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Abstract

Learning in deep models using Bayesian methods has
generated significant attention recently. This is largely
because of the feasibility of modern Bayesian methods
to yield scalable learning and inference, while maintain-
ing a measure of uncertainty in the model parameters.
Stochastic gradient MCMC algorithms (SG-MCMC)
are a family of diffusion-based sampling methods for
large-scale Bayesian learning. In SG-MCMC, multi-
variate stochastic gradient thermostats (nSGNHT) aug-
ment each parameter of interest, with a momentum and
a thermostat variable to maintain stationary distribu-
tions as target posterior distributions. As the number
of variables in a continuous-time diffusion increases,
its numerical approximation error becomes a practical
bottleneck, so better use of a numerical integrator is
desirable. To this end, we propose use of an efficient
symmetric splitting integrator in mSGNHT, instead of
the traditional Euler integrator. We demonstrate that the
proposed scheme is more accurate, robust, and con-
verges faster. These properties are demonstrated to be
desirable in Bayesian deep learning. Extensive experi-
ments on two canonical models and their deep exten-
sions demonstrate that the proposed scheme improves
general Bayesian posterior sampling, particularly for
deep models.

1 Introduction

The ability to learn abstract representations that support
generalization to novel instances lies at the core of many
problems in machine learning and computer vision. Human
learners often can grasp concepts at multiple levels of ab-
straction from training examples, and make meaningful gen-
eralizations (Xu and Tenenbaum 2007; Kemp, Perfors, and
Tenenbaum 2007). Intuitively, appropriately employed prior
knowledge and hierarchical reasoning are necessary in this
task. Bayesian learning and inference applied to deep mod-
els may naturally possess such characterization, and poten-
tially could take a step towards this ability (Salakhutdinov,
Tenenbaum, and Torralba 2013).
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Deep models come in two broad categories. The first
uses stochastic hidden layers, typically deep latent vari-
able models. This includes the deep sigmoid belief net-
work (Mnih and Gregor 2014; Gan et al. 2015b), the vari-
ational auto-encoder (Kingma and Welling 2014), and many
others (Ranganath et al. 2015; Gan et al. 2015a; 2015c;
Pu, Yuan, and Carin 2015). The second category of deep
models uses deterministic hidden layers. While the stochas-
tic hidden units of the first category make this class of
models naturally amenable to Bayesian learning (see the
above references), for the second category appropriate pri-
ors on the weights of networks may be employed to consider
weight uncertainty. Previous work has applied Bayesian
methods to neural networks (MacKay 1992; Neal 1995), in-
cluding feedforward neural networks (Blundell et al. 2015;
Hernandez-Lobato and Adams 2015; Korattikara et al. 2015)
and convolutional neural networks (Gal and Ghahramani
2015). Deep learning may often be interpreted as a stacking
of such neural networks.

Bayesian learning and inference methods have gener-
ated significant recent research activity. Stochastic gradient
Markov Chain Monte Carlo (SG-MCMC) methods (Welling
and Teh 2011; Chen, Fox, and Guestrin 2014; Ding et al.
2014; Li et al. 2016) are a family of It6 diffusion based
algorithms that can efficiently sample target distributions,
and can be applied to large datasets. In these algorithms,
two approximations are made (Chen, Ding, and Carin 2015).
(i) For practical scalability, stochastic gradients from mini-
batches of data are used to estimate the true gradient; (if)
For numerical feasibility, a numerical integration with small
step is used to solve the corresponding It6 diffusion (a
continuous-time Markovian process).

The first attempt at SG-MCMC was the Stochastic Gradi-
ent Langevin Dynamics (SGLD) (Welling and Teh 2011) .
It is based on Ist-order Langevin dynamics. The Stochastic
Gradient Hamiltonian Monte Carlo (SGHMC) (Chen, Fox,
and Guestrin 2014) extends SGLD with 2nd-order Langevin
dynamics, where momentum variables are introduced into
the system. In an attempt to address the problem of estimat-
ing stochastic gradient noise, the Stochastic Gradient NoSe-
Hoover Thermostat (SGNHT) (Ding et al. 2014) was pro-
posed, with one additional global thermostat variable. To
further improve the efficiency of the SGNHT, a multivari-
ate version of SGNHT (mSGNHT) was proposed by in-



troducing multiple thermostat variables instead of a single
one (Ding et al. 2014). It was shown that mSGNHT provides
more adaptivity than SGNHT (Gan et al. 2015a).

