Large-Scale Bayesian Learning with
Stochastic Gradient Markov Chain Monte Carlo

Changyou Chen

Department of Electrical and Computer Engineering, Duke University
ccd448@duke.edu

Xidian University
August 19, 2016

Changyou Chen (Duke University) SG-MCMC 1/119



Preface

Stochastic gradient Markov chain Monte Carlo:
@ A new technique for approximate Bayesian sampling.
@ It is about scalable Bayesian learning for big data.

@ It draws samples {6}’s from p(8; D) where p(0; D) is too
expensive to be evaluated in each iteration.
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Outline

@ Basics on Bayesian Modeling
© Stochastic Gradient Markov Chain Monte Carlo
© SG-MCMC for Stochastic Optimization
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Large-Scale Bayesian Learning with Stochastic Gradient
Markov Chain Monte Carlo Methods

Part One: Basics on Bayesian Modeling
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Background

@ We are in an era of abundant data:
» text, images, videos from the Internet; raw medical notes from
doctors, etc
© We need tools for modeling, searching, visualizing, and
understanding large-scale data sets.
© We want our modeling tools:

» faithfully represent uncertainty in our model structure and
parameters

» automatically deal with noise in our data

» exhibit robustness
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Background

@ We are in an era of abundant data:
» text, images, videos from the Internet; raw medical notes from
doctors, etc
© We need tools for modeling, searching, visualizing, and
understanding large-scale data sets.
© We want our modeling tools:

» faithfully represent uncertainty in our model structure and
parameters

» automatically deal with noise in our data

» exhibit robustness

© Modeling from two aspects: Bayesian and Frequentist.
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Bayesian vs. Frequentist

@ When generating data:

Frequentist:

@ Data are a repeatable
random sample:

» there is a frequency

©@ Underlying parameters
remain constant during this
repeatable process.

© Parameters are fixed.

© Task is to learn values of
the unknown parameters.
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Bayesian vs. Frequentist

@ When generating data:

Frequentist: Bayesian:
@ Data are a repeatable @ Data are observed from
random sample: the realized samples.
> there is a frequency @ Parameters are unknown
©@ Underlying parameters and described
remain constant during this probabilistically.
repeatable process. © Data are fixed.
© Parameters are fixed. O Task is to learn
© Task is to learn values of distributions of the
the unknown parameters. unknown parameters.

@ In Bayesian modeling, parameters are treated as random
variables. The prior is just the prior belief about these parameters.

Changyou Chen (Duke University) SG-MCMC 7/119



Bayes’ rule

p(D, M) p(M)p(DIM)  _ p(M)p(DIM)
p(D) — [p(M)p(DIM)AM —  p(D) ’

p(M|D) =

where M and D are events

@ p(M) and p(D): the probabilities
of observing M and D

@ p(D|M), a conditional probability,
the probability of observing event
D given that M is true

@ p(M|D): the probability of
observing event M given that D is
true
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Bayes’ rule in machine learning

@ Let D be a given data set; M be a model.
p(M) :prior probability of M
p(M)p(D|M) p(D|M) : |Ike|lh90d of M on data
p(M|D) = " p(»)  P(MID) posterior probability
p(D) :marginal likelihood
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Bayes’ rule in machine learning

@ Let D be a given data set; M be a model.
p(M) :prior probability of M
p(M)p(D|M) p(D|M) : I|keI|ho.od of M on data
p(M|D) = ~ p(D)  P(MID) posterior probability
p(D) :marginal likelihood
© Model comparison: M = {M}.

;)(2)?(417));;(1\41)7 p(DM) :/p(DIM,M)P(M|M)dM

© Prediction under posterior distribution:

p(M|D) =

p(X|D, M) = / P(X| M, D, M)p(M|D, M)dM

p(x | M, D, M) = p(x | M) for most models
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Why be Bayesian?

Theoretically:
@ Infinite Exchangeability:

Vn,Vr (permutation) , p(X1, - -+ ,Xn) = P(Xx(1), " -
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Why be Bayesian?

Theoretically:
@ Infinite Exchangeability:

vn,vr (permUtation) 7p(x1 )T 7xf7) = p(x7'l'(1)’ T 7x7r(n))

© Infinite exchangeability means:

» The way data items are ordered or indexed does not matter
» Model is unaffected by existence of additional unobserved data
items, e.g., test items

* to predict m additional test items, we need
p(X1,- w0 Xny Xngt, 00 7xn+m)

* if not infinitely exchangeable, predictive probabilities will be different
for different ordering of training data
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Why be Bayesian?

Theoretically:
@ Infinite Exchangeability:

vn,vr (permUtation) ,p(X1 )T 7xf7) = p(x7'l'(1)’ T 7x7r(n))

© Infinite exchangeability means:

» The way data items are ordered or indexed does not matter
» Model is unaffected by existence of additional unobserved data
items, e.g., test items

* to predict m additional test items, we need
p(X1,- w5 Xny Xngt, - 7xn+m)

* if not infinitely exchangeable, predictive probabilities will be different
for different ordering of training data

© Exchangeability is a common assumption for most models.
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Why be Bayesian?

Theoretically:
@ Infinite Exchangeability:

vn,vr (permUtation) ap(x1 )T ,xn) = p(xﬂ'(1)a T 7x7r(n))

© De Finetti’s Theorem (1955): if (X1, X, - - - ) are infinitely
exchangeable, then Vn,

px17 , X /prl|M dP )

for some random variable M with probability measure P(M)
» M is the model in Bayes’ rule, with prior measure P
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Why be Bayesian?

Practically:
@ Model parameter uncertainty in prediction:

p(x|D) = / P(X | M)p(M|D)dM

» an effective way to deal with overfiting
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Why be Bayesian?

Practically:
@ Model parameter uncertainty in prediction:

p(x|D) = / P(X | M)p(M|D)dM

» an effective way to deal with overfiting
© In frequentist, the data are generated from a fixed model M*, the

prediction is:

p(X|D) = / P(X|M)S(M = M*)AM = p(x | M")

where M* is usually obtained using optimization
» easily get overfiting when optimizing M*
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Challenges for being Bayesian

@ Computing integrals could be computationally intractable.
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Challenges for being Bayesian

@ Computing integrals could be computationally intractable.
© Prediction:

p(x|D) = / P(X|M)p(M|D)IM

© The presence of latent variables results in additional dimensions
that need to be marginalized out.

p(x|D) = / / p(X,0 [ M)p(M|D)d O dM
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Approximation methods for marginalization'

@ Laplace approximation

© Bayesian Information Criterion (BIC)

© Variational inference

© Expectation Propagation (EP)

© Markov chain Monte Carlo methods (MCMC)
o -

"from Zoubin Ghahramani’s talk
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Approximation methods for marginalization'

© Markov chain Monte Carlo methods (MCMC)

"from Zoubin Ghahramani’s talk
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Monte Carlo methods

@ Monte Carlo method is about drawing
a set of samples:

ele(B)v /:1727""L
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Monte Carlo methods

@ Monte Carlo method is about drawing
a set of samples:

Ole(e)v /:1>27""L

@ Approximate the target distribution
p(0) as count frequency:

L
p(O) ~ | >°5(6.0)
=1
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Monte Carlo methods

@ Monte Carlo method is about drawing
a set of samples:

ele(e)v /:1>27""L

@ Approximate the target distribution
p(0) as count frequency:

L
1
p(o) ~ L;é(@,@;) 8 10 12 14

@ An intractable integration is approximated as:

L
[ 1owe)~ 1 Y- r6)
1=1
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Monte Carlo methods

@ Monte Carlo method is about drawing
a set of samples:

Gle(e)v /:1>27"'7L

@ Approximate the target distribution
p(0) as count frequency:

L
1
p(e) ~ L;é(@,@;) 8 10 12 14

@ An intractable integration is approximated as:

L
[ 1owe)~ 1 - f6)
1=1

@ In Bayesian modeling, p(0) is usually a posterior distribution, the
integral is a predicted quantity.
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How does the approximation work?

@ An intractable integration is approximated as:

L

[1ope)~ ;> oy 2

=1
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How does the approximation work?

@ An intractable integration is approximated as:

L
[1©p6)~; Z
=1

Q If {6,}’s are independent:

Ef = Ef, Var(f) = 1ZVar(f)

» the variance decreases linearly w.r.t. the number of samples, and
independent of the dimension of 8

Changyou Chen (Duke University) SG-MCMC 17/119



How does the approximation work?

@ An intractable integration is approximated as:

L
[ 1©p0) ~ ZZ (027
=1

Q If {6,}’s are independent:

Ef = Ef, Var(f) = %Var(f)

» the variance decreases linearly w.r.t. the number of samples, and
independent of the dimension of 8

© However, obtaining independent samples is hard:

» usually resort to drawing dependent samples with Markov chain
Monte Carlo (MCMC)
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MCMC example: a Gaussian model
@ Assume the following generative process (with o = 5,3 = 1):
Xilp, 7~ N(u,1/7), i=1,---,n=1000

/-L|7—7 {Xi} ~ N(;UJ07 1/7—)7
T ~ Gamma(a, 3)
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MCMC example: a Gaussian model
@ Assume the following generative process (with o = 5,3 = 1):
Xilp, 7~ N(u,1/7), i=1,---,n=1000
pl, {xi} ~ N(po, 1/7),
T ~ Gamma(a, 3)

© Posterior distribution:
p(u, TI{x:}) o< [TTi2qg N 1, 1/7)] N(p; o, 1/7)Gamma(r; a, 8)
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MCMC example: a Gaussian model
@ Assume the following generative process (with o = 5,3 = 1):
Xilp, 7~ N(u,1/7), i=1,---,n=1000
pl 7 {xit ~ N(po, 1/7),
T ~ Gamma(a, 3)

© Posterior distribution:
P, TI{xi}) oc [TTiLq N(xi: 1, 1/7)] N(pi po, 1/7)Gamma(r; v, 5)
© Marginal posterior distributions for . and = are available:

—a—(nt1)/2
p(ul{xi}) o< <25 + (1 — o) + Z(Xi - M)2>

p(r|{x}) = Gamma <a e DI R sy Mo)2>

» p(p|{xi}) is a non-standardized Student’s t-distribution with mean

(52, + o)/ (n+ 1)



Gibbs sampling ;. and

@ Conditional distributions:

n _ 1 1
“IT’{X'}NN(n+1X+n+1“°’ (n+1)7)

>oi(Xi — p)? + (1 — uo)z)
2

’
7lu, {x;} ~ Gamma (a + %,ﬁ +
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Sample approximation for .
@ True posterior is a non-standardized Student’s ¢-distribution.
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Sample approximation for
@ True posterior is a Gamma distribution.
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Markov chain Monte Carlo methods

