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Preface

Stochastic gradient Markov chain Monte Carlo (SG-MCMC):
@ A new technique for approximate Bayesian sampling.
@ It is about scalable Bayesian learning for big data.

@ It draws samples {6}’s from p(8; D) where p(0; D) is too
expensive to be evaluated in each iteration.

This lecture:
@ Will cover: basic ideas behind SG-MCMC.

@ Will not cover: different kinds of SG-MCMC algorithms,
applications, and the corresponding convergence theory.
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Monte Carlo methods

@ Monte Carlo method is about drawing
a set of samples from p(6):

ale(9)7 /:1727""L
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Monte Carlo methods

@ Monte Carlo method is about drawing
a set of samples from p(6):
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@ Approximate the target distribution
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Monte Carlo methods

@ Monte Carlo method is about drawing
a set of samples from p(6):
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@ Approximate the target distribution
p(0) as count frequency:
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Monte Carlo methods

@ Monte Carlo method is about drawing
a set of samples from p(6):

Gle(e)v /:1>27"'7L

@ Approximate the target distribution
p(0) as count frequency:

L
1
p(e) ~ L;é(@,@;) 8 10 12 14

@ An intractable integration is approximated as:

L
[ 1owe)~ 1 - f6)
1=1

@ In Bayesian modeling, p(0) is usually a posterior distribution, the
integral is a predicted quantity.
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How does the approximation work?

@ An intractable integration is approximated as:

L
[1ope)~ - r6) =
=1
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How does the approximation work?

@ An intractable integration is approximated as:

L
[1ope)~ - r6) =
=1

©Q If {6,}’s are independent:

Ef =E [LZfO,]_Ef Var(f Var< Zf0,>:—Var(f)

=1
» the variance decreases linearly w.r.t. the number of samples, and
independent of the dimension of 6
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How does the approximation work?

@ An intractable integration is approximated as:

L
[1ope)~ - r6) =
=1

©Q If {6,}’s are independent:

Ef =E [LZfB,]_Ef Var(f Var< ZfO,) —Var(f)

» the variance decreases linearly w.r.t. the number of samples, and
independent of the dimension of 6

© However, obtaining independent samples is hard:

» usually resort to drawing dependent samples with Markov chain
Monte Carlo (MCMC)
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MCMC example: a Gaussian model
@ Assume the following generative process (with o = 5,3 = 1):
Xilp, 7~ N(u,1/7), i=1,---,n=1000

/-L|7—7 {Xi} ~ N(;UJ07 1/7—)7
T ~ Gamma(a, 3)
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MCMC example: a Gaussian model
@ Assume the following generative process (with o = 5,3 = 1):
Xilp, 7~ N(u,1/7), i=1,---,n=1000
pl, {xi} ~ N(po, 1/7),
T ~ Gamma(a, 3)

© Posterior distribution:
p(u, TI{x:}) o< [TTi2qg N 1, 1/7)] N(p; o, 1/7)Gamma(r; a, 8)
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MCMC example: a Gaussian model
@ Assume the following generative process (with o = 5,3 = 1):
Xilp, 7~ N(u,1/7), i=1,---,n=1000
pl 7 {xit ~ N(po, 1/7),
T ~ Gamma(a, 3)

© Posterior distribution:
P, TI{xi}) oc [TTiLq N(xi: 1, 1/7)] N(pi po, 1/7)Gamma(r; v, 5)
© Marginal posterior distributions for . and = are available:

—a—(nt1)/2
p(ul{xi}) o< <25 + (1 — o) + Z(Xi - M)2>

p(r|{x}) = Gamma <a e DI R sy Mo)2>

» p(p|{xi}) is a non-standardized Student’s t-distribution with mean

(52, + o)/ (n+ 1)



Gibbs sampling ;. and

@ Conditional distributions:

n _ 1 1
“IT’{X'}NN(n+1X+n+1“°’ (n+1)7)