By examining training with SG-MCMC algorithms, we
note two issues. (i) as more variables are introduced, an
accurate numerical method becomes more critical; and
(ii) gradients in deep models often suffer from the van-
ishing/exploding problem (Bengio, Simard, and Frasconi
1994), which makes choosing a proper stepszie difficult in
SG-MCMC. In this paper, we mitigate these concerns by
utilizing a more accurate numerical integrator, the symmet-
ric splitting integrator (SSI), to reduce discretization errors
in mSGNHT. Furthermore, since SSI is more robust with
respect to stepsizes than the default Euler integrator, it al-
lows one to choose an appropriate stepsize much more eas-
ily. We justify that the Euler integrator used in mSGNHT
is 1st-order, while the SSI is 2nd-order. Borrowing tools
from (Chen, Ding, and Carin 2015), we show that mSGNHT
with SSI (mSGNHT-S) converges faster and more accu-
rately than mSGNHT with a Euler integrator (nSGNHT-E).
Experiments across a wide range of model types demon-
strate the utility of this method. Specifically, we consider
latent Dirichlet allocation, logistic regression, deep neural
networks and deep Poisson factor analysis.

2 Background
2.1 Ito6 Diffusion

It6 diffusion is a stochastic differential equation (SDE) de-
fined as:

dXt = F(Xt)dt + O'(Xt)th 5 (1)

where X; € R"™, W, is Brownian motion, and ¢ is the time
index. Functions F' : R® — R” and ¢ : R" — R"*™
are assumed to satisfy the usual Lipschitz continuity con-
dition (Knapp 2005). It has been shown that by designing
appropriate functions F' and o, the stationary distribution,
p(X), of the It6 diffusion (1) has a marginal distribution that
is equal to the posterior distribution of interest (Chen, Ding,
and Carin 2015; Ma, Chen, and Fox 2015).

To formulate mSGNHT (Gan et al. 2015a; Ding et al.
2014) into the It6 diffusion (1), let X = (0, p, &), where
6 € R"” are the model parameters, p € R™ are momentums,
and £ € R” represent the thermostats (Gan et al. 2015a)".

Define U & — (Zf\il log p(d;|0) + 1ogp(9)) as the un-

normalized negative log-posterior, where {d; } represents the
ith data sample, p(d;|0) the corresponding likelihood, and
p(0) the prior. For some constant D > 0, the mSGNHT in
(Gan et al. 2015a) is shown to be in a form of Itd diffusion,
with

p 0 0 0
F=|-€0p—VeU|, a:\/zplo L, 0|, (2
poOp—1 0 0 O

where © represents element-wise product, and I,, is the
n X n identity matrix. Based on the Fokker-Planck equa-
tion (Risken 1989), the marginal stationary distribution over

'X now is in R3"; for conciseness, we do not re-define the di-
mension for X in (1).

6 can be shown to be p(0) o exp(—U(0)), the posterior
distribution we are interested in.

2.2 Euler Integrator

The continuous-time diffusion in (1) cannot be solved ex-
plicitly in general. As a result, numerical methods are re-
quired in SG-MCMCs to generate approximate samples.
The standard numerical method used in SG-MCMC is the
Euler integrator, which generates samples sequentially from
a discrete-time approximation of (1). Specifically, condi-
tioned on the current sample X; and step size h, the next
sample at time ¢ 4 1 is generated via the rule:

Xit1 =Xy + F(Xy)h + 0(Xy)Cit1, Gp1 ~ N(0,hL,).

In the case of mSGNHT, in each step, a stochas-
tic gradient from a minibatch is used instead of the

full gradient. We thus approximate U with U, 2

- (% > ics, logp(d;|0) +logp(0)) for the t-th itera-

tion, where S; C {1,2,---, N}, and | - | is the cardinality of
a set?. This results in the following sampling rules:

011 =60+ pth~
Pir1 = Pt — VoUi(0i41)h—diag(&:)pih++v2DC 11
Eiv1 =&+ (Py1OPr41 — 1) A

3 Symmetric Splitting Integrator for
mSGNHT

The SSI has been studied in statistical physics (Leimkuhler
and Matthews 2013; Leimkuhler and Shang 2015). It gener-
alizes the idea of the leap-frog integrator used in the Hamil-
tonian Monte Carlo (Neal 2011) from the partial differential
equation setting to the SDE setting. It was not until recently
that SSI was introduced into machine learning to obtain a
more accurate SGHMC algorithm (Chen, Ding, and Carin
2015). We adopt the idea and generalize it in this paper for
mSGNHT.