@ We are interested in drawing samples from some desired
distribution p*(8) = $p*(6).
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Markov chain Monte Carlo methods

@ We are interested in drawing samples from some desired
distribution p*(8) = $p*(6).
@ Define a Markov chain:

g —01 >0 —03—>04— 05— ---
where 6y ~ po(0), 61 ~ p1(0), - - -, satisfying

pi(8') = / Pi1(6)T(8 — 6)d6

where T(6 — 6') is the Markov chain transition probability from
to 6.
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Markov chain Monte Carlo methods

@ We are interested in drawing samples from some desired
distribution p*(8) = $p*(6).
@ Define a Markov chain:

g —01 >0 —03—>04— 05— ---
where 6y ~ po(0), 61 ~ p1(0), - - -, satisfying
p8) = [ Pis(O)T(6 — 0)a6.
where T(6 — 6') is the Markov chain transition probability from
to @'
© We say p*(0) is an invariant (stationary) distribution of the Markov

chain iff:

p'(6) = [ p'(6)T(6 830
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Markov chain Monte Carlo methods

0p >0y —>05—03— 04— 05— ---

where p;(6') = [ pi—1(0)T(6 — 6')d 6.
@ An invariant (stationary) distribution satisfies:

p'(6) = [ p'(6)T(6 80
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Markov chain Monte Carlo methods

0p >0y —>05—03— 04— 05— ---

where p;(6') = [ pi—1(0)T(6 — 6')d 6.
@ An invariant (stationary) distribution satisfies:

p'(6) = [ p'(6)T(6 80
@ If the Markov chain is ergodic?, we have:

lim p(6) = p"(6)

2t could go from every state to every state.
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Markov chain Monte Carlo methods

6p -0y >0, —03—04—05— ---

where p;(6') = [ pi—1(0)T(6 — 6')d 6.
@ Aninvariant (stationary) distribution satisfies:

p'(6) = [ p'(6)T(6 80
© If the Markov chain is ergodic2, we have:
lim p:(6) = p*(6)
t—o0

© The task is to design appropriate transition kernel T(68 — 6'), so
that its invariant distribution coincides p*(9).

2t could go from every state to every state.

Changyou Chen (Duke University) SG-MCMC 25/119



Markov chain Monte Carlo methods

@ A sufficient (but not necessary) condition to guarantee an invariant
distribution is the detailed balance condition:

pr(0")T (0" — 6) = p™(6)T(6 — 0)
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Markov chain Monte Carlo methods

@ A sufficient (but not necessary) condition to guarantee an invariant

distribution is the detailed balance condition:

pr(0")T (0" — 6) = p™(6)T(6 — 0)

Proof.
Taking integration on both sides over 6:

/ p*(6))T(6 — 0)d0 = / p*(6)T(0 — 6)d0
() / T(6' — 6)d6 = / p*(0)T(6 — 0')d 6
—p'(6) = [ P'(O)T(6 — 0)a6.

by using the fact that [ T(6' — 6)d6 = 1.

O

v
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Metroplis-Hasting algorithm

@ Design T(6 — 0’) as the composition of a proposal distribution
q:(0' | 8) and an accept-reject mechanism.
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Metroplis-Hasting algorithm

@ Design T(6 — 0’) as the composition of a proposal distribution
q:(0' | 8) and an accept-reject mechanism.

© At step t, draw a sample® 8% ~ q¢(6|6;_1), and accept it with
probability:

) o P(6*)qi(6:—1]6")
At(0%,0¢_1) = min (1 ’ ;3(0;_1)271‘(4;* | Ht_1))

SA standard setting of g;(6 | 6;_1) is a normal distribution with mean 6;_ 4 and tunable variance.
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Metroplis-Hasting algorithm

@ Design T(6 — 0’) as the composition of a proposal distribution
q:(0’' | 0) and an accept-reject mechanism.

© At step t, draw a sample® 8% ~ q¢(6|6;_1), and accept it with
probability:

oy —min (1 PE)G(O16")
Ai(0%,6¢_1) = min (1 ) p(e,_1);t(¢;*1| 9t_1)>

© The acceptance can be done by:
» draw a random variable u ~ Uniform(0, 1)
» accept the sample if A/(0%,0;_1) > u

SA standard setting of g;(6 | 6;_1) is a normal distribution with mean 6;_ 4 and tunable variance.
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Metroplis-Hasting algorithm

@ Design T(6 — 0’) as the composition of a proposal distribution
q:(0’' | 0) and an accept-reject mechanism.

© At step t, draw a sample® 8% ~ q¢(6|6;_1), and accept it with
probability:

oy —min (1 PE)G(O16")
Ar(67,6;_1) = min (1 ’ ,s(ot_1)<tqt(¢;*1| 9t—1)>

© The acceptance can be done by:
» draw a random variable u ~ Uniform(0, 1)
» accept the sample if A/(0%,0;_1) > u
© The corresponding transition kernel satisfies the detailed balance
condition, thus has an invariant probability p*(8).

A standard setting of g;(6 | 6;_1) is a normal distribution with mean 6;_ 4 and tunable variance.
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Metroplis-Hasting algorithm

@ The corresponding transition kernel:

T(B — 0’) = qt(é)* | 0;_1 )AI(O*, 0,_1)
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Metroplis-Hasting algorithm

@ The corresponding transition kernel:
T(9 — 0’) = qt(é)* | 0;_4 )At(g*, 0{—1)
© Satisfying the detailed balance condition:

P(0:-1)q: (6 | 0:_1)A(0%,0;_1)
=min (p(0:-1)q:(0" | 0¢—1), P(07)qt(01—1 | 67))
=min (p(0*)qe(0:_1|0%), P(0:_1)q1(6* | 0:_1))
")
")

=p(6*)q:(6;_1 | 0*) min (1, p(0:—1)q: (0" | et_1))

=p(0

p(67)q:(0:-1167)
qi(01—1 | 0)A(0t—1,0%)
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Discussion on the proposal distribution

@ Standard proposal distribution is an isotropic Gaussian center at
the current state with variance o:
» small o leads to high acceptance rate, but moves too slow
» large o moves fast, but leads to high rejection rate

© How to choose better proposals?
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Gibbs sampler

© Assume 6 is multi-dimensional*, 8 = (04,--- , 0k, --- ,0k), denote
0 k= 1{0;:j#k}.

4One dimensional random variable is relatively easy to sample.
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Gibbs sampler

© Assume 6 is multi-dimensional*, 8 = (04,--- , 0k, --- ,0k), denote
0 k= 1{0;:j#k}.

© Sample 6, sequentially, with proposal distribution being the true
conditional distribution:

k(6" |0) = p(0k |6 k)

4One dimensional random variable is relatively easy to sample.
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Gibbs sampler

© Assume 6 is multi-dimensional*, 8 = (04,--- , 0k, --- ,0k), denote
0 k= 1{0;:j#k}.

© Sample 6, sequentially, with proposal distribution being the true
conditional distribution:

k(6" |0) = p(0k |6 k)

© Note 8 = 0_x, p(6) = p(Ok | 0—)P(6—).-
© The MH acceptance probability is:
Ao+, 0) = PO )a0]07) POk 16~ 1)P(0~ )P0k | 0~ )
’ p(0)qk(0*[0)  p(Ok|0_k)P(0_k)P(Ok | 6_k)
=1

4One dimensional random variable is relatively easy to sample.
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Discussion of Gibbs sampler

@ No acceptance step, very efficient.
© Conditional distributions are not always easy to sample.
© Mix not well when highly variables are correlated.

22

Z1
Figure: Sample path does not follow gradients. Figure from PRML, Bishop (2006)
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The Metropolis-adjusted Langevin: a better proposal

@ Gibbs sampling travels the parameter space following a zipzag
curve, which might be slow in high-dimensional space.

© The Metropolis-adjusted Langevin uses a proposal that points
directly to the center of the probabilistic contour.

Changyou Chen (Duke University)
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The Metropolis-adjusted Langevin: a better proposal

@ Let E(0) = —log p(0), the direction of the contour is just the
gradient: —VgE(6).

© Initeration /, define the proposal as a Gaussian centering at
0" =0,_1—VgE(0,_1)h;, where h, is a small stepsize:

q(6,16,_1) = N (9,; 0*,02) .
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The Metropolis-adjusted Langevin: a better proposal

@ Let E(0) = —log p(0), the direction of the contour is just the
gradient: —VgE(6).
© Initeration /, define the proposal as a Gaussian centering at
*=0,_1—V¢E(0,_1)h;, where h; is a small stepsize:

q(0/10,-1) =N (9/; 0*,02> -

© Need to do an accept-reject step:
» calculate the acceptance probability:

p(0*)q(0,-116%)
p(6)q(6" | 6,-1)

» accept 8" with probability A(6*,8,_+), otherwise set 8, = 6,_4

A(07,0,_1) =
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Hamiltonian Monte Carlo

@ Design a proposal that follows the gradient of the target
distribution p*(6) = 17,5(6).
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Hamiltonian Monte Carlo

@ Design a proposal that follows the gradient of the target
distribution p*(6) = 17,5(6).

© Construct a landscape with gravitational potential energy,
E(8) = —log B(9).
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Hamiltonian Monte Carlo

@ Design a proposal that follows the gradient of the target
distribution p*(6) = 17,5(6).

© Construct a landscape with gravitational potential energy,
E(8) = —log B(9).

© Introduce velocity v carrying kinetic energy K(v) = v’ v /2.
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Hamiltonian Monte Carlo

@ Design a proposal that follows the gradient of the target
distribution p*(8) = 2p(6).

©@ Construct a landscape with gravitational potential energy,
E(6) = —log p(6).

© Introduce velocity v carrying kinetic energy K(v) = v’ v /2.

Q Let H(6,v) = E(6) + K(v). Hamiltonian’s equation used to
describe the evolution of the state (8, v) along time °:

a6 _oH
dt  9v
dv _ oM
dt 06

5A continuous-time Markov chain.
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Hamiltonian Monte Carlo

Physics point of view:
@ A dynamic system with total
energy or Hamiltonian:
H=E(0) + K(v).

Figure: Rolling ball. Movie from
Matthias Liepe
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Hamiltonian Monte Carlo

Physics point of view:

@ A dynamic system with total
energy or Hamiltonian:
H=E(6) + K(v).