>oi(Xi — p)? + (1 — uo)z)
2

’
7lu, {x;} ~ Gamma (a + %,ﬁ +
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Sample approximation for .
@ True posterior is a non-standardized Student’s ¢-distribution.
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Sample approximation for
@ True posterior is a Gamma distribution.
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Markov chain Monte Carlo methods

@ We are interested in drawing samples from some desired
distribution p*(8) = $p*(6).
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Markov chain Monte Carlo methods

@ We are interested in drawing samples from some desired
distribution p*(8) = $p*(6).
@ Define a Markov chain:

g —01 >0 —03—>04— 05— ---
where 6y ~ po(0), 61 ~ p1(0), - - -, satisfying

pi(8') = / Pi1(6)T(8 — 6)d6

where T(6 — 6') is the Markov chain transition probability from
to 6.
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Markov chain Monte Carlo methods

@ We are interested in drawing samples from some desired
distribution p*(8) = $p*(6).
@ Define a Markov chain:

g —01 >0 —03—>04— 05— ---
where 6y ~ po(0), 61 ~ p1(0), - - -, satisfying
p8) = [ Pis(O)T(6 — 0)a6.
where T(6 — 6') is the Markov chain transition probability from
to @'
© We say p*(0) is an invariant (stationary) distribution of the Markov

chain iff:

p'(6) = [ p'(6)T(6 830
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Metroplis-Hasting algorithm

@ Design T(6 — 0’) as the composition of a proposal distribution
q:(0' | 8) and an accept-reject mechanism.
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Metroplis-Hasting algorithm

@ Design T(6 — 0’) as the composition of a proposal distribution
q:(0' | 8) and an accept-reject mechanism.

© At step t, draw a sample’ 8% ~ q¢(6|6;_1), and accept it with
probability:

) o P(6*)qi(6:—1]6")
At(0%,0¢_1) = min (1 ’ ;3(0;_1)271‘(4;* | Ht_1))

" A standard setting of g;(© | 6;_1) is a normal distribution with mean 6;_ 4 and tunable variance.
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Metroplis-Hasting algorithm

@ Design T(6 — 0’) as the composition of a proposal distribution
q:(0’' | 0) and an accept-reject mechanism.

© At step t, draw a sample’ 8% ~ q¢(6|6;_1), and accept it with
probability:

oy —min (1 PE)G(O16")
Ai(0%,6¢_1) = min (1 ) p(e,_1);t(¢;*1| 9t_1)>

© The acceptance can be done by:
» draw a random variable u ~ Uniform(0, 1)
» accept the sample if A/(0%,0;_1) > u

" A standard setting of g;(© | 6;_1) is a normal distribution with mean 6;_ 4 and tunable variance.
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Metroplis-Hasting algorithm

@ Design T(6 — 0’) as the composition of a proposal distribution
q:(0’' | 0) and an accept-reject mechanism.

© At step t, draw a sample’ 8% ~ q¢(6|6;_1), and accept it with
probability:

oy —min (1 PE)G(O16")
Ar(67,6;_1) = min (1 ’ ,s(ot_1)<tqt(¢;*1| 9t—1)>

© The acceptance can be done by:
» draw a random variable u ~ Uniform(0, 1)
» accept the sample if A/(0%,0;_1) > u
© The corresponding transition kernel satisfies the detailed balance
condition, thus has an invariant probability p*(8).

" A standard setting of g;(© | 6;_1) is a normal distribution with mean 6;_ 4 and tunable variance.
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Discussion on the proposal distribution

@ Standard proposal distribution is an isotropic Gaussian center at
the current state with variance o:
» small o leads to high acceptance rate, but moves too slowly
» large o moves fast, but leads to high rejection rate

© How to choose better proposals?
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Gibbs sampler

© Assume 6 is multi-dimensional?, 8 = (61,--- , 0, --- ,0k), denote
0 k= 1{0;:j#k}.

20ne dimensional random variable is relatively easy to sample.
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Gibbs sampler

© Assume 6 is multi-dimensional?, 8 = (61,--- , 0, --- ,0k), denote
0 k= 1{0;:j#k}.