The idea of SSI is to split the intractable SDE, i.e., (1),
into several sub-SDEs such that each sub-SDE can be solved
analytically. For the mSGNHT represented in (2), it is read-
ily split into the following sub-SDE:s:

49 = pdt 9 =0

A:{ dp =0 , B: ¢ dp = —-£0Gpdt,
d¢ =pPop-I)dt d¢ =0
o =0

0:{ dp = —VelU,(0)dt+2DdW. 3)
¢ =0

All the sub-SDEs can be solved analytically, leading to
the following rules to generate samples {0;1, pi+1, &1}
from mSGNHT for time (¢ + 1):

20172 =Pih/2,€412 =&+ (P Opr — 1) h/2 —

t Pri1/3 = exp(—E&ir1/2h/2) © pr —

P Pi+2/3 = Pt+1/3 — VGUt(9t+1/2)h + \/ECHA —

i pir1 = exp(—E&iy1/2h/2) © Pryosz —

1001 = per1h/2, €1 = g1y + (P11 © pey1—1) h/2

2We write F/(X) from (2) as F'(X;) if a stochastic gradient is
used in the rest of the paper.
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From the update equations, SSI performs almost as ef-
ficiently as the Euler integrator. Furthermore, the splitting
scheme for (2) is not unique. However, all of the schemes
can be shown to have the same order of accuracy. In the
following subsection, we show quantitatively that the SSI is
more accurate than the Euler integrator in terms of approx-
imation errors. To get an impression of how the SSI works,
we illustrate it with a simple synthetic experiment.

Illustrations with a Double-well Potential To illustrate
the proposed symmetric splitting scheme and its robustness
to stepsize, fast convergence, and accurate parameter ap-
proximation, we follow (Ding et al. 2014), and consider the
double-well potential with

U0) = (0+4)(0+1)(6 — 1)(0 — 3)/14 + 0.5,

and the target distribution p(f) o exp(—U(#)). The un-
known noise in the stochastic gradient is simulated as
VU(0)h = VU(0)h + N(0,2Bh), where B = 1. No in-
jecting noise is added. We examine a large range of stepsize
h from 1073 to 0.3.

In Fig. 1, we plot
the KL divergences be-
tween the true distribu-
tions and the estimated
density, based on 106
samples, using two types
of integrators. mSGNHT-
S consistently provides
a better approximation.
The significant gap at
larger stepsize reveals that
mSGNHT-S allows large
updates.

Furthermore, we visualize the results of the first 10° sam-
ples for h = 1073 and h = 0.2 in Fig. 2. When the step-
size is too small (h = 1072), conventional mSGNHT-E has
not explored the whole parameter space; this is because it
converges slower, as shown later. When the stepsize is large
(h = 0.2), large numerical error is potentially brought in,
and mSGNHT-E over-concentrates on the mode. In both
cases, mSGNHT-S approaches the theoretical value of ther-
mostat variable £ = 1 more accurately.
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Figure 1: KL divergence
for varying stepsize.

3.1 Theoretical Justification

In (Chen, Ding, and Carin 2015), the authors formally
studied the roles of numerical integrators in general SG-
MCMCs. We adopt their framework, and justify the advan-
tage of the proposed scheme for mSGNHT. We first define
the local generator of the SDE (1) at the ¢-th iteration ( i.e.,
replacing the full gradient with the stochastic gradient from
the ¢-th minibatch) as:

Lof(Xe)2 (Ft(xt)-vx% (a(xt)a(xtf) :va;)f(xt)
wherea-b 2 a'b,A:B 2 tr(ATB), f:R* - R

is any twice differentiable function. Based on the definition,
according to the Kolmogorov backward equation, we have
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Figure 2: Samples of p(#) with SSI (1st row) and Euler inte-
grator (2nd row), and the estimated thermostat variable over
iterations (3rd row).