@ Frictionless ball rolling
(6,v) — (0',V) satisfies
energy preserving,

H(0’ v’) — H(8,V). Figure: Rolling ball. Movie from

Matthias Liepe
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Hamiltonian Monte Carlo

Physics point of view:

@ A dynamic system with total
energy or Hamiltonian:
H=E(6) + K(v).

@ Frictionless ball rolling
(6,v) — (0',V) satisfies
energy preserving,
H(O'.v') = H(0,V).

© Hamiltonian’s equation
describes the equations of
motion of the ball.

Figure: Rolling ball. Movie from
Matthias Liepe
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Hamiltonian Monte Carlo

Physics point of view:

@ A dynamic system with total
energy or Hamiltonian:
H=E(0) + K(v).

@ Frictionless ball rolling
(6,v) — (0',V) satisfies
energy preserving, . . . .
H(0’,V’) — H(8,V). Figure: Rolling ball. Movie from

Matthias Liepe
© Hamiltonian’s equation

describes the equations of
motion of the ball.

© Ideal Hamiltonian dynamics
are time reversible:

» reverse v and the ball will
return to its start point
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Hamiltonian Monte Carlo

Markov chain point of view:
@ Joint distribution: p(8,v) o< e E@O)—K(V) = g=H(0.v),
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Hamiltonian Monte Carlo

Markov chain point of view:
@ Joint distribution: p(0,v) oc e EO)—-KV) — g=H(O.v),
© To generate a sample:

» Gibbs sampling velocity v from a Gaussian

» evolving Hamiltonian dynamics by following Hamiltonian’s equation
for some time, then flip sign of velocity

» the resulting (0, v) is a random sample from p(8, v)
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Hamiltonian Monte Carlo

Markov chain point of view:
@ Joint distribution: p(0,v) oc e EO)—-KV) — g=H(O.v),
© To generate a sample:

» Gibbs sampling velocity v from a Gaussian

» evolving Hamiltonian dynamics by following Hamiltonian’s equation
for some time, then flip sign of velocity

» the resulting (0, v) is a random sample from p(8, v)

© Proposal (evolving Hamiltonian dynamics) is deterministic and
reversible: q(0’,v' |0,v) = q(0,v|0' V') = 1.

© Conservation of energy means p(6,v) = p(6',V').

© As aresult, acceptance rate is always 1.
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Hamiltonian Monte Carlo

Markov chain point of view:
@ Joint distribution: p(0,v) oc e EO)—-KV) — g=H(O.v),
© To generate a sample:

» Gibbs sampling velocity v from a Gaussian

» evolving Hamiltonian dynamics by following Hamiltonian’s equation
for some time, then flip sign of velocity

» the resulting (0, v) is a random sample from p(8, v)

© Proposal (evolving Hamiltonian dynamics) is deterministic and
reversible: q(0’,v' |0,v) = q(0,v|0' V') = 1.

© Conservation of energy means p(6,v) = p(6',V').

© As aresult, acceptance rate is always 1.

Except we can’t simulate Hamiltonian dynamics exactly , i.e.,
p(0,v) # p(6',v')
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Solving Hamiltonian dynamics

@ Solving the continuous-time differential equation with
discretized-time approximation:

de =vdt . 0, =0,_1+vi_1 h
dv = Vylogp(0)dt v, =V, 1+Vglogp(6))h

» proposals follow historical gradients of the distribution contour
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Solving Hamiltonian dynamics

@ Solving the continuous-time differential equation with
discretized-time approximation:

de =vdt . 0, =0,_1+vi_1 h
dv = Vglogp(6)dt vV, =Vi_1+Vglogp(6))h
» proposals follow historical gradients of the distribution contour

© Need an accept-reject test to design whether accept the proposal,
because of the discretization error:

» proposal is deterministic
» acceptance probability: min (1, exp {H(0,,v;) — H(0/+1,V1+1)})
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Solving Hamiltonian dynamics

@ Solving the continuous-time differential equation with
discretized-time approximation:

de =vdt . 0, =0,_1+vi_1 h
dv = Vglogp(6)dt vV, =Vi_1+Vglogp(6))h
» proposals follow historical gradients of the distribution contour

© Need an accept-reject test to design whether accept the proposal,
because of the discretization error:
» proposal is deterministic
» acceptance probability: min (1, exp {H(0,,v;) — H(0/+1,V1+1)})
© Almost identical to SGD with momentum:
. { 0, =0_1+p,_4
p, =(1—m)p,_; +Velogp(8))e

» they will be make equivalent in the context of stochastic gradient
MCMC
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Detailed balance

@ Verify that the detailed balance for HMC holds.
» let the initial state be (6, V), the state after Leap-frog simulation be

(6',v)
1Eexp(—H(«S’,v)) min (1, exp(—H(0',V') + H(6,V)))
:% min (exp(—H(0,V)),exp(—H(6',V'))

:% exp(—H(6’,v')) min (1, exp(—H(6,v) + H(6',V')))
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Hamiltonian Monte Carlo algorithm

Set/=0
Random initialize a position state 6,
for/=12,...do
Sample a new initial momentum vy ~ e~ X(v) (Gaussian)
Set 6y =0,_1
Run Leap-frog algorithm starting at (8¢, vo) for L steps to obtain
proposed states (6%, v*)
Calculate the Metropolis acceptance probability:
a =min(1,exp (H(0o, Vo) — H(0",v*)))
Draw u ~ Unif(0, 1)
ifu<a,0 =067
else 0, = 0,_4

end

Changyou Chen (Duke University) SG-MCMC 39/119



Demo: MH vs. HMC

@ Nine mixtures of Gaussians®.
© Sequential of samples connected by yellow lines.

8Demo by T. Broderick and D. Duvenaud.
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Discussion

@ All the above traditional MCMC methods are not scalable in a
big-data setting’, in each iteration:
» the whole data need to be used to generate a proposal
» the whole data need to be used to calculate the acceptance
probability
» scales O(N), where N is the number of data samples

7when the number of data samples are large.
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Discussion

@ All the above traditional MCMC methods are not scalable in a
big-data setting’, in each iteration:
» the whole data need to be used to generate a proposal
» the whole data need to be used to calculate the acceptance
probability
» scales O(N), where N is the number of data samples

@ Scalable MCMC uses sub-data in each iteration,

» to calculate the acceptance probability®

» to generate proposals with acceptance probability close to 1, and
ignore the acceptance step — stochastic gradient MCMC methods
(SG-MCMC)

7when the number of data samples are large.

8A. Korattikara, Y. Chen, and M. Welling. “Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget”. In: /CML. 2014;
R. Bardenet, A. Doucet, and C. Holmes. “Towards scaling up Markov chain Monte Carlo: an adaptive subsampling approach”.
In: ICML. 2014.
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Large-Scale Bayesian Learning with Stochastic Gradient
Markov Chain Monte Carlo Methods

Part Two: Stochastic Gradient Markov Chain
Monte Carlo
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Outline

@ Stochastic Gradient Markov Chain Monte Carlo

m SG-MCMC algorithms
m Theory
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Outline

© Stochastic Gradient Markov Chain Monte Carlo
m SG-MCMC algorithms
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Two key steps in SG-MCMC

22

@ Proposals typically follow stochastic
gradients of log-posteriors:
» make samples concentrate on the
modes

© Adding random Gaussian noise to
proposals.
» encourage algorithms to jump out of
local modes, and to explore the ' ’
parameter space

Figure: Proposals of Gibbs
and SG-MCMC.
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Basic setup

@ Givendata X = {xy,---, Xy}, a generative model (likelihood)
p(X|0) = HL p(x; | @) and prior p(@), we want to sample from the
posterior:

p(6 | X) x p(6)p(X|0) = (‘9)HP(X,|t9
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Basic setup

@ Givendata X = {xy,---, Xy}, a generative model (likelihood)
p(X|0) = HL p(x; | @) and prior p(8), we want to sample from the
posterior:

p(6]X) o p(6)p(X|60) = (G)HP(XIIB

© We are interested in the case when N is extremely large, so that
computing p(X| @) is prohibitively expensive.
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Basic setup

@ Givendata X = {xy,---, Xy}, a generative model (likelihood)
p(X|0) = ]_[,-'i1 p(x; | @) and prior p(8), we want to sample from the
posterior:

p(6]X) o p(6)p(X|60) = B)HP(XIIO

© We are interested in the case when N is extremely large, so that
computing p(X| @) is prohibitively expensive.

© Define the following two quantities (unnormalized log-posterior
and stochastic unnormalized log-posterior):

N
U(9) £ > log p(x;|6) — log p(6)
i=1

(o) é—leogp (Xx, | 6) — log p(6)
i=1

where (mq, -+ ,7y) is @ random permutation of (1,--- | N).
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Basic setup

©@ SG-MCMC relies on the following quantity (stochastic gradient):

- N <
VoU(6) £ —— > Vo logp(xs, |6) — Vo logp(6) .

i=1
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Basic setup

©@ SG-MCMC relies on the following quantity (stochastic gradient):

N
L _ v/
VeU(0) = —— ;:1 Vglog p(x-, [6) — Velogp(6) ,
@ V,U(8) is an unbiased estimate of Vo U(0):

» SG-MCMC samples parameters based on V, U(6)
» very cheap to compute
» bringing the name “stochastic gradient MCMC”
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Some facts about SG-MCMC

@ By ignoring the acceptance step:
» the detailed balance condition typically not hold, and the algorithm
is not reversible®
» typically leads to biased, but controllable estimations

9These are not necessary conditions for a valid MCMC method.
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Some facts about SG-MCMC

@ By ignoring the acceptance step:
» the detailed balance condition typically not hold, and the algorithm
is not reversible®
» typically leads to biased, but controllable estimations
© By using sub-data in each iteration:
» yielding stochastic gradients
» does not affect the convergence properties (e.g., convergence
rates), compared to using the whole data in each iteration

9These are not necessary conditions for a valid MCMC method.
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Demo: the two key steps

@ Proposals follow stochastic gradients of log-posteriors:
» stuck in a local mode
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Demo: the two key steps

@ After adding random Gaussian noise:
> it works !!
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Outline

Stochastic Gradient Markov Chain Monte Carlo

@ SG-MCMC algorithms
m Stochastic Gradient Langevin Dynamics (SGLD)
m Stochastic Gradient Hamiltonian Monte Carlo (SGHMC)
m Stochastic Gradient Thermostats (SGNHT)
m Stochastic Gradient MCMC with Riemannian Geometry
» stochastic gradient Riemannian Langevin dynamics (SGRLD)
» preconditioned stochastic gradient Langevin dynamics (PSGLD)
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Outline

Stochastic Gradient Markov Chain Monte Carlo

@ SG-MCMC algorithms
m Stochastic Gradient Langevin Dynamics (SGLD)
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First attempt

@ A 1st-order method: directly update on the model parameter 6.