© Sample 6, sequentially, with proposal distribution being the true
conditional distribution:

k(6" |0) = p(0k |6 k)

20ne dimensional random variable is relatively easy to sample.
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Gibbs sampler

© Assume 6 is multi-dimensional?, 8 = (61,--- , 0, --- ,0k), denote
0 k= 1{0;:j#k}.

© Sample 6, sequentially, with proposal distribution being the true
conditional distribution:

k(6" |0) = p(0k |6 k)

© Note 8 = 0_x, p(6) = p(Ok | 0—)P(6—).-
© The MH acceptance probability is:
Ao+, 0) = PO )a0]07) POk 16~ 1)P(0~ )P0k | 0~ )
’ p(0)qk(0*[0)  p(Ok|0_k)P(0_k)P(Ok | 6_k)
=1

20ne dimensional random variable is relatively easy to sample.
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Discussion of Gibbs sampler

@ No accept-reject step, very efficient.

© Conditional distributions are not always easy to sample.

© May not mix well when in high-dimensional space with highly
correlated variables.

22

21

Figure: Sample path does not follow gradients. Figure from PRML, Bishop (2006)
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The Metropolis-adjusted Langevin: a better proposal

@ Gibbs sampling travels the parameter space following a zipzag
curve, which might be slow in high-dimensional space.

© The Metropolis-adjusted Langevin uses a proposal that points
directly to the center of the probabilistic contour.

Changyou Chen (Duke University)
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The Metropolis-adjusted Langevin: a better proposal

@ Let E(0) = —log p(0), the direction of the contour is just the
gradient: —VgE(6).

© Initeration /, define the proposal as a Gaussian centering at
0" =0,_1—VgE(0,_1)h;, where h, is a small stepsize:

q(6,16,_1) = N (9,; 0*,02) .
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The Metropolis-adjusted Langevin: a better proposal

@ Let E(0) = —log p(0), the direction of the contour is just the
gradient: —VgE(6).
© Initeration /, define the proposal as a Gaussian centering at
*=0,_1—V¢E(0,_1)h;, where h; is a small stepsize:

q(0/10,-1) =N (9/; 0*,02> -

© Need to do an accept-reject step:
» calculate the acceptance probability:

p(0*)q(0,-116%)
p(6)q(6" | 6,-1)

» accept 8" with probability A(6*,8,_+), otherwise set 8, = 6,_4

A(07,0,_1) =
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Hamiltonian Monte Carlo

Frictionless ball rolling:

@ A dynamic system with total
energy or Hamiltonian:
H = E(0) + K(v), where
E(0) = —log p(6),
K(v)2vTv/2.

K<) I> ] [ =ote]+]

Figure: Rolling ball. Movie from
Matthias Liepe
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Hamiltonian Monte Carlo

Frictionless ball rolling:

@ A dynamic system with total
energy or Hamiltonian:
H = E(0) + K(v), where
E(6) = —log p(0),
K(v)2vTv/2.

© Hamiltonian’s equation
describes the equations of
motion of the ball:

de oH

— ==V

dt  ov

dv _ 9H _ologpe)  [KI<I[QID]>]H] [+
dt 06 06 Figure: Rolling ball. Movie from

Matthias Liepe
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Hamiltonian Monte Carlo

Frictionless ball rolling:

@ A dynamic system with total
energy or Hamiltonian:
H = E(0) + K(v), where
E(6) = —log p(0),
K(v)2vTv/2.

© Hamiltonian’s equation
describes the equations of
motion of the ball:

de oH

— ==V

dt  ov

dv _ 9H _ologpe)  [KI<I[QID]>]H] [+
dt 06 06 Figure: Rolling ball. Movie from

© Joint distribution: atthias Liepe

p(6,v) oc e HOV),
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Solving Hamiltonian dynamics

@ Solving the continuous-time differential equation with
discretized-time approximation:

de =vdt . 0, =0,_1+vi_1 h
dv = Vylogp(0)dt v, =V, 1+Vglogp(6))h

» proposals follow historical gradients of the distribution contour
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Solving Hamiltonian dynamics

