
Supplementary Material for:
Bayesian Sampling Using Stochastic Gradient Thermostats

A Additional Notes on Dynamics-Based Methods

A.1 Hybrid Monte Carlo

The procedure of generating a sample in HMC can be described as follows: (Assume the last itera-
tion sample is θ)

1. Generate p from a standard normal distribution;
2. Compute (θ′,p′) = Ψτ (θ,p), where Ψτ is the composition of ν numerical integrators Ψ∆t

(e.g., the ”leapfrog” method) of the Hamiltonian system, namely Ψτ = Ψ∆t◦Ψ∆t◦...◦Ψ∆t

and ∆t = τ/ν;
3. Accept θ′ with probability min{1, ρ(θ′,p′)/ρ(θ,p)} and stay with θ otherwise.

A.2 Wiener Process

The Langevin dynamics is described by the following SDE:

dθ = p dt,

d p = f(θ)dt−Ap dt+
√

2Ad W,

where A is the damping constant and W is n independent Wiener processes. A Wiener process W
satisfies:

1. W (0) = 0 with probability 1;
2. W (t+ h)−W (t) ∼ N (0, h) and is independent of W (τ) for τ ≤ t.

Since the increment of W is a normal distribution, dW is informally written as N (0, dt) in [5].
Strictly speaking, W is a continuous function of t, whereas N (0, dt) is a random variable indepen-
dent of t such that it is reluctant to be put in a continuous SDE. But in this paper, we still follow [5]
for readers who are not familiar with SDE.

B Additional Plots of the Double-Well Potential Illustration

See the plot of ξ value of SGNHT in Figure 4.
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Figure 4: SGNHT is able to automatically adapt ξ to B = 1.

C The Proof of the Main Theorem

Proof. We first show that the stationary probability density of the stochastic differential equation is
ρ. The probability density of Γ, ρ′(Γ, t) satisfies the Fokker-Planck equation:

∂ρ′(Γ, t)

∂t
+∇Γ · (ρ′(Γ, t)f(Γ))−∇Γ∇TΓ : (ρ′(Γ, t)D(Γ)) = 0. (12)
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For the stationary probability density,

∂ρ′(Γ, t)

∂t
= 0.

So we have
∇Γ · (ρ′(Γ)f(Γ))−∇Γ∇TΓ : (ρ′(Γ)D(Γ)) = 0.

This means that as long as ρ satisfies (9), it can be preserved by the dynamics. And because ρ
satisfies the marginalization condition, the marginal density of θ, which equals the target density, is
also preserved by the dynamics. This completes the proof.

D Additional Examples of Applying the Main Theorem

This section presents some additional examples. For simplicity, we only show the 1-d case.

D.1 Brownian Dynamics

In Welling’s [24], the sampler is Brownian dynamics with stochastic force:

θdt = fdt+
√

2(1 +B)dW. (13)

It is easy to obtain from the Fokker-Planck equation that the stationary distribution is

ρ(θ) =
1

Z
exp(−(1 +B)−1U(θ)). (14)

Namely, the sampler samples from the target distribution with an increased temperature. There
are two easy ways to eliminate the effect of B. One is to modify the random term to be√

2(1 +B − B̂)dW , and the other is to modify the deterministic part to be (1 + B̂)fdt. When

B̂ = B, the sampler produces the correct distribution.

D.2 Langevin Dynamics

The Langevin dynamics with stochastic force

dθ = pdt, (15)

dp = fdt−Apdt+
√

2(A+B)dW, (16)

also has an additional noise term B. It is easy to see from the theorem that this dynamics does not
produce the correct distribution when B 6= 0. In [5], this is corrected by modifying the random term

to be
√

2(A+B − B̂)dW . Another way to correct it is to change Apdt to (A + B̂)pdt. When

B̂ = B, all modification will make the sampling correct.

In practice, however, it is usually hard to have a good estimation of B. By our observation, the
value of B not only depends on the variance of the stochastic force noise, but also depends on the
discretization method. So it can be written as a function of V and all parameters in the dynamics,
i.e., B(V, h,A). It satisfies that B → 0 as h → 0, and empirically we found that B ∝ O(hγ),
where γ is between 1.5 and 2. Although the theorem does not change with this B, it does create
some practical difficulties. Therefore, a method that does not need to estimate B becomes more
interesting.

E Additional Details about the Gaussian Distribution Estimation
Experiment

Our first experiment is to estimate the mean of a normal distribution with known variance: given N
i.i.d. examples xi ∼ N (µ, 1), and an improper prior of µ being uniform, we have the posterior of
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µ ∼ N (x̄, 1/N), where x̄ =
∑N
i=1 xi/N . The stochastic gradient of the log density is

∇Ũ = Nµ− N

Ñ

Ñ∑
i=1

xi.

The noise of the stochastic gradient is independent of µ, so it is constant given Ñ . Figure 5 shows
that SGHMC (solid lines) does not have correct kinetic energy unless h small and A large.

The second experiment is to estimate both the mean and the variance of a normal distribu-
tion: given N i.i.d. examples xi ∼ N (µ, γ−1), and a Normal-Gamma distribution µ, γ ∼
N (µ|0, γ−1)Gam(γ|1, 1) as the prior, we obtain a posterior which is another Normal-Gamma dis-
tribution p(µ, γ|D) ∝∼ N (µ|µN , (κNγ)−1)Gam(γ|αN , βN ), where

µN =
N

N + 1
x̄, κN = 1 +N, αN = 1 +

N

2
,

βN = 1 +
1

2

N∑
i=1

(xi − x̄)2 +
N

2(1 +N)
(x̄− µ0)2.