© Use a proposal that follows the stochastic gradient of the
log-posterior:

0141 =0,—h1VeU(0)

» hy’s are the stepsizes, could be fixed (V/, hy = h) or deceasing
(V/, hy > h/+1)

© Ignore the acceptance step.

Changyou Chen (Duke University) SG-MCMC
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First attempt

@ A 1st-order method: directly update on the model parameter 6.

© Use a proposal that follows the stochastic gradient of the
log-posterior:

011 =0,-h,1VeU(8))

» h/’s are the stepsizes, could be fixed (V/, h; = h) or deceasing
(VIa h/ > hl+1)

© Ignore the acceptance step.
© Resulting in Stochastic Gradient Descend (SGD).
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Random noise to the rescue

@ Need to make the algorithm explore the parameter space:
» adding random Gaussian noise to the update'®

0,1 =0,—h 1V 0(9/) + \/MCI‘H
Cre1 ~ N(0,1)

© The magnitude of the Gaussian needs to be /2h,1 in order to
guarantee a correct sampler:

» reasons to be explained later
© This is called stochastic gradient Langevin dynamics (SGLD).

01n the following, we will directly use N(0, ) to represent a normal random variable with zero-mean and covariance matrix I.
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SGLD in algorithm

Input: Parameters { h;}
Output: Approximate samples {0,}

Initialize 6y € R”
for/=12,...do
Evaluate Vg U(01_1) from the /-th minibatch
6,=0,_4 —VU(91_1 )h/ + \/TI'I/N(O, |)
end
Return {0,}
Algorithm 1: Stochastic Gradient Langevin Dynamics
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Example'’
@ A simple Gaussian mixture:

01 ~N(0,10), 62 ~N(0,1)
1 1 ,
X,'NEN(91,2)—|-§N(91—|—92,2), I:1,"',100

3 3
2 2
1 1
0 0
-1 -1
2 -2
R 0 1 > 4 0 1 2

Figure: Left: true posterior; Right: sample-based estimation.

. Welling and Y. W. Teh. “Bayesian learning via stochastic gradient Langevin dynamics”. In: /CML. 2011.
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Outline

Stochastic Gradient Markov Chain Monte Carlo
@ SG-MCMC algorithms

m Stochastic Gradient Hamiltonian Monte Carlo (SGHMC)
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SGHMC

@ SGLD is slow when parameter space exhibits uneven curvatures.
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SGHMC

@ SGLD is slow when parameter space exhibits uneven curvatures.
© Use the momentum idea to improve SGLD:
» a generalization of the HMC, in that the ball is rolling on a friction
surface
» the ball follows the momentum instead of gradients, which is a
summarization of historical gradients, thus could jump out local
modes easier and move faster
» needs a balance between these extra forces

random force

//////////////
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A naive approach to generalize HMC without friction

@ Simply using injected Gaussian noise (random wind) in SGD with
momentum.

0,=0,_1+ph
P, =P,_1—VeU(0)h + /2h N (0,1)
—_———

random wind

/ /[Tt
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A naive approach to generalize HMC without friction

@ Simply using injected Gaussian noise (random wind) in SGD with
momentum.

0,=0,_1+ph
P, =P,_1—VeU(0)h + /2h N (0,1)
~———
random wind

© Would not work:
» random wind tends to uniformize the location distribution2
» the probability of see the ball at any location is equal

/ /[Tt

127 Chen, E. B. Fox, and C. Guestrin. “Stochastic Gradient Hamiltonian Monte Carlo”. In: /CVL. 2014,
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Adding a friction term

@ Without a friction term, the random Gaussian noise would drive
the ball too far away from their stationary distribution.
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Adding a friction term

@ Without a friction term, the random Gaussian noise would drive
the ball too far away from their stationary distribution.

@ After adding a friction term:

0,=0,_1+ph
P, =P, 1 —VelU(0)h —Ap h + /2AWN(0,1) ,

where A > 0 is a constant'3, controlling the magnitude of the
friction.

31 the original SGHMC paper, A is decomposed into a known variance of injected noise and an unknown variance of
stochastic gradients.
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Adding a friction term

@ Without a friction term, the random Gaussian noise would drive
the ball too far away from their stationary distribution.

@ After adding a friction term:

0,=0,_1+ph
P, =P, 1 —VelU(0)h —Ap h + /2AWN(0,1) ,

where A > 0 is a constant'3, controlling the magnitude of the
friction.
© The fraction term penalize the momentum:

» the more momentum, the more fraction it has, thus slowing down
the ball

31 the original SGHMC paper, A is decomposed into a known variance of injected noise and an unknown variance of
stochastic gradients.
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SGHMC in algorithm

Input: Parameters A, {h;}
Output: Approximate samples {6}

Initialize 8y € R"
for/=1,2,...do
Evaluate VoU(0,_1) from the /-th minibatch

0,=01+ph
P, =p,_1—VUO)h — Ap,_1 h + V2AhN(0,1)
end

Return {6,}
Algorithm 2: Stochastic Gradient Hamiltonian Monte Carlo
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Example'*

8 T T T T T T T
5 Noisy Hamiltonian dynamics
°  Noisy Hamiltonian dynamics(resample r each 50 steps)| |

Noisy Hamiltonian dynamics with friction
b ian dynamics

@ Sample from a 1D Gaussian
distribution:

> U) = 5 6°

© Sample from a 2D Gaussian
distribution:

» U@)=16"x"0

1
S »
> o

—&— SGHMC

0.35

o
©

0.25

o
° L o
P )

0.05

Qe

Average Absolute Error of Sample Covariance

o
o

50 100 150 200
Autocorrelation Time

14T, Chen, E. B. Fox, and C. Guestrin. “Stochastic Gradient Hamiltonian Monte Carlo”. In: /CVL. 2014.
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Outline

Stochastic Gradient Markov Chain Monte Carlo
@ SG-MCMC algorithms

m Stochastic Gradient Thermostats (SGNHT)
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Stochastic gradient Nose-Hoover thermostats

@ Revisit SGHMC:

0,=0,_1+ph
P, =P+ —VelU(0)h — Ap hj+ /2Ah N (0,1) ,
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Stochastic gradient Nose-Hoover thermostats

@ Revisit SGHMC:

0,=0,_1+ph
P, =P+ —VelU(0)h — Ap hj+ /2Ah N (0,1) ,

Q In the existence of stochastic gradient noise, e.g.,
VeU(0)) = VoU(0)) + N (0, Bl), the update of p:

P, =Pi—1 —VeU(0))h — Ap hy + /2(A+ B)hy N(0,1)
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Stochastic gradient Nose-Hoover thermostats

@ Revisit SGHMC:
0,=0,_1+ph
P/ =P;_1—VoU(8))h — Ap b+ /2Ah N (0,1)

@ In the existence of stochastic gradient noise, e.g.,
VeU(0)) = VoU(0)) + N (0, Bl), the update of p:

P/ =P_1 —VeU(0)h — Ap hy + /2(A+ B)hy N(0,1)

© The friction coefficient should be set to A + B instead of A, to
correctly sample from true posteriors'®:

» Bis usually unknown, needs a good estimation
» could it be learned from the algorithm?

15According to the Fokker-Planck equation in stochastic differential equation theory.
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Stochastic gradient Nose-Hoover thermostats

@ How to adaptively learn the noise coefficient B?
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Stochastic gradient Nose-Hoover thermostats

@ How to adaptively learn the noise coefficient B?
© Use the Nose-Hoover thermostat:

» a physical system (e.g., rolling ball) embedded in a heat bath for
energy exchange
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Stochastic gradient Nose-Hoover thermostats

@ How to adaptively learn the noise coefficient B?
© Use the Nose-Hoover thermostat:
» a physical system (e.g., rolling ball) embedded in a heat bath for
energy exchange
» when the system temperature is high, the heat bath absorbs
heat/energy by increasing the friction, thus slows down the
movement
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Stochastic gradient Nose-Hoover thermostats

@ How to adaptively learn the noise coefficient B?
© Use the Nose-Hoover thermostat:
» a physical system (e.g., rolling ball) embedded in a heat bath for
energy exchange
» when the system temperature is high, the heat bath absorbs
heat/energy by increasing the friction, thus slows down the
movement
» when the system temperature is low, the heat bath releases
heat/energy by decreasing the friction, thus speeds up the
movement
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Stochastic gradient Nose-Hoover thermostats

@ How to adaptively learn the noise coefficient B?
© Use the Nose-Hoover thermostat:
» a physical system (e.g., rolling ball) embedded in a heat bath for
energy exchange
» when the system temperature is high, the heat bath absorbs
heat/energy by increasing the friction, thus slows down the
movement
» when the system temperature is low, the heat bath releases
heat/energy by decreasing the friction, thus speeds up the
movement
» the energy absorbing/releasing keeps the system steady (sampling
from the true posterior distribution)

Changyou Chen (Duke University) SG-MCMC 63/119



A little bit of statistical physics

@ Statistical physics describes the probability of states (6, p) of a
system in thermal equilibrium with a heat bath at temperature T.
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A little bit of statistical physics

@ Statistical physics describes the probability of states (6, p) of a
system in thermal equilibrium with a heat bath at temperature T.

© The probability follows the canonical distribution:

E(6,p) + K(p)>
ke T ’

p(6.p) o exp (—H(8.p)/ (ke T)) 2 exp (—

where kg is the Boltzmann constant, E(6, p) the potential energy,
K(p) the kinetic energy.
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A little bit of statistical physics

@ Statistical physics describes the probability of states (6, p) of a
system in thermal equilibrium with a heat bath at temperature T.

© The probability follows the canonical distribution:

E(6,p) + K(p)>
ke T ’

p(6.p) o exp (—H(8.p)/ (ke T)) 2 exp (—

where kg is the Boltzmann constant, E(6, p) the potential energy,
K(p) the kinetic energy.