@ Solving the continuous-time differential equation with
discretized-time approximation:

de =vdt . 0, =0,_1+vi_1 h
dv = Vglogp(6)dt vV, =Vi_1+Vglogp(6))h
» proposals follow historical gradients of the distribution contour

© Need an accept-reject test to design whether accept the proposal,
because of the discretization error:

» proposal is deterministic
» acceptance probability: min (1, exp {H(0,,v;) — H(0/+1,V1+1)})

Changyou Chen (Duke University) SG-MCMC 21/56



Solving Hamiltonian dynamics

@ Solving the continuous-time differential equation with
discretized-time approximation:

de =vdt . 0, =0,_1+vi_1 h
dv = Vglogp(6)dt vV, =Vi_1+Vglogp(6))h
» proposals follow historical gradients of the distribution contour

© Need an accept-reject test to design whether accept the proposal,
because of the discretization error:
» proposal is deterministic
» acceptance probability: min (1, exp {H(0,,v;) — H(0/+1,V1+1)})
© Almost identical to SGD with momentum:
. { 0, =0 _1+p_4
p, =(1—m)p,_; +Velogp(8))e

» they will be make equivalent in the context of stochastic gradient
MCMC
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Demo: MH vs. HMC

@ Nine mixtures of Gaussians®.
© Sequential of samples connected by yellow lines.

KIS0 (=fs+] <[<]Q]>]> > =+

3Demo by T. Broderick and D. Duvenaud.

Changyou Chen (Duke University) 22/56



Recap

@ Bayesian sampling with traditional MCMC methods, in each
iteration:
» generate a candidate sample from a proposal distribution
» calculate the acceptance probability
» accept or reject the proposed sample
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Discussion

@ All the above traditional MCMC methods are not scalable in a
big-data setting*, in each iteration:

» the whole data need to be used to generate a proposal

» the whole data need to be used to calculate the acceptance
probability

» scales O(N), where N is the number of data samples

“4when the number of data samples are large.
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Discussion

@ All the above traditional MCMC methods are not scalable in a
big-data setting*, in each iteration:
» the whole data need to be used to generate a proposal
» the whole data need to be used to calculate the acceptance
probability
» scales O(N), where N is the number of data samples

© Scalable MCMC uses sub-data in each iteration,

» to calculate the acceptance probability®
» to generate proposals, and ignore the acceptance step — stochastic
gradient MCMC methods (SG-MCMC)

“4when the number of data samples are large.

5A. Korattikara, Y. Chen, and M. Welling. “Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget”. In: /CML. 2014;
R. Bardenet, A. Doucet, and C. Holmes. “Towards scaling up Markov chain Monte Carlo: an adaptive subsampling approach”.
In: ICML. 2014.
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Two key steps in SG-MCMC

@ Proposals typically follow stochastic
gradients of log-posteriors:
» make samples concentrate on the
modes

21

Figure: Proposals of Gibbs
and SG-MCMC.
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Two key steps in SG-MCMC

@ Proposals typically follow stochastic L
gradients of log-posteriors:
» make samples concentrate on the
modes

© Adding random Gaussian noise to
proposals.

» encourage algorithms to jump out of
local modes, and to explore the
parameter space

» the noise in stochastic gradients not &

sufficient to make the algorithm Figure: Proposals of Gibbs
move around parameter space and SG-MCMC.
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Basic setup

@ Givendata X = {xy,---, Xy}, a generative model (likelihood)
p(X|0) = HL p(x; | @) and prior p(@), we want to sample from the
posterior:

p(6 | X) x p(6)p(X|0) = (‘9)HP(X,|t9
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Basic setup

@ Givendata X = {xy,---, Xy}, a generative model (likelihood)
p(X|0) = ]_[,-'i1 p(x; | @) and prior p(8), we want to sample from the
posterior:

p(6]X) o p(6)p(X|60) = B)HP(XIIO

© We are interested in the case when N is extremely large, so that
computing p(X| @) is prohibitively expensive.

