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Abstract

Stochastic gradient MCMC (SG-MCMC) has played an important role in large-
scale Bayesian learning, with well-developed theoretical convergence properties. In
such applications of SG-MCMC, it is becoming increasingly popular to employ dis-
tributed systems, where stochastic gradients are computed based on some outdated
parameters, yielding what are termed stale gradients. While stale gradients could
be directly used in SG-MCMC, their impact on convergence properties has not
been well studied. In this paper we develop theory to show that while the bias and
MSE of an SG-MCMC algorithm depend on the staleness of stochastic gradients,
its estimation variance (relative to the expected estimate, based on a prescribed
number of samples) is independent of it. In a simple Bayesian distributed system
with SG-MCMC, where stale gradients are computed asynchronously by a set
of workers, our theory indicates a linear speedup on the decrease of estimation
variance w.r.t. the number of workers. Experiments on synthetic data and deep
neural networks validate our theory, demonstrating the effectiveness and scalability
of SG-MCMC with stale gradients.

1 Introduction

The pervasiveness of big data has made scalable machine learning increasingly important, especially
for deep models. A basic technique is to adopt stochastic optimization algorithms [1], e.g., stochastic
gradient descent and its extensions [2]. In each iteration of stochastic optimization, a minibatch of
data is used to evaluate the gradients of the objective function and update model parameters (errors
are introduced in the gradients, because they are computed based on minibatches rather than the
entire dataset; since the minibatches are typically selected at random, this yields the term “stochastic”
gradient). This is highly scalable because processing a minibatch of data in each iteration is relatively
cheap compared to analyzing the entire (large) dataset at once. Under certain conditions, stochastic
optimization is guaranteed to converge to a (local) optima [1]. Because of its scalability, the minibatch
strategy has recently been extended to Markov Chain Monte Carlo (MCMC) Bayesian sampling
methods, yielding SG-MCMC [3, 4, 5].

In order to handle large-scale data, distributed stochastic optimization algorithms have been developed,
for example [6], to further improve scalability. In a distributed setting, a cluster of machines with
multiple cores cooperate with each other, typically through an asynchronous scheme, for scalability
[7, 8, 9]. A downside of an asynchronous implementation is that stale gradients must be used in
parameter updates (“stale gradients” are stochastic gradients computed based on outdated parameters,
instead of the latest parameters; they are easier to compute in a distributed system, but introduce
additional errors relative to traditional stochastic gradients). While some theory has been developed to
guarantee the convergence of stochastic optimization with stale gradients [10, 11, 12], little analysis
has been done in a Bayesian setting, where SG-MCMC is applied. Distributed SG-MCMC algorithms
share characteristics with distributed stochastic optimization, and thus are highly scalable and suitable
for large-scale Bayesian learning. Existing Bayesian distributed systems with traditional MCMC
methods, such as [13], usually employ stale statistics instead of stale gradients, where stale statistics
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are summarized based on outdated parameters, e.g., outdated topic distributions in distributed Gibbs
sampling [13]. Little theory exists to guarantee the convergence of such methods. For existing
distributed SG-MCMC methods, typically only standard stochastic gradients are used, for limited
problems such as matrix factorization, without rigorous convergence theory [14, 15, 16].

In this paper, by extending techniques from standard SG-MCMC [17], we develop theory to study the
convergence behavior of SG-MCMC with Stale gradients (S2G-MCMC). Our goal is to evaluate the
posterior average of a test function φ(x), defined as φ̄ ,

∫
X φ(x)ρ(x)d x, where ρ(x) is the desired

posterior distribution with x the possibly augmented model parameters (see Section 2). In practice,
S2G-MCMC generates L samples {xl}Ll=1 and uses the sample average φ̂L , 1

