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Introduction

Objective
1 Weight uncertainty of deep neural networks (DNNs): posterior
inference of weight distributions

2 Bring MCMC back to the community of computer vision to tackle
“big visual/geometric data"

•Traditional MCMC: was popular in CV a decade ago, inclduing Gibbs
sampling, HMC, MH, etc; but NOT scalable

•Scale up with Stochastic Gradient Markov chain Monte Carlo (SG-MCMC)

Main Contributions
1 We provide insights on the interpretation of Dropout from the
perspective of SG-MCMC, which also allows the use of
Batch-Normalization.
2 Applications to a wide range of shape classification problems
demonstrate the advantages of SG-MCMC over optimization.

Illustrations

Weight Uncertainty in DNNs
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Figure: Illustration of Bayesian DNNs with a 2-layer model. All weights in
Bayesian DNNs are represented as distributions using SG-MCMC (right figure);
rather than having fixed values (left figure), as provided by classical stochastic
optimization methods. The SG-MCMC learns correlated uncertainty jointly on all
parameters, where (right) associated marginal distributions are depicted.

•Given data D = {di}Ni=1, di is i.i.d.; model parameters θ
p(θ|D)︸ ︷︷ ︸
Posterior

∝ p(θ)︸ ︷︷ ︸
Prior

∏N
i=1 p(di|θ)︸ ︷︷ ︸

Likelihood
For DNNs, di , (xi, yi): input xi ∈ RD and output yi ∈ Y .

•Bayesian predictive estimate, for testing input x̃
p(ỹ|x̃,D) = Ep(θ|D)[p(ỹ|x̃,θ)] ≈ 1

T
∑T
t=1 p(ỹ|x̃,θt) (1)

• In optimization, θMAP = argmax log p(θ|D).
The MAP approximates this expectation as

p(ỹ|x̃,D) ≈ p(ỹ|x̃,θMAP) (2)
Parameter uncertainty is ignored.

The predicted distribution of ỹ may be viewed in terms of model av-
eraging across parameters, based on the learned p(θ|D); this should
be contrasted with learning a single point estimate of θ based on D.

Algorithms

Basic SG-MCMC algorithm
SGLD: Stochastic Gradient Langevin Dynamics [1]

where ε is step-size, and St is the mini-batch

More SG-MCMC algorithms
Table: SG-MCMC algorithms and their optimization counterparts. Algorithms in
the same row share similar characteristics.

Algorithms SG-MCMC Optimization
Basic SGLD SGD
Preconditioning pSGLD [2] RMSprop/Adagrad/Adam
Momentum SGHMC momentum SGD
Thermostat SGNHT Santa [3]

Understanding Dropout

On the connection of SGLD and Dropout
For neural networks with the nonlinear function q(·) and consecutive
layers h1 and h2, dropout and dropConnect:

Dropout: h2 = ξ0� q(θh1),
DropConnect: h2 = q((ξ0� θ)h1),

where the injected noise ξ0 can be binary valued with dropping rate
p or its equivalent Gaussian :

Binary noise: ξ0 ∼ Ber(p),
Gaussian noise: ξ0 ∼ N (1, p

1− p
).

By combining dropConnect and Gaussian noise
θt+1 = ξ0� θt−

η

2
f̃ t = θt−

η

2
f̃ t + ξ′0 , (3)

where ξ′0 ∼ N
0, p

(1−p)diag(θ2
t)

. Dropout/dropConnect and SGLD
share the same form of update rule, with the only difference being
that the level of injected noise is different.

• Integration of SG-MCMC and Binary Dropout
•Accelerating SG-MCMC using Batch-Normalization

Experiments: Shape Classification

I. Datasets
FNN CNN

2D MNIST, Animal, 20 Newsgroups MNIST, Caltech, Cifar10
3D Body Shape, Textured Shape ModelNet

Hand-crafted features as input of FNN , while raw data for CNN

II. Results and Observations
A thorough comparison

Accuracy of FNN on MNIST using a two-layer network (X-X) with ReLU.
Please refer the paper for a lot more results.

Networks 400-400 800-800 1200-1200
Methods Test Error (%)
pSGLD + Dropout 1.36 1.26 1.15
SGLD + Dropout 1.45 1.25 1.18
RMSprop + Dropout 1.35 1.28 1.24
SGD + Dropout 1.51 1.33 1.36
pSGLD 1.45 1.32 1.24
SGLD 1.64 1.41 1.40
RMSprop 1.79 1.43 1.39
SGD 1.72 1.47 1.47
RMSspectral 1.65 1.56 1.46
BPB, Gaussian 1.82 1.99 2.04
BPB, Scale mixture 1.32 1.34 1.32

•The testing error for the SG-MCMC methods are consistently lower than their
corresponding stochastic optimization counterparts. This indicates that the
weight uncertainty learned via SG-MCMC can improve performance.

•Both of Dropout and SG-MCMC show their ability to regularize learning.
By integrating SG-MCMC with Dropout, we obtain lower error.

Very Deep Neural Networks
•D: Dropout; BN: Batch Normalization
•The use of SG-MCMC or Dropout slows
down learning initially. This is likely due
to the higher uncertainty imposed
during learning, resulting in more
exploration of the parameter space.

• Increased uncertainty, however, prevents
overfitting and eventually results in
improved performance.

•Exensive empirical results on adding
gradient noise are also shown in [4].
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Figure: Learning curves on Cifar10
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