© Thermal equilibrium condition:

keT/2=E[K(p)] /D — ksT =E [pp| /D
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SGNHT

@ In Bayesian setting, the equilibrium distribution
p(97 p) x exp (_H(07 p))i thus kg T =1

E [pr] /D= kgT =1
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SGNHT
@ In Bayesian setting, the equilibrium distribution
p(6.p) o< exp (—H(60,p)), thus kgT =1
E [pr] /D= kgT =1

© In SGHMC with stochastic gradients Vo U(6, p):
» the dynamic may drift away from thermal equilibrium if stochastic
gradients exibit too much noise
» need to adaptively control the friction
» idea is to replace the friction coefficient Ain SGHMC with a
thermostat variable £, which is adaptively estimated using thermal
equilibrium condition

0,=06,_1+ph
P, =P_1 —VelU(0)h — &_1ph + /2AL N (0,1)
§=2E-1+ (P/TP//D— 1> hy
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SGNHT

0,=0,_1+ph
P/ =Pi_1 —VeU(6)h — &1 phy + /2AR N (0,1)
§ =81+ (P/TP//D— 1) hy

@ If the kinetic energy is higher than 1/2 (high temperature), ¢ gets
bigger, friction gets bigger, momentum p gets lower, vice versa.
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SGNHT

0,=0,_1+ph
P/ =Pi_1 —VeU(6)h — &1 phy + /2AR N (0,1)
§ =81+ (P/TP//D— 1) hy

@ If the kinetic energy is higher than 1/2 (high temperature), ¢ gets
bigger, friction gets bigger, momentum p gets lower, vice versa.

@ The equilibrium is reached when E [p/ p,] /D = 1:
» exactly the thermal equilibrium condition
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SGNHT

0,=0,_1+ph
P/ =Pi_1 —VeU(6)h — &1 phy + /2AR N (0,1)
§ =81+ (P/TP//D— 1) hy

@ If the kinetic energy is higher than 1/2 (high temperature), ¢ gets
bigger, friction gets bigger, momentum p gets lower, vice versa.

@ The equilibrium is reached when E [p/ p,] /D = 1:
» exactly the thermal equilibrium condition

© Samples generated from the true posterior distribution.
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SGNHT in algorithm

Input: Parameters A, {h}
Output: Approximate samples {0,}

Initialize 6y € R”
for/=12,...do
Evaluate Vg U(01_1) from the /-th minibatch
0,=01+ph
P =Pi—1 —VU(O)h — &1 p_1 b+ 2AR N (0,1)
G=&-1+(PTP/D-1)h
end
Return {6,}
Algorithm 3: Stochastic Gradient Nose-Hoover Thermostat
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Comparison: SGHMC vs. SGNHT'®

06

True distribution

rue distribution
A=10

Figure: SGHMC with A=1, A= 10, A= 0.1, and the SGNHT.

8N. Ding et al. “Bayesian Sampling Using Stochastic Gradient Thermostats”. In: N/PS. 2014.
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Relation wih stochastic optimization

@ SG-MCMC is essentially stochastic optimzation with appropriate
injected noise:

» large noise tends to make samples uniform, small noise tends to
stuck algorithms on local modes
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Relation wih stochastic optimization

©@ SG-MCMC is essentially stochastic optimzation with appropriate
injected noise:
» large noise tends to make samples uniform, small noise tends to
stuck algorithms on local modes
@ SGLD vs. SGD.
© SGHMC vs. SGD with momentum.

© No traditional stochastic optimization counterpart for SGNHT
yet'”.

17Some new algorithm such as Santa could be considered as the counterpart, discussed later.
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SGLD vs. SGD

- N
VoU(0/_1) £ —— ) Vglogp(X~ |0/-1) — Vglogp(6;_1) ,
n

i=1

for/=1,2,...do
Evaluate VoU(0,_1) from the /-th minibatch
0 =0,_1—VU(8,-1)h+/2h N(0.1)

end

Changyou Chen (Duke University) SG-MCMC 70/119



SGHMC vs. SGD-M

. N
VoU(6)) £ —— > Vglogp(X- |6;) — Velogp(6)) ,
n

i=1

for/=12,...do
Evaluate Vo U(6,_1) from the
/-th minibatch
6,=0,1+ph
P/ =p_1—VU(O)h —
Ap,_1 b+ 2ARN(0,1)
end
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SGHMC vs. SGD-M

- N
VoU(6)) £ —— > Vglogp(X- |6;) — Velogp(6)) ,
n

i=1

for/=1,2,...do
Evaluate Vo U(6,_1) from the
I-th minibatch
0=01+ph
P/ =p_1—VU(O)h —
Ap,_1 h+2ARN(0,1)
end

@ Reparametrization: e = h>, m= Ah,v=ph
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SGHMC vs. SGD-M

- N
VoU(6)) £ —— > Vglogp(X- |6;) — Velogp(6)) ,
n

i=1

for/=1,2,...do for/=12,...do
Evaluate Vo U(6,_1) from the Evaluate Vo U(6,_1) from the
/-th minibatch /-th minibatch
0,=06,1+ph 0;=20,_1+V|_1 )
P =P;_1 —VU())h — Vi=(1-m)v, 1 =VU(8))e +
Ap,_y hi+ 2ARN(0,1) v2me; N(0,1)

end end

@ Reparametrization: e = h>, m= Ah,v=ph
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SGHMC vs. SGD-M

" N <
VgU(e/) L& __ Ve Iog p(Xm ’ 9/) — Vo Iog ,0(9/) R
n

i=1

for/=1,2,...do for/=1,2,...do
Evaluate Vo U(6,_1) from the Evaluate Vo U(6,_1) from the
/-th minibatch /-th minibatch
0,=01+ph 0,=0_1+V_1 )
P/ =P —VU@O)h — vi=(1-m)v_1 =VU(0))e +
Ap,_1 h + VZAR N0, 1) V2me N(0.1)

end end

@ Reparametrization: e = h>, m= Ah,v=ph
@ e: learning rate; m: momentum weight
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Outline

Stochastic Gradient Markov Chain Monte Carlo
@ SG-MCMC algorithms

m Stochastic Gradient MCMC with Riemannian Geometry

» stochastic gradient Riemannian Langevin dynamics (SGRLD)
» preconditioned stochastic gradient Langevin dynamics (PSGLD)
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Outline

Stochastic Gradient Markov Chain Monte Carlo
@ SG-MCMC algorithms

m Stochastic Gradient MCMC with Riemannian Geometry
» stochastic gradient Riemannian Langevin dynamics (SGRLD)
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Manifold information geometry

@ Higher-order gradient information have proven helpful in training
high-dimensional, complex optimization problems, e.g., deep
learning:

» quasi-Newton methods
» rescale parameters so that the loss function has similar curvature

along all directions: Adagrad, Adadelta, Adamand RMSprop
algorithms

» approximation to using Riemannian information geometry
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Manifold information geometry

@ Higher-order gradient information have proven helpful in training
high-dimensional, complex optimization problems, e.g., deep
learning:

» quasi-Newton methods

» rescale parameters so that the loss function has similar curvature
along all directions: Adagrad, Adadelta, Adamand RMSprop
algorithms

» approximation to using Riemannian information geometry

© Geometry information is
encoded with a
Riemannian metric G(0):
- reflects the curvature
property, e.g., inner
product of two vectors v
and w on a tangent
space is v G(O)w’
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Stochastic gradient Riemannian Langevin dynamics
@ Adding Riemannian information geometry into SGLD:
011 =0,—h4 (G(OI)VGD(OI) + I_(‘91))

+v/2h11.1G(61) {141

» G(0): Riemannian metric, sometimes refer to as preconditioner
HNCEDY %éf’): change of manifold curvature

> In SGLD, G(6) =1, T(8) = 0

Changyou Chen (Duke University) SG-MCMC 76/119



Stochastic gradient Riemannian Langevin dynamics

@ Adding Riemannian information geometry into SGLD:

611 = 01 —hiey (G(O)VoU(B) +T(6))

+v/2h11.1G(61) {141

» G(0): Riemannian metric, sometimes refer to as preconditioner
> I(0) 2 273 BG‘J(G) : change of manifold curvature
» In SGLD, G(e) =1r0)=

© SGRLD for LDA' is a good example of SGRLD.

© Imposing Riemannian geometry into other SG-MCMC algorithms
follows similarly.

185 Patterson and Y. W. Teh. “Stochastic Gradient Riemannian Langevin Dynamics on the Probability Simplex”. In: NIPS.
2013.
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Stochastic gradient Riemannian Langevin dynamics

@ Adding Riemannian information geometry into SGLD:

611 = 01 —hiey (G(O)VoU(B) +T(6))

+v/2h11.1G(61) {141

» G(0): Riemannian metric, sometimes refer to as preconditioner
> I(0) 2 273 BG‘J(G) : change of manifold curvature
» In SGLD, G(e) =1r0)=

© SGRLD for LDA' is a good example of SGRLD.

© Imposing Riemannian geometry into other SG-MCMC algorithms
follows similarly.
© Challenge: G(0) is usually intractable:
» need a computational efficient way to approximate G(8)

185 Patterson and Y. W. Teh. “Stochastic Gradient Riemannian Langevin Dynamics on the Probability Simplex”. In: NIPS.
2013.
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Outline

Stochastic Gradient Markov Chain Monte Carlo
@ SG-MCMC algorithms

m Stochastic Gradient MCMC with Riemannian Geometry

» preconditioned stochastic gradient Langevin dynamics (PSGLD)
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Preconditioned stochastic gradient Langevin dynamics

@ RMSprop as the Preconditioner (Riemannian metric).
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Preconditioned stochastic gradient Langevin dynamics

@ RMSprop as the Preconditioner (Riemannian metric).
Q 3(6)) =137, Velogp(d,, | 6)): sample mean of gradient.
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Preconditioned stochastic gradient Langevin dynamics

@ RMSprop as the Preconditioner (Riemannian metric).
Q 3(6)) =137, Velogp(d,, | 6)): sample mean of gradient.
© Preconditioner construction:

V(6111) = aV(6)) + (1 - a)9(6)) © 9(6))

G(0,,+) = diag (1 % <)\ + v/ V(9/+1)))
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Preconditioned stochastic gradient Langevin dynamics

@ RMSprop as the Preconditioner (Riemannian metric).
Q 3(6)) =137, Velogp(d,, | 6)): sample mean of gradient.
© Preconditioner construction:

V(6111) = aV(6)) + (1 - a)9(6)) © 9(6))

G(61:1) = diag (12 (A + VV(0111)) )

© Intuitive interpretations:
» the preconditioner equalizes the gradient so that a constant
stepsize is adequate for all dimensions
» the stepsizes are adaptive, in that flat directions have larger
stepsizes while curved directions have smaller stepsizes

Changyou Chen (Duke University) SG-MCMC 78/119



Outline

@ Stochastic Gradient Markov Chain Monte Carlo

@ Theory
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Outline

Stochastic Gradient Markov Chain Monte Carlo

© Theory

m [t6 diffusion
m Convergence theory
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Outline

Stochastic Gradient Markov Chain Monte Carlo

© Theory
m [t6 diffusion
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It6 diffusion

@ 116 diffusion is a continuous-time stochastic process, governed by
stochastic differential equations of the form:

dXx; = F(Xt)dt + a(xt)dw,

v

t: time index

» X;: model states, typically
includes 0

» w;: standard Brownian motion,
e.g., vt,Ah> 0,
AW; 2 W ap— W, are
zero-mean Gaussian random
variables with standard
deviation Ah

» F(x;): drift coefficient

» o(x;): diffusion coefficient
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I1t6 diffusion

@ 116 diffusion typically endows an invariant measure, i.e., the
probability distribution of x;, Vt (time invariant).
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It6 diffusion

@ 116 diffusion typically endows an invariant measure, i.e., the
probability distribution of x;, Vt (time invariant).
© Ornstein-Uhlenbeck (OU) process:

dx; :5(M—Xt)dt+ a dwy, B,a>0
F(x) o (x)

> invariant measure: p(x) = y/ -2, e A/

trace histogram
5 1500
+ 1000
5
x 0 3
© 500
-5 0
0 50 100 150 200 -4 -2 0 2 4

X

t
Figure: OU process with = 0,8 =0.5,a = 1.
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Fokker-Planck equation

@ Also known as the Kolmogorov forward equation.
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Fokker-Planck equation

@ Also known as the Kolmogorov forward equation.