The stochastic gradient is

∇µŨ = (N + 1)µγ − N

Ñ
γ

Ñ∑
i=1

xi,

∇γŨ = −(N + 1)/(2γ) + 1 + 1/2µ2 +
N

2Ñ

Ñ∑
i=1

(xi − µ)2.

It can be seen that the variance of the noise depends on the values of µ and γ.

Figure 6 shows the marginal posterior density of µ and γ of 106 samples. It can be seen that SGNHT
generates reasonably good samples with various h and A. SGHMC, on the other hand, only works
when h is small and A is large.

Table 1 shows the Root Mean Square Error (RMSE) of the density estimation and the autocorrelation
time (τ ) of the observable µ + γ under various h and A. We see that one should prefer large h and
smallA in order to sample efficiently, but small h and largeA to be more accurate. SGNHT is overall
more accurate and more efficient than SGHMC, and also more robust to the parameters choices for
getting both accurate sampling and low autocorrelation time.
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Figure 5: 1D normal distribution with unknown mean µ and known variance (kinetic energy).

Table 1: (RMSE, Autocorrelation time) of SGHMC and SGNHT on the synthetic dataset.
h = 0.01, A = 1 h = 0.01, A = 10 h = 0.001, A = 1 h = 0.001, A = 10

SGHMC (0.629,7.19) (0.286,37.68) (0.292,67.83) (0.136,357.14)
SGNHT (0.175,14.35) (0.026,55.65) (0.091,22.97) (0.053,424.81)

F The Reformulated SGNHT Algorithm

The reformulated SGNHT algorithm with u = ph, η = h2, α = ξh and a = Ah is in Algorithm 2.
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Figure 6: 1D Normal with unknown µ and γ

Algorithm 2: Reformulated Stochastic Gradient Nosé-Hoover Thermostat
Input: Parameters η, a.
Initialize θ(0) ∈ Rn, u(0) ∼ N (0, η I), and α(0) = a ;
for t = 1, 2, . . . do

Evaluate∇Ũ(θ(t−1)) from (2) ;
u(t) = u(t−1)−α(t−1) u(t−1)−∇Ũ(θ(t−1))η +N (0, 2aη);
θ(t) = θ(t−1) + u(t);
α(t) = α(t−1) + ( 1

n u>(t) u(t)−η);
end

G Additional Results on the Machine Learning Experiments

Supplementary experimental results on machine learning tasks including the chosen parameters
based on validation set as well as their test error are available in Table 2 and Table 3.

Table 2: Test performances of SGHMC and SGNHT on the machine learning tasks (MNIST: test
error; Movielens1M: tRMSE; Netflix: tRMSE; ICML-Abstract: test perplexity). The parameters for
each algorithm were chosen based on the best performances on the validation sets.

MNIST Movielens1M Netflix ICML
SGHMC 2.25 0.8582 ± 0.0004 0.8232 ± 0.0000 1125.2 ± 8.9
SGNHT 2.15 0.8572 ± 0.0003 0.8224 ± 0.0002 1102.7 ± 6.7

H The Posterior of the Latent Dirichlet Allocation

Let W = {wd`} be the observed words, Z = {zd`} be the topic indicator variables, where d indexes
the documents and ` indexes the words. Let (π)kw be the topic-word distribution, ndkw be the
number of word w in document d allocated to topic k, · means marginal sum, i.e. ndk· =

∑
w ndkw.

The semi-collapsed posterior of the LDA model is:

p(W,Z, π|α, τ) = p(π|τ)

D∏
d=1

p(~wd, ~zd|α, π),

where D is the number of documents, α is the parameter in the Dirichlet prior of the topic distribu-
tion for each document, τ is the parameter in the prior of π, and

p(~wd, ~zd|α, π) =

K∏
k=1

Γ (α+ ndk·)

Γ (α)

W∏
w=1

πndkwkw .

With the Expanded-Natural representation of the simplexes πk’s in [18], where

πkw =
eθkw∑
w′ e

θkw′
,

and a Gaussian prior on θkw,

p(θkw|τ = {β, σ}) =
1

2πσ
e−

(θkw−β)
2

2σ2 ,
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Table 3: The chosen parameters (a, η) of SGHMC and SGNHT based on the validation performance
on the machine learning tasks.

MNIST Movielens1M Netflix ICML
SGHMC (0.01, 2× 10−7) (0.01, 2× 10−7) (0.01, 2× 10−7) (0.1, 2× 10−5)
SGNHT (0.01, 2× 10−7) (0.01, 8× 10−7) (0.01, 8× 10−7) (0.1, 2× 10−5)

the stochastic gradient of the log-posterior of parameter θkw with a mini-batch of size Dt becomes,

∂Ũ(θ)

∂θkw
=
∂ log p̃(θ|W, τ, α)

∂θkw
=
β − θkw
σ2

+
D

Dt

∑
d∈batch

E~zd|~wd,θ,α (ndkw − πkwndk·) .

When σ = 1, we have the same stochastic gradient as in [18]. To calculate the expectation term, we
use the same Gibbs sampling method as in [18],

p(zd` = k|~wd, θ, α) =

(
α+ n

\`
dk·

)
eθkwd`∑

k′

(
α+ n

\`
dk′·

)
eθk′wd`

,

where \` denotes the count excluding the `-th topic assignment variable. The expectation is esti-
mated by the samples.
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