L

∑L
l=1 φ(xl) to

approximate φ̄. We measure how φ̂L approximates φ̄ in terms of bias, MSE and estimation variance,

defined as |Eφ̂L − φ̄|, E
(
φ̂L − φ̄

)2
and E

(
φ̂L − Eφ̂L

)2
, respectively. From the definitions, the

bias and MSE characterize how accurately φ̂L approximates φ̄, and the variance characterizes how
fast φ̂L converges to its own expectation (for a prescribed number of samples L). Our theoretical
results show that while the bias and MSE depend on the staleness of stochastic gradients, the variance
is independent of it. In a simple asynchronous Bayesian distributed system with S2G-MCMC, our
theory indicates a linear speedup on the decrease of the variance w.r.t. the number of workers
used to calculate the stale gradients, while maintaining the same optimal bias level as standard
SG-MCMC. We validate our theory on several synthetic experiments and deep neural network models,
demonstrating the effectiveness and scalability of the proposed S2G-MCMC framework.

Related Work Using stale gradients is a standard setup in distributed stochastic optimization
systems. Representative algorithms include, but are not limited to, the ASYSG-CON [6] and HOG-
WILD! algorithms [18], and some more recent developments [19, 20]. Furthermore, recent research
on stochastic optimization has been extended to non-convex problems with provable convergence
rates [12]. In Bayesian learning with MCMC, existing work has focused on running parallel chains on
subsets of data [21, 22, 23, 24], and little if any effort has been made to use stale stochastic gradients,
the setting considered in this paper.

2 Stochastic Gradient MCMC
Throughout this paper, we denote vectors as bold lower-case letters, and matrices as bold upper-
case letters. For example, N (m,Σ) means a multivariate Gaussian distribution with mean m and
covariance Σ. In the analysis we consider algorithms with fixed-stepsizes for simplicity; decreasing-
stepsize variants can be addressed similarly as in [17].

The goal of SG-MCMC is to generate random samples from a posterior distribution p(θ|D) ∝
p(θ)

∏N
i=1 p(di |θ), which are used to evaluate a test function. Here θ ∈ Rn represents the parameter

vector and D = {d1, · · · ,dN} represents the data, p(θ) is the prior distribution, and p(di |θ) the
likelihood for di. SG-MCMC algorithms are based on a class of stochastic differential equations,
called Itô diffusion, defined as

d xt = F (xt)dt+ g(xt)dwt , (1)

where x ∈ Rm represents the model states, typically x augments θ such that θ ⊆ x and n ≤ m;
t is the time index, wt ∈ Rm is m-dimensional Brownian motion, functions F : Rm → Rm and
g : Rm → Rm×m are assumed to satisfy the usual Lipschitz continuity condition [25].

For appropriate functions F and g, the stationary distribution, ρ(x), of the Itô diffusion (1) has a
marginal distribution equal to the posterior distribution p(θ|D) [26]. For example, denoting the
unnormalized negative log-posterior as U(θ) , − log p(θ) −

∑N
i=1 log p(di |θ), the stochastic

gradient Langevin dynamic (SGLD) method [3] is based on 1st-order Langevin dynamics, with
x = θ, and F (xt) = −∇θU(θ), g(xt) =

√
2 In, where In is the n × n identity matrix. The

stochastic gradient Hamiltonian Monte Carlo (SGHMC) method [4] is based on 2nd-order Langevin

dynamics, with x = (θ,q), and F (xt) =
(

q
−B q−∇θU(θ)

)
, g(xt) =

√
2B
(

0 0
0 In

)
for a

scalar B > 0; q is an auxiliary variable known as the momentum [4, 5]. Diffusion forms for other
SG-MCMC algorithms, such as the stochastic gradient thermostat [5] and variants with Riemannian
information geometry [27, 26, 28], are defined similarly.

In order to efficiently draw samples from the continuous-time diffusion (1), SG-MCMC algorithms
typically apply two approximations: i) Instead of analytically integrating infinitesimal increments
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dt, numerical integration over small step size h is used to approximate the integration of the true
dynamics. ii) Instead of working with the full gradient ∇θU(θlh), a stochastic gradient ∇θŨl(θlh),
defined as

∇θŨl(θ) , −∇θ log p(θ)− N

J

J∑
i=1

∇θ log p(dπi |θ), (2)

is calculated from a minibatch of size J , where {π1, · · · , πJ} is a random subset of {1, · · · , N}.
Note that to match the time index t in (1), parameters have been and will be indexed by “lh” in the
l-th iteration.