E[f(X)] = et f(X) where the expectation is taken over
the randomness in the diffusion. The operator " is called
the Kolmogorov operator. Because a numerical integrator is

adopted to solve the original SDE, the resulting Kolmogorov
operator, denoted as Pﬁ, approximates e*“¢. To characterise
the accuracy of a numerical integrator, we use the following
definition.

Definition 1 A numerical integrator is said to be a Kth-
order local integrator if for any smooth and bounded func-
tion f, the corresponding Kolmogorov operator ]S,f f(x)

from the t-th minibatch with stepsize h satisfies the following
relation:

Pif(@) = " f(2) + O(h" ). )
We follow (Chen, Ding, and Carin 2015), and state in
Lemma 1 that a Euler integrator satisfies Definition 1 with
K = 1 when used in mSGNHT. Detailed proofs are pro-
vided in the Appendix.
Lemma 1 The Euler integrator used in mSGNHT-E is a 1st-
order local integrator, i.e.,

P = et 0(h?) . )
Using the Baker—Campbell-Hausdorff formula for com-

mutators (Rossmann 2002), the SSI can be shown to be a
2nd-order integrator in mSGNHT, stated in Lemma 2.

Lemma 2 The symmetric splitting integrator used in
mSGNHT-S is a 2nd-order local integrator, i.e.,

Pl = ehf 1 O(R3) . (6)



The authors of (Chen, Ding, and Carin 2015) formalize
the role of numerical integrators in terms of posterior bias
and mean square error (MSE). Specifically, for a testing
function ¢(z), they study the difference between the pos-
terior average ¢ = [ ¢(z)p(z)dx and the finite-time sample
average ¢ 2 * Zthl o(x¢), where p(x) denotes the true
posterior of a Bayesian model, and {z;} denotes samples
from a SG-MCMC algorithm. To study the role of the SSI
applied in mSGNHT, we simplify the notation and conclude
their results in the following lemma.

Lemma 3 (Roles of numerical integrators) Under cer-
tain assumptions, the Bias and MSE of a SG-MCMC
algorithm with stepsize h and a Kth-order integrator are:

Bias: ‘qug - QE’ = Bpias + O(h")
MSE:E (6~ ) = B + O(175)

where Byi,s and B, are functions depending on (h,T') but
independent of K.

Based on Lemma 3 and (Chen, Ding, and Carin 2015), we
summarize the properties of mSGNHT-S in the following
remarks. The detailed are provided in Appendix.

Remark 1 (Robustness) When applying Lemma 3 to mS-
GNHT, the bias and MSE of mSGNHT-S is bounded as:
Byias + O(h?) and Bys. + O(h*), compared to Byias + O(h)
and Byuse + O(h?) for the mSGNHT-E, respectively. This in-
dicates that mSGNHT-S is more robust to the stepsizes than
mSGNHT-E.

Remark 2 (Convergence Rate) The higher order a numer-
ical integrator is, the faster its optimal convergence rate
is. Convergence rates in term of bias for mSGNHT-S and
mSGNHT-E are T—2/3 and T—/2, respectively, indicating
mSGNHT-S converges faster.

Remark 3 (Measure Accuracy) In the limit of infinite time
(T — o0), the terms Bpias and B, in Lemma 3 vanish,
leaving only the O(h*) terms. This indicates nSGNHT-S is
an order of magnitude more accurate than mSGNHT-E.

3.2 Advantages of mSGNHT-S for Deep Learning

Compared to optimization-based methods (Martens 2010),
the mSGNHT-S is able to more fully explore the param-
eter space. Therefore, it is less sensitive to initializations,
a nontrivial issue in optimization (Sutskever et al. 2013).
Second, the mSGNHT is related to stochastic gradient de-
scent (SGD) with momentum in optimization (Chen, Fox,
and Guestrin 2014; Ding et al. 2014), with the additional
advantage that the momentum is updated element-wise to
automatically adapt stepsizes. Additionally, (Sutskever et al.
2013) shows that momentum-accelerated SGD is capable of
accelerating along directions of low-curvature in the param-
eter space, leading to faster convergence speed. As a result,
mSGNHT is more favorable than other momentum-free SG-
MCMC algorithms, such as the “vanilla” SGLD (Welling
and Teh 2011).