© It describes the time-evolving probability density function p(x, t)
on the random variable x, driven by the 1t6 diffusion:
dx; = F(Xt)dt + O'(Xt)th.
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Fokker-Planck equation

@ Also known as the Kolmogorov forward equation.

© It describes the time-evolving probability density function p(x, t)
on the random variable x, driven by the 1t6 diffusion:
dx; = F(Xt)dt + O'(Xt)th.

Q Let Dj(x;) = >, oix(Xt)ojk(Xt), then p(x, t) satisfies the
Fokker-Planck equation:

op(x, 1)
= — F X¢) (X .
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Fokker-Planck equation

@ Also known as the Kolmogorov forward equation.

© It describes the time-evolving probability density function p(x, t)
on the random variable x, driven by the 1t6 diffusion:
dx; = F(Xt)dt + O'(Xt)th.

Q Let Dj(x;) = >, oix(Xt)ojk(Xt), then p(x, t) satisfies the
Fokker-Planck equation:

op(x, 1) _
ot ZaT[F Xe)p(x, 1) 2Zax,ax, Dj(xt)p(x. 1)] -

© In stationary region, p(x, t) is independent of ¢, thus w =0,
the Fokker-Planck equation becomes:

> o IFxop 22 e 8,(/ Dy(x)p(x)]
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Fokker-Planck equation

@ The Fokker-Planck equation is useful in verifying the stationary
distribution for some specify It6 diffusions.

© We can use it to verify that the stationary distribution of the
following It6 diffusion is p(x) oc e~VX):

1
dx; = —VxU(Xt) + §dwt
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Diffusion form for SGLD

0,=20,_4 —VQU/(01_1 )h/ “+ 2h/N(0, |)

@ SGLD is based on 1st-order Langevin dynamics, with x = :

1
do;=—-VeU(0:)+ =l dw;
—_ 2

PO ox)

» invariant measure: p(8) x e~ Y(®)
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Diffusion form for SGHMC

0,=0,_1+ph
p, = (1 — Ah)p,_i =V U(6))h + /2AR N (0, 1)

@ SGHMC is based on 2nd-order Langevin dynamics, with
x=1{0,p}:

a zi )= ( —Apt—ptVQU(G) ) dt + V2A( g ? ) aw,

F(xt) a(Xt)

J/

» invariant measure: p(0,p) x exp {—U(a) — PTTP}
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Diffusion form for SGNHT

0,=0,_1+ph
p,=(1—¢&_1h)p,_1 =V U(0)h + /2ARN(0,1)
=84+ (P/TP//D— 1) h

© SGNHT is based on the Nosé-Hoover thermostat, with
X = {07 P, f}

6, P, 000
dl p, | =| —&p,—VeU(6)) |dt+v2A[ 0 1 0 |dw,
& p/p,/D—1 000

F(x¢) o (xt)

» invariant measure: . ,
p(8.9.6) x exp {~U(6) ~ 2 — 8 (¢ - D)}
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A complete recipe to construct appropriate It6 diffusions

© Ma et al.’® gave a complete recipe to construct F(x) and o(x):

F(x) = — (D(x) + Q(x)) VxH(x) + '(x)
o(x) = v2D(x) ,

» Q(x): a skew-symmetric curl matrix, e.g., —M = M"
» D(x): a positive semidefinite diffusion matrix

9Y. A. Ma, T. Chen, and E. B. Fox. “A Complete Recipe for Stochastic Gradient MCMC". . In: N/PS. 2015.
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A complete recipe to construct appropriate It6 diffusions

© Ma et al.’® gave a complete recipe to construct F(x) and o(x):

F(x) = = (D(x) + Q(x)) VxH(x) + T(x)
o(x) = v2D(x) ,

» Q(x): a skew-symmetric curl matrix, e.g., —M = M"
» D(x): a positive semidefinite diffusion matrix
© Any diffusion with the above form endows a marginal invariant
measure: p(8) « e~ Y(®),

19Y. A. Ma, T. Chen, and E. B. Fox. “A Complete Recipe for Stochastic Gradient MCMC”. . In: NIPS. 2015.
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A complete recipe to construct appropriate It6 diffusions

© Ma et al.’® gave a complete recipe to construct F(x) and o(x):

F(x) = = (D(x) + Q(x)) VxH(x) +T(x)

o(x) = v2D(x) ,

» Q(x): a skew-symmetric curl matrix, e.g., —M = M"
» D(x): a positive semidefinite diffusion matrix

© Any diffusion with the above form endows a marginal invariant
measure: p(8) « e~ Y(®),

@ In SGHMC, D(x) = (g A°|> Q(x):(? B').

19Y. A. Ma, T. Chen, and E. B. Fox. “A Complete Recipe for Stochastic Gradient MCMC”. . In: NIPS. 2015.

Changyou Chen (Duke University) SG-MCMC
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From diffusions to algorithms: numerical integrator

@ The diffusions defined previously are continuous-time Markov
processes.

© SG-MCMC algorithms approximate solutions of these Markov
processes via numerical integrators/methods.
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From diffusions to algorithms: numerical integrator

@ The diffusions defined previously are continuous-time Markov
processes.

© SG-MCMC algorithms approximate solutions of these Markov
processes via numerical integrators/methods.

© Characterize how accurate the
algorithms approximate the \
continuous-time processes in
terms of orders:

» e.g., a 1st-order numerical ¥
integrator approximates the true
process, with an error bounded
by O(h), when evolving the
process for time h
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Example: SGHMC

d( g; ) - ( —Apt—ptVGU(e) )dt+\/ﬂ(g ?>th

@ Use a 1st-order Euler integrator to solve the SDE:

» divide the time into L small intervals, each with a duration h
» in each interval, solve (8,, p,) sequentially, while fixing the others

0,=20,_1+p,_1h
p;= (1 —Ah)p,_1 — VeU(0))h + /2Ah N (O, 1)
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Example: SGHMC

d(u(:):(—Apt—ptvauw))d”m“ ?>d‘”’

@ Use a 1st-order Euler integrator to solve the SDE:

» divide the time into L small intervals, each with a duration h
» in each interval, solve (8,, p,) sequentially, while fixing the others

0,=20,_1+p,_1h
P, = (1 — Ah/)p/71 — VgU(O/)h/ + \/2Ah/N(0, |)

© Induce an error of O(h;) compared to exactly solving the SDE.
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Example: SGHMC

d(u(:):(—Apt—ptvauw)d”m(g ?>d‘”’

@ Use a 1st-order Euler integrator to solve the SDE:

» divide the time into L small intervals, each with a duration h
» in each interval, solve (8,, p,) sequentially, while fixing the others

0,=20,_1+p,_1h
P, = (1 — Ah/)p,71 — VgU(O/)h/ + \/2Ah/N(0, |)

© Induce an error of O(h;) compared to exactly solving the SDE.
© Also induce a global bias of O(h) if h; = h, VI (introduced next).
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High-order numerical integrators

@ Start an It6 diffusion from xg, let x4, be the random variable after
evolving the diffusion for time h, X be the value obtained from a
numerical method.

Q I E|f(xp) — f(Xp)| = O(hK), then the numerical integrator is said
to be order K.
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High-order numerical integrators

@ Start an It6 diffusion from xg, let x4, be the random variable after
evolving the diffusion for time h, X be the value obtained from a
numerical method.

Q I E|f(xp) — f(Xp)| = O(hK), then the numerical integrator is said
to be order K.

© The Euler method is a 1st-order numerical integrator.
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High-order numerical integrators

@ Start an It6 diffusion from xg, let x4, be the random variable after
evolving the diffusion for time h, X be the value obtained from a
numerical method.

Q I E|f(xp) — f(Xp)| = O(hK), then the numerical integrator is said
to be order K.

© The Euler method is a 1st-order numerical integrator.

@ The symmetric splitting integrator?® is a 2nd-order numerical
integrator:

» the idea is to split the infeasible SDE into several sub-SDEs, such
that each of the sub-SDE can be solved exactly

20C. Chen, N. Ding, and L. Carin. “On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order Integrators”.
In: NIPS. 2015.
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SGHMC using symmetric splitting integrators

0\ P 00
o(2)-(ap Bt )54 (8 2o
@ Split the above SDE into the following sub-SDEs:

[ do =pdt , [dO® =0
A'{dp =0 ’B'{dp = —-Dpdt
0 g =0

L dp = -VeU(0)dt +v2Ddw

Changyou Chen (Duke University) SG-MCMC
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SGHMC using symmetric splitting integrators

0\ P 00
d(p>_(_Ap_v9U(9))m@x(o I)dw
@ Split the above SDE into the following sub-SDEs:

A:{dO = pdt 7B:{d0 =0

dp =0 dp =-Dpdt
0 g =0
| dp —VeU(0)dt + v2Ddw

© Solve the sub-SDEs in a symmetric way, e.g., ABOBA, resulting in
the following updates:

0()_0[ 1+pl 1h/2:>p(1) B —Dh/2

+V2DhN(0,1) = p, £ e P2 p®

O ~
P = P2 Zpl" —v,eU(6{")h

= 0,26 4p h/2
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SGHMC using symmetric splitting integrators

0\ P 00
d(p>_(_Ap_v9U(9))m@x(o I)dw
@ Split the above SDE into the following sub-SDEs:

A:{dO = pdt 7B:{d0 =0

dp =0 dp =-Dpdt
0 g =0
| dp —VeU(0)dt + v2Ddw

© Solve the sub-SDEs in a symmetric way, e.g., ABOBA, resulting in
the following updates:
0( ) A _0[ 1+pl 1h/2:>p(1) B —Dh/2

P = P2 Zpl" —v,eU(6{")h
+V2DhN(0,1) = p, 2 e P2p® = 6,26 1 p h/2

© Induce O(h?) error, more accurate than the Euler integrator.