© Define the following two quantities (unnormalized log-posterior
and stochastic unnormalized log-posterior):

N
U(9) £ > log p(x;|6) — log p(6)
i=1

(o) é—leogp (Xx, | 6) — log p(6)
i=1

where (mq, -+ ,7y) is @ random permutation of (1,--- | N).
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Basic setup

©@ SG-MCMC relies on the following quantity (stochastic gradient):

- N <
VoU(6) £ —— > Vo logp(xs, |6) — Vo logp(6) .

i=1
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Basic setup

©@ SG-MCMC relies on the following quantity (stochastic gradient):

N
L _ v/
VeU(0) = —— ;:1 Vglog p(x-, [6) — Velogp(6) ,
@ V,U(8) is an unbiased estimate of Vo U(0):

» SG-MCMC samples parameters based on V, U(6)
» very cheap to compute
» bringing the name “stochastic gradient MCMC”

Changyou Chen (Duke University) SG-MCMC 28/56



Comparing with traditional MCMC

@ Ignore the acceptance step:
» the detailed balance condition typically not hold, and the algorithm
is not reversible®
» typically leads to biased, but controllable estimations

8These are sufficient conditions for a valid MCMC method, but not necessary conditions.
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Comparing with traditional MCMC

@ Ignore the acceptance step:
» the detailed balance condition typically not hold, and the algorithm
is not reversible®
» typically leads to biased, but controllable estimations
@ Use sub-data in each iteration:
» yielding stochastic gradients
» does not affect the convergence properties (e.g., convergence
rates), compared to using the whole data in each iteration

8These are sufficient conditions for a valid MCMC method, but not necessary conditions.
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Demo: the two key steps

@ Proposals follow stochastic gradients of log-posteriors:
» stuck in a local mode

trajectory

o9
L
0.7
0.6

0.4
0.3
n2

01

K<<l > =]+
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Demo: the two key steps

@ After adding random Gaussian noise:
> it works !!

trajectory

o9
L
0.7
0.6

0.4
0.3
n2

01

K<<l > =]+
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First attempt

@ A 1st-order method: stochastic gradients directly applied on the
model parameter 6.

© Use a proposal that follows the stochastic gradient of the
log-posterior:

011 =0,-h,1VeU(8))

» hy’s are the stepsizes, could be fixed (V/, hy = h) or deceasing
(V/, hy > h/+1)

© Ignore the acceptance step.
© Resulting in Stochastic Gradient Descend (SGD).
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Random noise to the rescue

@ Need to make the algorithm explore the parameter space:
» adding random Gaussian noise to the update’

0,1 =0,—h 1V U(Hl) + \/ZhﬁCI—H
Cre1 ~ N(0,1)

© The magnitude of the Gaussian needs to be /2h,1 in order to
guarantee a correct sampler:

» guaranteed by the Fokker-Planck Equation

7In the following, we will directly use N(0, 1) to represent a normal random variable with zero-mean and covariance matrix I.
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Random noise to the rescue

@ Need to make the algorithm explore the parameter space:
» adding random Gaussian noise to the update’

0,1 =0,—h 1V 0(9/) + \/MCI‘H
Cre1 ~ N(0,1)

© The magnitude of the Gaussian needs to be /2h,1 in order to
guarantee a correct sampler:

» guaranteed by the Fokker-Planck Equation
© This is called stochastic gradient Langevin dynamics (SGLD).

7In the following, we will directly use N(0, ) to represent a normal random variable with zero-mean and covariance matrix I.
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SGLD in algorithm

Input: Parameters { h;}
Output: Approximate samples {0,}

Initialize 6y € R”
for/=12,...do
Evaluate Vg U(01_1) from the /-th minibatch
6,=0,_4 —VU(91_1 )h/ + \/TI'I/N(O, |)
end
Return {0,}
Algorithm 1: Stochastic Gradient Langevin Dynamics

Changyou Chen (Duke University) SG-MCMC 35/56



Example®
@ A simple Gaussian mixture:

01 ~N(0,10), 62 ~N(0,1)
1 1 ,
X,'NEN(91,2)—|-§N(91—|—92,2), I:1,"',100

3 3
2 2
1 1
0 0
-1 -1
2 -2
R 0 1 > 4 0 1 2

Figure: Left: true posterior; Right: sample-based estimation.