Specifically for mSGNHT, we know from previous analy-
sis that (i) mSGNHT-S is less sensitive to stepsize as shown

in Remark 1, and thus can tolerate gradients of various mag-
nitudes. This provides a potential solution to mitigate the
vanishing/exploding gradients problem (Rumelhart, E., and
Williams 1986). Our empirical results on deep neural net-
works verifies this in Section 5.2. (ii) Convergence speed is a
critical criteria for learning, and mSGNHT-S clearly outper-
forms mSGNHT-E in this regard as discussed in Remark 2.
(iii) mSGNHT-S converges to a solution one order magni-
tude more accurate than mSGNHT-E, as discussed in Re-
mark 3, and it is more accurate in estimating model parame-
ters. The number of parameters in large-scale models may be
significant, and small numerical error in individual param-
eters can accumulate, causing noticeable inefficiency. For
these reasons, we advocate mSGNHT-S for training large
deep models.

4 Related Work

One direction for scalable Bayesian learning of deep mod-
els is stochastic variational inference. For deep models
with stochastic hidden units, learning has been imple-
mented using variational methods; when the latent vari-
ables are continuous, Stochastic Gradient Variational Bayes
(SGVB) (Kingma and Welling 2014) has been employed,
while models with discrete latent variables have been
trained via Neural Variational Inference and Learning
(NVIL) (Mnih and Gregor 2014). For deep models with
deterministic hidden units, recent studies have shown that
imposing uncertainty on global parameters helps prevent
overfitting, yielding significant improvment on model per-
formances. Representative works of this type include Bayes
by Backprop (BBB) (Blundell et al. 2015) and Probabilis-
tic Backpropagation (PBP) (Hernandez-Lobato and Adams
2015), which approximate posteriors of network weights as
a product of univariate Gaussian distributions.

Another direction for Bayesian deep learning is SG-
MCMC, the line of work followed by this paper. These
methods do not have to assume a simplifying form for the
posterior, as in variational methods. The difference with re-
spect to optimization methods is the injection of Gaussian
noise in the parameter update, allowing better exploration of
parameter space when learning. Works of this type include
the SGLD (Welling and Teh 2011), SGHMC (Chen, Fox,
and Guestrin 2014), SGNHT (Ding et al. 2014), and mS-
GNHT (Gan et al. 2015a). It has been shown in (Sutskever
et al. 2013) that carefully tuned momentum methods suffice
for dealing with curvature issues in deep network training.
mSGNHT belongs to the class of momentum-accelerated
SG-MCMC algorithms. In terms of numerical integrators,
recently work for HMC include (Chao et al. 2015; Shah-
baba et al. 2014). For our SDE setting, (Leimkuhler and
Shang 2015) proposes a symmetric splitting scheme for the
SGNHT with a specific stochastic gradient noise, which is
different from our setting of mSGNHT for deep models. Re-
cently, (Chen, Ding, and Carin 2015) provides a theoreti-
cal foundation for rigorous study of numerical integrators
for SG-MCMC. Our work is complementary, providing im-
plementation guidance for the numerical integrator for other
SG-MCMC, and investigating its roles in practical applica-
tions.
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Figure 3: Learning curves of LDA on ICML dataset for different stepsize h.

S Experiments
5.1 Canonical Models

We consider two representative Bayesian models to demon-
strate that mSGNHT-S improves general posterior sampling:
Latent Dirichlet Allocation (LDA) (Blei, Ng, and Jordan
2003) for latent variable models, and logistic regression.

Latent Dirichlet Allocation We first evaluate our method
on the ICML dataset (Chen et al. 2015) using LDA. This
dataset contains 765 documents from the abstracts of ICML
proceedings from 2007 to 2011. After removing stopwords,
we obtained a vocabulary size of 1918 and total words of
44140. We used 80% of the documents (selected at ran-
dom) for training and the remaining 20% for testing. Sim-
ilar to (Patterson and Teh 2013), we used the semi-collapsed
LDA whose posterior is provided in the Appendix. Follow-
ing (Ding et al. 2014), a Gaussian prior A/(0.1, 1) is used for
the reparametrized parameter. The Dirichlet prior parameter
for topic distribution for each document is set to 0.1. The
number of topics is set to 30. We use perplexity (Blei, Ng,
and Jordan 2003) to measure the quality of algorithms.