Changyou Chen (Duke University) SG-MCMC
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Outline: Stochastic Gradient Markov Chain Monte Carlo

© Theory

» Convergence theory
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Setup

@ p(x): stationary distribution of an It diffusion.

Q {xi, - ,x.}: samples from the corresponding SG-MCMC
algorithm.

© ¢(x): atest function.

Q ¢ 2 [ $(x)p(x)dx: posterior average.

(s IS {Z,L:1 o(X;): sample average (fixed step size).

Q4 2 ﬁ Sk, hio(x)): sample average (decreasing step sizes).
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Setup

@ /(x): stationary distribution of an 1t6 diffusion.

Q {xi, - ,x.}: samples from the corresponding SG-MCMC
algorithm.

© ¢(x): atest function.

Q ¢ 2 [ $(x)p(x)dx: posterior average.

(s IS {Z,L:1 o(X;): sample average (fixed step size).

Q4 2 ﬁ Sk, hio(x)): sample average (decreasing step sizes).

@ In weak convergence analysis, we study how ¢, approximates ¢,
in terms of:

» bias: ‘IEQASL - J)‘ or ’EQ?’L - ¢_>‘

» mean square error (MSE): E (<$L - ¢_5)27 ork (éL - 5)2
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Typical assumptions

@ The convergence theory relies on some assumptions on the
continuous-time 1té diffusions and the numerical methods.
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Typical assumptions

@ The convergence theory relies on some assumptions on the
continuous-time 1té diffusions and the numerical methods.

Informally:

@ Ellipticity/hypoellipticity: the noise from Brownian motion could
spread out over the whole space (diffusion coefficient).
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Typical assumptions

@ The convergence theory relies on some assumptions on the
continuous-time 1t6 diffusions and the numerical methods.
Informally:

@ Ellipticity/hypoellipticity: the noise from Brownian motion could
spread out over the whole space (diffusion coefficient).

© Smoothness and boundedness: the drift coefficient F(x) is
smooth and bounded by some function.
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Typical assumptions

@ The convergence theory relies on some assumptions on the
continuous-time 1té diffusions and the numerical methods.
Informally:

@ Ellipticity/hypoellipticity: the noise from Brownian motion could
spread out over the whole space (diffusion coefficient).

© Smoothness and boundedness: the drift coefficient F(x) is
smooth and bounded by some function.

© Ergodicity: numerical methods are able to explore the whole
parameter space.

Changyou Chen (Duke University) SG-MCMC 95/119



Typical assumptions

@ The convergence theory relies on some assumptions on the
continuous-time 1té diffusions and the numerical methods.
Informally:

@ Ellipticity/hypoellipticity: the noise from Brownian motion could
spread out over the whole space (diffusion coefficient).

© Smoothness and boundedness: the drift coefficient F(x) is
smooth and bounded by some function.

© Ergodicity: numerical methods are able to explore the whole
parameter space.

© Nice properties (smooth, bogndeg) of ¢: 1 is the solution
functional of 1[ Z,L:1 Ly(X)) = ¢ — ¢, with £ the infinite generator
of the corresponding It6 diffusion.
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Revisit orders of humerical integrators

@ SG-MCMC algorithms are discretized approximation of
continuous-time 1t6 diffusions.

© The accuracy of the samples generated from SG-MCMC
algorithms is described by their orders of numerical methods.
For example:

1. Use an SG-MCMC algorithm to generate x; from x;_4 with
stepsize h.

2. Evolve the corresponding It6 diffusion exactly for time period h,
starting from x,_1, and ending up with X;.

3. Calculate the difference: Df(x,X;) = E |f(x;) — f(X/)|, where fis a
test function.

4. If Dy(x;,%;) = O(hK), then the numerical integrator is called an
Kth-order integrator.
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Revisit orders of humerical integrators

@ SG-MCMC algorithms are discretized approximation of
continuous-time 1t6 diffusions.

© The accuracy of the samples generated from SG-MCMC
algorithms is described by their orders of numerical methods.

© The popular Euler method is a 1st-order integrator.

© The symmetric splitting integrator? is a 2nd-order integrator.

© We will present results with general Kth-order integrators.

4C. Chen, N. Ding, and L. Carin. “On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order
Integrators”. In: NIPS. 2015.
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Convergence bounds of bias and MSE?'

Theorem (Fixed step size)

Under standard assumptions, the bias and MSE of a fixed-step-size
SG-MCMC with a Kth-order integrator at time T = hL are bounded as:

Bias: ‘Em—qﬁ‘ < Cy <Lh+hK)

MSE:E (asL - gs) <G <L1h h2K)

21C. Chen, N. Ding, and L. Carin. “On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order Integrators”.
o N/P 0
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Convergence bounds of bias and MSE?'

Theorem (Decreasing step sizes)

Under standard assumptions, the bias and MSE of a

decreasing-step-size SG-MCMC with a Kth-order integrator at time
S, 2 Sk . hy are bounded as:

o les Sopg B
Bias: )EqﬁL—qb‘ < Cq (S_L =

. _ hK+1 2 L_ h2
MSE:E (m - qb) <G ( 5" (Ei 132 ) + Z;; !
L L

@ To ensure the bias and MSE asymptotically approach zero, we

need: i hH Sy M
= —1
== 0, =211 0
St S2
21C. Chen, N. Ding, and L. Carin. “On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order Integrators
o NP 0
Changyou Chen (Duke University)
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Optimal convergence rates

@ When optimizing the bounds over step size, we get the optimal
convergence rates.
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Optimal convergence rates

@ When optimizing the bounds over step size, we get the optimal
convergence rates.

Fixed step size:
Bias: ’EgbL qb‘ < Cy <Lh + hK) = Cy L K/(K+1)

MSE: E (qASL - gE) < Cs <L1h th) = C,L2K/(@K+1)
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Optimal convergence rates

@ When optimizing the bounds over step size, we get the optimal
convergence rates.

Fixed step size:
Bias: ’EQSL qb‘ < Cy <Lh + hK> = Cy L K/(K+1)
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Optimal convergence rates

@ When optimizing the bounds over step size, we get the optimal
convergence rates.

Fixed step size:

Bias: ’EQSL qb‘ < G4 <Lh + hK> = C L—K/(K+1)

MSE:E(QEL—@ §02<1

+ h2K> - CZLfZK/(2K+1)
Lh

© Slower than stochastic optimization:
» bias typically decreases as L'

© Also slower than standard MCMC:

» square root of MSE typically decreases as L~/2
» however, standard MCMC is typically computationally infeasible for
even a single iteration
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Optimal convergence rates

@ When optimizing the bounds over step size, we get the optimal
convergence rates.

Decreasing step sizes: consider h; oc [7¢

. . _ 1 L_ hK+1
Bias: )Em — ¢‘ < Cq (S_L + Z:I_jS—LI>

— C{LK/(KH) with o = 1/(K + 1)

- N2 1 L pK+1y2 L p2
MSE: E <¢L — ¢) <G (E T (21_182/ ) n Z;; ]
L L

— CoL72K/CKH) with o = 1/(2K + 1)
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Optimal convergence rates

@ When optimizing the bounds over step size, we get the optimal
convergence rates.

Decreasing step sizes: consider h; oc [7¢

. . _ 1 L_ hK+1
Bias: )Em — ¢‘ < Cq (S_L + Z:I_jS—LI>

— C{LK/(KH) with o = 1/(K + 1)

- N2 1 L pK+1y2 L p2
MSE: E <¢L — ¢) <G (E T (21_182/ ) n Z;; ]
L L

— CoL72K/CKH) with o = 1/(2K + 1)

© Behave similarly to the fixed-step-size case
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Synthetic experiments??
@ A standard Gaussian model:
xi~N(0,1), 6~N(0,1), i=1,---,1000
@ Test function: ¢(0) = 62.

226 Chen, N. Ding, and L. Carin. “On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order Integrators”.
In: NIPS. 2015.
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Synthetic experiments??
@ A standard Gaussian model:

xi~N(0,1), 6~N(0,1), i=1,---,1000
@ Test function: ¢(0) = 62.

Fixed step size:

102

@ Use a 2nd-order symmetric ~ 1°°
splitting integrator.
@ Optimal step size: hoc L™¢ 102}
with o = 0.2 for the MSE.

MSE

10 1 ‘ 2 ‘ 3 4
10 10 10 10
#iterations

226 Chen, N. Ding, and L. Carin. “On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order Integrators”.
In: NIPS. 2015.
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Synthetic experiments??
@ A standard Gaussian model:

xi~N(0,1), 6~N(0,1), i=1,---,1000
@ Test function: ¢(0) = 62.

Decreasing step sizes:

10t ‘
---a=0.1
---a=02
—_— = 0.33
e =07
10° :

@ Use step size sequence
hyoc 72,

@ Optimal o = 1/3 for the bias. 10"

BIAS

1072 - - -

10t 102 103 104
#iterations

226 Chen, N. Ding, and L. Carin. “On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order Integrators”.

In: NIPS. 2015.
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Large-Scale Bayesian Learning with Stochastic Gradient
Markov Chain Monte Carlo Methods

Part Three: SG-MCMC for Stochastic Optimization
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Outline

© SG-MCMC for Stochastic Optimization
m Bridging the Gap between SG-MCMC and Stochastic Optimization
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Motivation

@ A key problem in big-data era, especially in deep learning, is to
design algorithms that better solve a complex and
high-dimensional problem.
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Motivation

@ A key problem in big-data era, especially in deep learning, is to
design algorithms that better solve a complex and
high-dimensional problem.