8. Welling and Y. W. Teh. “Bayesian learning via stochastic gradient Langevin dynamics”. In: /CML. 2011.
Changyou Chen (Duke University) SG-MCMC 36 /56
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SGHMC

@ A 2nd-order method: stochastic gradients applied on some
auxiliary parameters (momentum).
© SGLD is slow when parameter space exhibits uneven curvatures.
© Use the momentum idea to improve SGLD:
» a generalization of the HMC, in that the ball is rolling on a friction
surface
» the ball follows the momentum instead of gradients, which is a
summarization of historical gradients, thus could jump out local
modes easier and move faster
» needs a balance between these extra forces
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Adding a friction term

@ Without a friction term, the random Gaussian noise would drive
the ball too far away from their stationary distribution.
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Adding a friction term

@ Without a friction term, the random Gaussian noise would drive
the ball too far away from their stationary distribution.

@ After adding a friction term:
0,=0_1+Vvi_1h
V), =V|_4 —VgU(G/)h/ —Av_1h ++/ 2Ah/N(0, |) ,

where A > 0 is a constant®, controlling the magnitude of the
friction.

9n the original SGHMC paper, A is decomposed into a known variance of injected noise and an unknown variance of
stochastic gradients.
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Adding a friction term

@ Without a friction term, the random Gaussian noise would drive
the ball too far away from their stationary distribution.

@ After adding a friction term:

0,=0,_1+V_1h
V, =V,_4 —VgU(B/)h/ —Av,_1 hj+ +/ 2Ah/N(0, |) ,

where A > 0 is a constant®, controlling the magnitude of the
friction.
© The fraction term penalize the momentum:

» the more momentum, the more fraction it has, thus slowing down
the ball

9n the original SGHMC paper, A is decomposed into a known variance of injected noise and an unknown variance of
stochastic gradients.
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SGHMC in algorithm

Input: Parameters A, {h;}
Output: Approximate samples {6}

Initialize 8y € R"
for/=1,2,...do
Evaluate Vo U(6,_1) from the /-th minibatch
0,=0,_1+Vvi_1h
V), =V,_4 —VU(O/)h/ —Avi_1h+ v 2Ah/./\/(0, |)
end
Return {6,}
Algorithm 2: Stochastic Gradient Hamiltonian Monte Carlo
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Reparametrize SGHMC

for/=1,2,...do
Evaluate Vo U(6,_1) from the
/-th minibatch
0)=0,1+Vi_1h
V, =V,_4 —VU(G/)h/ —
Avi_1 h + 2AR N (0, 1)
end

@ Reparametrization: e = >, m= Ah,p=vh
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Reparametrize SGHMC

for/=1,2,...do for/=1,2,...do
Evaluate Vo U(6,_1) from the Evaluate Vo U(6,_1) from the
/-th minibatch I-th minibatch
0)=0,1+Vi_1h 0)=0_1+p,_1 )
Vi =V, —VU(8)h — P =(1-mp, 1 -=VU(O)e +
AV/—1 hl + \/m/\/(()’ I) \/WGIN(O’ I)

end end

@ Reparametrization: e = >, m= Ah,p=vh
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Reparametrize SGHMC

for/=1,2,...do for/=1,2,...do
Evaluate Vo U(6,_1) from the Evaluate V¢ U(8,_1) from the
/-th minibatch /-th minibatch
0)=0,1+Vi_1h 0,=0_1+p_4 )
Vi =V,_1 =VU(0))h — pi=0-mp._1-VU(O)e +
Av,._{ h + \/2Th/N(0, |) \/sz/N(o, |)

end end

@ Reparametrization: e = h>, m= Ah,v=ph
@ ¢;: learning rate; m: momentum weight

Changyou Chen (Duke University) SG-MCMC 42 /56



SGD vs. SGLD

n
Vol(011) 2~ 3" Vlog p(xs,[0/-1) ~ Vologp(01-1)
i—1
SGLD:
for/=1,2,...do
Evaluate V¢ U(8,_1) from the
I-th minibatch
0,=0,_4 —VD(O/)E/ + 9
51~ N(0,2¢]1)
end