To show the robustness of mSGNHT-S to stochastic gradi-
ent noise, we chose minibatch of size 5, and D in mSGNHT-
S is fixed as 0.75. We test a wide range of values for step size
h. Generally, larger h imposes larger gradient-estimation er-
ror and numerical error. Learning curves of the test perplex-
ity for h = 1072,2.5x1073,5x 10~* are shown in Fig. 3.
We observe that the proposed SSI is consistently better than
the Euler integrator. Furthermore, mSGNHT is shown to sig-
nificantly outperform the SGHMC when £ is large. We note
that the gap between SSI and the Euler integrator is larger
for mSGNHT’s than SGHMC'’s, indicating the importance
of numerical integrators in higher dimensional systems.

The best performances for each method are shown in Ta-
ble 1. Note Gibbs sampling typically obtains the best per-
plexity because it uses the full dataset for each update.
However, it is not scalable for large datasets. In our noisy
gradient setup, we see that mSGNHT-S provides the low-
est perplexity among the SG-MCMC methods, including a
stochastic sampling method for simplex-structured distribu-
tions, Stochastic Gradient Riemannian Langevin Dyanmics
(SGRLD) (Patterson and Teh 2013).

Logistic Regression We examine logistic regression (LR)
on the a9a dataset (Lin, Weng, and Keerthi 2008). The train-
ing and testing data consist of 32561 and 16281 data points,
respectively, with parameter dimension 123. The minibatch

Table 1: LDA on ICML. Table 2: LR on a9a.

Method Test Perplexity | Method Test Accuracy 1
MSGNHT-S 939.67 MSGNHT-S 84.95%
MSGNHT-E 960.56 MSGNHT-E 84.72%
SGHMC-S 1004.73 SGHMC-S 84.56%
SGHMC-E 1017.51 SGHMC-E 84.51%
SGRLD 1154.68 DSVI 84.80%
GIBBS 907.84 HFSGVI 84.84%

size is set to 10, and the Gaussian prior on the parameters
is A(0,10). A thinning interval of 50 is used, with burn-in
300, and 3 x 10? total iterations. Similar to the experiments
for LDA, we test a large range of h. We find that mSGNHT-
S gives stable performances across varying h on the re-
gression model. Test accuracies are compared in Table 2,
from which mSGNHT-S also outperforms the recent dou-
bly stochastic variational Bayes (SDVI) (Titsias and Lazaro-
Gredilla 2014), and a higher-order variational autoencoder
method (HFSGVI) (Fan et al. 2015). More details are pro-
vided in the Appendix.

5.2 Deep Models

To illustrate the advantages of the proposed algorithm for
deep learning, two deep models are considered. Specifically,
for the case of deterministic hidden layers, we consider deep
Feedforward (Convolutional) Neural Networks (FNN), and
for stochastic latent layers, we consider Deep Poisson Factor
Analysis (DPFA) (Gan et al. 2015b).

Deep Neural Networks We evaluate FNN on the MNIST
dataset for classification. The data contains 60000 training
examples and 10000 testing examples, each being an 28 x 28
image of handwritten digit. A L-layer FNN is equivalent to
compositing L times of a nonlinear function gg,, e.g., the
sigmoid function used in the logistic regression model. At
the top layer, a softmax function is used for multi-class clas-
sification, specifically

P(yl:li) S8 SOftmaX(gaL 004, (:B)) )

where o denotes function composition. For each data {x, y},
x € R™* is the raw image, y is the label. A Gaussian
prior is placed on model parameters @ = {6,,...,0} x
N(0,0°T) with o2 = 1 in our experiment.

We use the Rectified Linear Unit (ReLU) (Glorot, Bordes,
and Bengio 2011) as gg, in each layer. The number of hid-
den units for each layer is 100, D is set to 5, stepsize h is set



h=1e-4,100 x 100 h=1e-4,100 x 100

0.96 B 7
g mMSGNHT-S
0.95 508 mSGNHT-E
) =
20.94 830.6
go9s -
= 804
$0.92 z
T oot mMSGNHT-S 20.2
~ mSGNHT-E = ‘
0.9 =
20 g0 0 =0 10 20 30 40
pochs Epochs
096 h = 1e-4, 100 x 100 x 100 . h = 1e-4, 100 x 100 x 100
) |8 MSGNHT-S
095 1 08 mSGNHT-E
2
§0.94 3
5 206
§0.93 =
o 0.4
$0.92 z
oot mSGNHT-S 202 |
: mSGNHT-E £ ‘
0.9 - 0
10 20 30 40 10 20 30 40
Epochs Epochs
095" = 585, 100 x 100 x 100 x 100 o 4 _h=5e-5100 x 100 x 100 x 100
. )
\ 8 mSGNHT-S
095 R mMSGNHT-E
e
3094 3
5 206
§0.93 =
o 0.4
20.92 z
oot mSGNHT-S 2o2 |
: MSGNHT-E £ ‘
0.9 =
10 20 30 40 10 20 30 40
Epochs Epochs