©@ Stochastic optimization:

» computationally efficient, fast convergence, prone to local optimal
© Stochastic gradient MCMC:

» computationally efficient, slower convergence, able to explore the
parameter space

© Can we combine advantages from both?
© What is in between them?
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Stochastic optimization

@ Stochastic gradient descent (SGD):

» basic stochastic optimization algorithm, without considering neither
momentum and preconditioning
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@ Stochastic gradient descent (SGD):

» basic stochastic optimization algorithm, without considering neither
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» extending SGD with momentum
© RMSProp, Adadelta - - - :

» extending SGD with preconditioner
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Stochastic optimization

@ Stochastic gradient descent (SGD):

» basic stochastic optimization algorithm, without considering neither
momentum and preconditioning

© SGD with momentum (SGD-M):
» extending SGD with momentum
© RMSProp, Adadelta - - - :
» extending SGD with preconditioner
© Adam:
» extending SGD with both momentum and preconditioner
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Stochastic gradient MCMC

@ Stochastic gradient Langevin dynamics (SGLD):

» Bayesian analog of SGD, without considering neither momentum
and preconditioning
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Stochastic gradient MCMC

@ Stochastic gradient Langevin dynamics (SGLD):

» Bayesian analog of SGD, without considering neither momentum
and preconditioning

©@ Stochastic gradient Hamiltonian Monte Carlo (SGHMC):
» Bayesian analog of SGD-M, with momentum

© Preconditioned stochastic gradient Langevin dynamics (PSGLD):
» Bayesian analog of RMSProp, with preconditioner
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Stochastic gradient MCMC

@ Stochastic gradient Langevin dynamics (SGLD):

» Bayesian analog of SGD, without considering neither momentum
and preconditioning

©@ Stochastic gradient Hamiltonian Monte Carlo (SGHMC):
» Bayesian analog of SGD-M, with momentum

© Preconditioned stochastic gradient Langevin dynamics (PSGLD):
» Bayesian analog of RMSProp, with preconditioner

© Stochastic gradient thermostats (SGNHT):

» Bayesian sampling with adaptive momentum, does not have a
stochastic optimization analog
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Bridging the gap

@ Santa: the Stochastic AnNealing Thermostats with Adaptive
momentum algorithm.

Table: SG-MCMC algorithms and their
optimization counterparts.

Algorithms | SG-MCMC Optimization

Basic SGLD = SGD

Precondition | pSGLD = RMSprop
=

Momentum SGHMC SGD-M
Thermostat SGNHT Santa

@ What is in between them?
» it is about the noise
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Example: noise in SGLD

@ Update equation for SGLD:

9/+1 =60,—Vy U,(G)h, + 2h/N(O, |)
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Example: noise in SGLD

@ Update equation for SGLD:
0111 = 6, —VoU(0)h + /20N (0,1)

© How about adding /2h;/3N(0,1) noise instead of v2hN(0,1)?

it would end up sampling from an annealed distribution:

>
pp(8) o e YO
» when 3 = 0, pg(0) is a uniform distribution
» when 3 = oo, ps(0) is a spike located at 8" = argming U(0)
20 f=0 20 p=1 20 f=oo
""//\\"_" "'_"/ \\"' -
10 1Y 10 100 1}
/, ' // \\
0 / -~ _ 7N O TN 0 / N TN
5 0 5 -5 0 5 5 0 5
106 /119

Changyou Chen (Duke University) SG-MCMC



A more expressive framework

@ What is lacking in recent stochastic optimization algorithms?

» lacking of simultaneously element-wise adaptive preconditioner and
adaptive momentum
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A more expressive framework

@ What is lacking in recent stochastic optimization algorithms?
» lacking of simultaneously element-wise adaptive preconditioner and
adaptive momentum
© SGNHT comes to rescue:

» the thermostat variable adaptively learns the momentum
» the annealing idea turns the SG-MCMC algorithm into stochastic

optimization
Ot pt 0 0 0

d P: = —ftp,—VgU(Gt) dt+v2A( 0 1 O dw;
& P/ P;/D—1 000
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The Santa algorithm

@ The Stochastic AnNealing Thermostats with Adaptive momentum
(Santa) algorithm extends SGNHT with preconditioners and
annealing temperature.
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The Santa algorithm

@ The Stochastic AnNealing Thermostats with Adaptive momentum
(Santa) algorithm extends SGNHT with preconditioners and
annealing temperature.

Q It6 diffusion form:

40 = Gi(0)pdt
dp = (~Gi(0)VoU(6) — Zp+ 5V Gy (9)
+GI(8)(E — Ga(0))VoGa(8)) dt + (2Ga(0))baw (1

dE = (diag(p@p) - %l) dt

where G1(0) and G»(0) are some preconditioners, typically constructed
using RMSProp.
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The Santa algorithm

@ The Stochastic AnNealing Thermostats with Adaptive momentum
(Santa) algorithm extends SGNHT with preconditioners and
annealing temperature.

Q It6 diffusion form:

40 = Gi(0)pdt
dp = (~Gi(0)VoU(6) — Zp+ 5V Gy (9)
+GI(8)(E — Ga(0))VoGa(8)) dt + (2Ga(0))baw (1

= = (diag(p@p) - %l) dt,

where G1(0) and G»(0) are some preconditioners, typically constructed
using RMSProp.

© Santa algorithm is derived by solving (1) numerically with an
increasing sequence of inverse temperatures 5.
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The Santa algorithm

Input: 7; (learning rate), o, A, burnin, 5 = {81, B2, - } — o0,
{¢ e RP} ~ N(0,1p).
Initialize 69, uy = /7 x N(0,1,), ag = \/7C, Vo =0 ;
fort=1,2,...do
Evaluate f; 2 V4 U(6;_1) on the " mini-batch;
Vi=oVi1+ 1,\1;20?t®?t ;
g =10 VA+V:;
if t < burnin then
/* exploration */
ar = a1+ (Ui—1 O Ui—1 — 1/ Bt);

u:= g; (1 — 94 @gt) QU1+ \/%?91_1 OX ¢

else
/x refinement */
ar=ap_1; U =0;

end

U=u+(1—a)ou1-19,0F;  6;=0i1+9,06u;
end
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The Santa algorithm

@ ltis an stochastic optimization algorithm that starts from Bayesian
sampling.

@ ltis able to jump out of local modes easier than traditional
stochastic optimization algorithms.

© Under certain conditions, it is proved to converge in expectation to
the global mode.

© It converges fast in empirical studies.

Changyou Chen (Duke University) SG-MCMC 110/ 119



lllustration
@ Optimizing the double-well potential:

U) = (0 +4)(0 +1)(0 —1)(0 — 3)/14 + 0.5 .

exp(—U(0))

Figure: (Left) Double-well potential. (Right) The evolution of § using Santa
and RMSprop algorithms.
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lllustration
@ Optimizing the double-well potential:
U@)=0+4)(0+1)(0—1)(0—3)/14+05.

© Start close to a local mode.
© RMSProp gets stuck, while Santa is able to jump out of the local

mode.
202 | | | | | . . ) )
15 -
s o-
S — Santa
T w0 =
- — RMSprop
=% -2~ -
%
5- 4
0- " ; ) ; ; - —6- . 5 g 3 -
-6 -4 _2 0 2 4 6 0 1000 2000 3000 4000 5000
9 iterations

Figure: (Left) Double-well potential. (Right) The evolution of § using Santa
and RMSprop algorithms.
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Feedforward neural networks and convolutional neural networks

@ Detailed parameter setting is given in the paper?S.
@ Santa outperforms other algorithms in most cases.

Table: Test error on MNIST classification using FNN and CNN.

Algorithms FNN-400 FNN-800 CNN
Santa 1.21% 1.16% 0.47%
Adam 1.53% 1.47%  0.59%

RMSprop 1.59% 1.43%  0.64%
SGD-M 1.66% 1.72%  0.77%
SGD 1.72% 1.47%  0.81%
SGLD 1.64% 1.41%  0.71%
BPB® 1.32% 1.34% —

SGD, Dropout® 1.51% 1.33% -

Stoc. Pooling” — — 0.47%

NIN, Dropout°® — — 0.47%
Maxout, Dropout* - — 0.45%

23C. Chen et al. “Bridging the Gap between Stochastic Gradient MCMC and Stochastic Optimization”. In: AISTATS. 2016.
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Recurrent neural networks (RNN)

@ Language modeling with vanilla RNN.
© Test on four publicly available datasets.

Table: Test negative log-likelihood on 4 datasets.

Algorithms  Piano. Nott. Muse. JSB.
Santa 760 339 7.20 8.6
Adam 8.00 370 756 851

RMSprop 7.70 348 722 8.52
SGD-M 832 360 769 859
SGD 11.13 5.26 10.08 10.81
HF° 766 389 7.19 858
SGD-M® 837 446 813 8.71
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ImageNet visual recognition challenge®*

@ More than 10 million annotated natural images, with 1000 classed.

© Use to compete different machine learning algorithms, dominated
by deep learning recent years.

24, Deng et al. “lmageNet: A Large-Scale Hierarchical Image Database”. In: CVPR. 2009.
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GoogleNet for ImageNet classification

@ Use ILSVRC 2012 for training and testing.

© Compared with SGD with momentum, other algorithms did not
seem to work.

© Did not tune the parameters, use the default setting for GoogleNet
provided in the Caffe package.
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GoogleNet for ImageNet classification

@ Santa converges much faster than SGD-M.
© Use the default step size: hy = a\/1 — t/T, can not run more than

T iterations.
07 Top-1 Accuracy on ImageNet 1 Top-5 Accuracy on ImageNet
0.6
0.8
.05 1.
3 ]
504 1506
Q Q
< <
‘—,| 03 1w o4
[=X Qo
202 12
0.2 1
0.1 —Santa |] —Santa
——SGD-M —SGD-M
0 : : : : 0 : : : :
0.5 1 1.5 2 0.5 1 15 2
#iterations «10° #iterations «10°

Figure: Santa vs. SGD with momentum on ImageNet.
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Why adding gradient noise improves DNN training ?

@ A recent paper?® finds that adding gradient noise helps train very
deep network:

» the reason was not very clear

© It essentially adds small random Gaussian noise in parameter
updates.
© Equivalent to sampling from an annealed distribution:
ps(0) o e7PUO) with some large 3.
© The good performance can be explained by the Santa algorithm:
» noise makes the algorithm jump out of local modes easier
» large 8 smooths the objective function heavier, thus ends up better
local modes
@ Conclusion holds when the gradient noise is not Gaussian:

» as long as it has zero mean and finite variance
» theoretical analysis follows similarly, with a little modification

25A. Neelakantan et al. “Adding Gradient Noise Improves Learning for Very Deep Networks”. In: /ICLR workshop. 2016.
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Conclusion

| have covered:
@ Basic concepts in MCMC.

©@ Basic ideas in SG-MCMC, a review of basic SG-MCMC
algorithms.

© Theory related to stochastic differential equations and It6
diffusions.

© Convergence theory.
© How to extend SG-MCMC for stochastic optimization.
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Thank You
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