SGD:

for/=12,...do
Evaluate Vo U(6,_1) from the
/-th minibatch
9/ = 9/_1 —VU(H/)E/

end

Changyou Chen (Duke University) SG-MCMC
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SGD with Momentum (SGD-M) vs. SGHMC

n
Vol(6,_1) & —% Z Vg log p(Xx; |0,-1) — Ve logp(6;,_1) ,
i—
SGHMC:
for/=1,2,...do
Evaluate Vo U(6,_1) from the
/-th minibatch
0=0_1+pP_4

SGD-M:

for/=1,2,...do
Evaluate Vo U(6,_1) from the
/-th minibatch

0)=01-1+P_4 p,=(1—-m)p,_4 —VU(6))e/+0,
B B oF == -1
o Pr= (e mpe =YV 5 A0, 2men)

end
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Example'®

@ Sample from a 2D Gaussian distribution:
» U@)=16""6

IN
[

i

w

o o
© v © w © »
3]

o
.
- o Nn o

o
o ©
a

M o N
0 50 100 150 200
Autocorrelation Time

o

Average Absolute Error of Sample Covariance

107, Chen, E. B. Fox, and C. Guestrin. “Stochastic Gradient Hamiltonian Monte Carlo”. In: /CVL. 2014,
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Recap

@ For SG-MCMC methods, in each iteration:

» calculate the stochastic gradient based on the current parameter
sample

» generate the next sample by moving the current sample (probably
in an extended space) along the direction of the stochastic gradient,
plus a suitable random Gaussian noise

» no need for accept-reject

» guaranteed to converge close to the true posterior in some sense
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Outline

@ Stochastic Gradient Markov Chain Monte Carlo Methods

m Application in Latent Dirichlet allocation

Changyou Chen (Duke University) SG-MCMC



Latent Dirichlet allocation

@ For each topic k, draw the topic-word
distribution:

10

Bk ~ Dir(~) &

@ For each document d, draw its topic o
distribution: 84 ~ Dir(«)
» For each word /, draw its topic indicator:

cq ~ Discrete(64)

» Draw the observed word:

OlO®

Xqa ~ Discrete(f¢,)

Changyou Chen (Duke University) SG-MCMC 48 /56



Latent Dirichlet allocation

Q Let B2 (B)K_1. 02 (04)5_. C 2 (ca)g % X2 (Xa) g1 the
posterior distribution

p(8,6,C|X) x

Hp(ﬁkW] [H p(0q ) H (Carlba)p(Xall B, Car)
1
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Latent Dirichlet allocation

Q Let 82 (Bk)y, 0 £ (04)7_1,C = (Cd/)g,’/nﬁwxé(xd/)d/ ?;» the
posterior distribution

HP(BkW] [H p(0q ) H (Carlba)p(Xall B, Car)
1

© From previous lectures:

p(8,6,C|X) x

K

p(Call 0a) = [ (Bak)' ="
k=1
K vV
p(Xa| 0, Car) = H H 5}1\(/Xd/:V)1(Cd,:k)
k=1 v=1
O Together with the fact:
K
/ [T 6w "dox= Ilis Mew)
N 5 )
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Latent Dirichlet allocation

@ Integrate out the local parameters: topic distributions @ for each
document, it results in the following semi-collapsed distribution:

p(X,C, Bla,v) =

where Ngey = 31, 1(car = k)1(xg = w) is #word w in doc d with
topic k; - means marginal sum, e.g. Ny, = 23:1 Nakw -
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Latent Dirichlet allocation

@ Integrate out the local parameters: topic distributions @ for each
document, it results in the following semi-collapsed distribution:

pP(X,C, Bla,v) =
D K K
Ma + ndk r(Vv) g1
11 oo j L™ L H B ™

where Ngey = 31, 1(car = k)1(xg = w) is #word w in doc d with
topic k; - means marginal sum, e.g. Ny = 23:1 Nokw -
© SG-MCMC requires parameter spaces unconstrained:
» reparameterization: Sk, = Akv/ Y., Ak, With the following prior:

