as controlling the amount of variability around
the based distribution μ j−1 [32].

Here, we give a brief discussion of the PDP within the Chinese restaurant process model.
Consider a sequence of N customers sitting down in a Chinese restaurant with an infinite
number of tables each with infinite capacity but each serving a single dish. Customers in the
CRP are words in our model, and dishes in the CRP are topics.

The basic process with μ marginalised out is specified as follows: the first customer sits
at the first table; the (n + 1)th subsequent customer sits at the t th table (for 1 ≤ t ≤ T ) with

probability n∗
t −a

b+n , or sits at the next empty ((T +1)th) table with probability b+T ×a
b+n . Here, T

is the current number of occupied tables in the restaurant, and n∗
t is the number of customers

currently sitting at table t . The customer takes the dish assigned to that table, for table t given
by k∗

t . Therefore, the posterior distribution of the (n + 1)th customer’s dish is

b + T × a

b + n
μ +

T∑

t=1

n∗
t − a

b + n
δk∗

t
(·)

where k∗
t indicates the distinct dish associated with the t th table, and δk∗

t
(·) places probability

one on the outcome k∗
t .

In general PDP theory, the dishes (or values) at each table can be any measurable quantity,
but in our case they are a finite topic index k ∈ {1, . . . , K }. This finite discrete case has some
attractive properties shown in [9], which follows some earlier work of [32]. To consider this
case, we introduce another latent constraint variable: tk , the table count of menu k. In this
discrete case, given a probability vector μ of dimension K , and the following set of priors
and likelihoods for j = 1, . . . , J

μ j ∼ PDP(a, b,μ j−1)

m j ∼ multinomialK (μ j−1, M j )

where M j = ∑
k m j,k . Introduce auxiliary latent variables t j such that t j,k ≤ m j,k and

t j,k = 0 if and only if m j,k = 0, then the following marginalised posterior distribution holds
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p(n j , t j |a, b,μ j−1) = C
M j
n j

(b|a)∑
k t j,k

(b)M j

∏

k

S
m j,k
t j,k ,a

∏

k

μ
t j,k
j−1,k (13)

where C
M j
n j is the multi-dimensional choose function of a multinomial.

Note that in the hierarchical PDP, we consider in the SeqLDA model, a table in any given
restaurant reappears as a customer in its parent restaurant due to the last product term in
Eq. (13). Thus, there are two types of customers in each restaurant using the notation of
Table 2, the ones arriving by themselves (n j ), and those sent by its child restaurant (t j+1,k).

Appendix B: The derivation of the joint distribution

To show the derivation of Eqs. (2) and (3), we begin by calculating p(w|z) with the use
of p(w|z,�). It can be derived from a multinomial on the observed word counts given the
associated topics as following

p(w1:I | z1:I ,�) =
∏

i

∏

k

∏

w

φ
Mi,k,w

k,w =
∏

k

∏

w

φ
Mk,w

k,w

which can give the last product in Eq. (2). The target distribution p(w|z, γ ) is obtained by
integrating over �, which can be done componentwise using Dirichlet integrals within the
product over topic z:

p(w1:I | z1:I , γ ) =
∫

p(w1:I | z1:I ,�)p(� | γ )d�

=
∫ ∏

k

∏

w

φ
Mk,w

k,w

1

BetaW (γ )

∏

w

φ
γw−1
k,w dφk

=
∫ ∏

k

1

BetaW (γ )

∏

w

φ
Mk,w+γw−1
k,w

︸ ︷︷ ︸
Dirichlet formulation

dφk

=
∏

k

BetaW (γ + Mk)

BetaW (γ )
(14)

Then, the challenge here is to calculate the topic distribution p(z|α) with the involvement of
networks of the PDP, refer to ‘Appendix A’. Instead of drawing topic z for the corresponding
segment topic distribution μi, j , where j > 0, we sample z directly from the base distribu-
tion, i.e. document topic distribution μi,0, by marginalising out μi, j . Since the PDP is self-
conjugate in the finite discrete space, the marginalization can be done in a recursive fashion
in the CRP configuration, as discussed in ‘Appendix A’ and shown in Fig. 3. Using Dirichlet
integrals and Eq. (13), we have (with the new auxiliary variable, table counts t)

p(z1:I , t1:I | α, a1:I , b1:I )

=
∫ ∫ ∏

i

p(μi,0 | α)

Ji∏

j=1

p(μi, j | ai , bi ,μi, j−1)︸ ︷︷ ︸
μi, j ∼ PDP(ai ,bi ,μi, j−1)

L j∏

l=1

p(zi, j,l | μi, j ) dμi, j dμi,0
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=
∫ ∏

i

1

BetaK (α)

∏

k

μ
αk−1
i,0,k

⎛

⎝
∏

j

(bi |ai )Ti, j

(bi )Ni, j +Ti, j+1

∏

j,k

S
ni, j,k+ti, j+1,k
ti, j,k ,ai

⎞

⎠
∏

k

μ
ti,1,k
i,0,k

︸ ︷︷ ︸
marginalise out μi, j recursively, for j > 0

dμi,0

=
∫ ∏

i

1

BetaK (α)

∏

k

μ
αk+ti,1,k−1
i,0,k

︸ ︷︷ ︸
Dirichlet formulation

⎛

⎝
∏

j

(bi |ai )Ti, j

(bi )Ni, j +Ti, j+1

∏

j,k

S
ni, j,k+ti, j+1,k
ti, j,k ,ai

⎞

⎠ dμi,0

=
∏

i

BetaK
(
α + t i,1

)

BetaK (α)

∏

i, j

(bi |ai )Ti, j

(bi )Ni, j +Ti, j+1

∏

i, j,k

S
ni, j,k+ti, j+1,k
ti, j,k ,ai

(15)

The joint distribution therefore becomes the combination of Eqs. (14) and (15), which is
Eq. (3).
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