Figure 4: Learning curves of FNN with different depth on
MNIST dataset.

to 104, 40 epochs are used. To reduce bias (Chen, Ding,
and Carin 2015), h is decreased by half at epoch 20. We test
the FNNs with depth {2, 3, 4}, respectively. Fig. 4 displays
learning curves on testing accuracy and training negative
log-likelihood. It can be seen that mSGNHT-S consistently
converges faster, better than mSGNHT-E for both training
and testing. The gaps between mSGNHT-S and mSGNHT-
E becomes larger in deeper models. Notably, in the 4-layer
FNN, mSGNHT-E failed when h = 10~*, while mSGNHT-
S worked well. We therefore plot the results for b = 5x1075.
From the training plot, mSGNHT-E is failing as learning
progresses. It starts to work, only because the stepsize is de-
creased by half. This confirms that mSGNHT-S is robust to
stepsizes, thus is able to mitigate the vanishing/exploding
gradient problem in deep models. In addition, we also con-
sider gg, as the sigmoid activation function, and the case of
convolutional neural networks, empirical results are consis-
tent with the ReLU case. More results are in the Appendix.

Deep Poisson Factor Analysis DPFA (Gan et al. 2015a)
is a recently proposed framework for deep topic model-
ing, where interactions between topics are inferred through
a deep latent binary hierarchy. We adopt the deep sigmoid
belief networks (DSBN) (Gan et al. 2015b) as the deep
architecture in the experiment. We use mSGNHT to in-
fer the parameters in DSBN, and the Expanded-Natural
reparametrization method to sample from the probabilistic
simplex (Patterson and Teh 2013). More details for model
specification are in the Appendix.

We test the DPFA on a large dataset, Wikipedia, from
which 10M randomly downloaded documents are used, us-
ing scripts provided in (Hoffman, Bach, and Blei 2010).
We follow the setup in (Gan et al. 2015a), where 1K doc-
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Figure 5: Perplexity on Wikipedia dataset.

uments are randomly selected for testing and validation, re-
spectively. The vocabulary size is 7702, and the minibatch
size is set to 100, with one pass of the whole data in the
experiments. We collect 300 posterior samples to calculate
test perplexities, with a standard holdout technique. A three-
layer DSBN is employed, with dimensions 128-64-32 (128
topics right above the data layer). Step sizes are chosen as
10~ and 10~?, and parameter D = 40.

The results are shown in Fig. 5, displaying the predictive
perplexities on a held-out test set as a function of training
documents seen. Clearly, mSGNHT-S converges faster than
mSGNHT-E at both chosen stepsizes. A magnified plot is
shown at the top-right corner of the figure as well, displaying
perplexities for the last 10K documents.

mSGNHT-S outperforms other recent state-of-the-art
methods (shown in semi-transparent plots). Specifically,
we compare to, DPFA-SBN trained with Bayesian condi-
tional density filtering (BCDF) (Guhaniyogi, Qamar, and
Dunson 2014), DPFA with restricted Boltzmann machines
(RBM) (Hinton 2002) trained with mSGNHT-E, and Nega-
tive Binomial Focused Topic Model (NB-FTM) (Zhou and
Carin 2015) trained with BCDF. The shallow model LDA
trained with BCDF is reported as the baseline.

6 Conclusion

A 2nd-order symmetric splitting integrator is proposed to
solve the SDE within mSGNHT. This method is shown to be
more accurate than the conventional Euler integrator, lead-
ing to higher robusness, faster convergence, and more accu-
rate posterior samples. We apply the integrator on mSGNHT
for four representative models, including latent Dirichlet al-
location, logistic regression, deep neural networks, and deep
Poisson factor analysis. Extensive experiments demonstrate
that the proposed scheme improves large-scale sampling in
terms of convergence speed and accuracy, particularly for
deep models.
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