Aky ~ Ga()\kv; e 1)

=

K v v
Fr = [T T Ga0wi7 1) T/ D Aewr) ™
v=1 v/

k=1 k=1 v=1
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Latent Dirichlet allocation
@ Still need to integrate out the local parameter C:

M(Ka)
H I' Ka-l-nd )

Mo+ ngk.) Akv b
g r(a) HG"" A )<zmkw) ]

P(X; A, v) = E¢ [p(X, C, Bla, 7)] = E¢
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Latent Dirichlet allocation
@ Still need to integrate out the local parameter C:

M(Ka)
H r Ka+nd )

K I'(a+ndk Akv Mokw
}1 M(a) HG"" At )<zmkw) ]

@ The stochastic gradient with a minibatch documents D of size

P(X; A, v) = E¢ [p(X, C, Bla, 7)] = E¢

D] < Dis:
dlog p( Mo, v, X) v —1 [ndkw Nek. ]
= - ]E
Mk N D] 5 2 Bedxan M M

deD
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Latent Dirichlet allocation
@ Still need to integrate out the local parameter C:

M(Ka)
H r Ka+nd )

K I'(a+ndk Akv Mokw
}1 M(a) HG"" At )<zmkw) ]

@ The stochastic gradient with a minibatch documents D of size

P(X; A, v) = E¢ [p(X, C, Bla, 7)] = E¢

D] < Dis:
dlogp(Ma,v,X) ~— Nakw — Nak-
= E _ Tdk-
O kw >\kw Z e VW

deD
© SGLD update:

dlog p(A|a, v, X
)\;(—;/1 = )\;(W + gpa()\lf: i )ht+1 + vV2ht 4 N(O,l)
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Latent Dirichlet allocation

@ LDA with the above SGLD update would not work well in practice
because of the high dimensionality of model parameters.
© To make it work, Riemannian geometry information (2nd-order
information) need to bring in SGLD:
» leading to Stochastic Gradient Riemannian Langevin Dynamics
(SGRLD) for LDA
» it considers parameter geometry so that step sizes for each
dimension of the parameter are adaptive

1S, Patterson and Y. W. Teh. “Stochastic Gradient Riemannian Langevin Dynamics on the Probability Simplex”. In: NIPS.
2013.
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Experiments: SGRLD for LDA'?

© NIPS dataset:
» the collection of NIPS papers from 1988-2003, with 2483
documents, 50 topics

x  HSVG
2200 5 OVB
+ SGRLD
2000 Collapsed Gibbs |

Perplexity
18001

T 00—

1600
'__+'_"—‘—‘——|-—-+.._._. ]

1400 : :
0 200 400 600 800 1000

#docs seen

'23. Patterson and Y. W. Teh. “Stochastic Gradient Riemannian Langevin Dynamics on the Probability Simplex”. In: N/PS.
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Experiments: SGRLD for LDA"3

@ Wikipedia dataset:

» a set of articles downloaded at random from Wikipedia, with

150,000 documents

2200
2000
1800

1600
1400

1200
Perplexi

x

HSVG
ovB

+ SGRLD

1000
0

50000

#docs seen

100000

150000

133, Patterson and Y. W. Teh. “Stochastic Gradient Riemannian Langevin Dynamics on the Probability Simplex”. In: N/PS.
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Conclusion

@ | have introduced:

|

>

basic concepts in MCMC
basic ideas in SG-MCMC, two SG-MCMC algorithms, and
application in LDA

©@ Topics not covered:

|

>
>
>

a general review of SG-MCMC algorithms

theory related to stochastic differential equations and It6 diffusions
convergence theory

various applications in deep learning, including SG-MCMC for
learning weight uncertainty and SG-MCMC for deep generative
models

interested readers should refer to related references
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Thank You

Changyou Chen (Duke University) SG-MCMC
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