3 Stochastic Gradient MCMC with Stale Gradients
In this section, we extend SG-MCMC to the stale-gradient setting, commonly met in asynchronous
distributed systems [7, 8, 9], and develop theory to analyze convergence properties.

3.1 Stale stochastic gradient MCMC (S2G-MCMC)
The setting for S2G-MCMC is the same as the standard SG-MCMC described above, except that
the stochastic gradient (2) is replaced with a stochastic gradient evaluated with outdated parameter
θ(l−τl)h instead of the latest version θlh (see Appendix A for an example):

∇θÛτl(θ) , −∇θ log p(θ(l−τl)h)− N

J

J∑
i=1

∇θ log p(dπi |θ(l−τl)h), (3)

where τl ∈ Z+ denotes the staleness of the parameter used to calculate the stochastic gradient in the
l-th iteration. A distinctive difference between S2G-MCMC and SG-MCMC is that stale stochastic
gradients are no longer unbiased estimations of the true gradients. This leads to additional challenges
in developing convergence bounds, one of the main contributions of this paper.

Algorithm 1 State update of SGHMC with the stale
stochastic gradient∇θÛτl(θ)

Input: xlh = (θlh,qlh),∇θÛτl(θ), τl, τ , h, B
Output: x(l+1)h = (θ(l+1)h,q(l+1)h)
if τl ≤ τ then

Draw ζl ∼ N (0, I);
q(l+1)h = (1−Bh) qlh−∇θÛτl(θ)h+

√
2Bhζl;

θ(l+1)h = θlh + q(l+1)h h;
end if

We assume a bounded staleness for all τl’s,
i.e.,

max
l
τl ≤ τ

for some constant τ . As an example, Al-
gorithm 1 describes the update rule of the
stale-SGHMC in each iteration with the
Euler integrator, where the stale gradient
∇θÛτl(θ) with staleness τl is used.

3.2 Convergence analysis
This section analyzes the convergence properties of the basic S2G-MCMC; an extension with multiple
chains is discussed in Section 3.3. It is shown that the bias and MSE depend on the staleness parameter
τ , while the variance is independent of it, yielding significant speedup in Bayesian distributed systems.

Bias and MSE In [17], the bias and MSE of the standard SG-MCMC algorithms with a Kth order
integrator were analyzed, where the order of an integrator reflects how accurately an SG-MCMC
algorithm approximates the corresponding continuous diffusion. Specifically, if evolving xt with
a numerical integrator using discrete time increment h induces an error bounded by O(hK), the
integrator is called a Kth order integrator, e.g., the popular Euler method used in SGLD [3] is a
1st-order integrator. In particular, [17] proved the bounds stated in Lemma 1.
Lemma 1 ([17]). Under standard assumptions (see Appendix B), the bias and MSE of SG-MCMC
with a Kth-order integrator at time T = hL are bounded as:

Bias:
∣∣∣Eφ̂L − φ̄∣∣∣ = O

(∑
l ‖E∆Vl‖
L

+
1

Lh
+ hK

)
MSE: E

(
φ̂L − φ̄

)2
= O

(
1
L

∑
l E ‖∆Vl‖

2

L
+

1

Lh
+ h2K

)

Here ∆Vl , L − L̃l, where L is the generator of the Itô diffusion (1) defined as

Lf(xt) , lim
h→0+

E [f(xt+h)]− f(xt)

h
=

(
F (xt) · ∇x +

1

2

(
g(xt)g(xt)

T
)

:∇x∇Tx
)
f(xt) , (4)
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for any compactly supported twice differentiable function f : Rn → R, h→ 0+ means h approaches
zero along the positive real axis. L̃l is the same as L except using the stochastic gradient∇Ũl instead
of the full gradient.

We show that the bounds of the bias and MSE of S2G-MCMC share similar forms as SG-MCMC, but
with additional dependence on the staleness parameter. In addition to the assumptions in SG-MCMC
[17] (see details in Appendix B), the following additional assumption is imposed.
Assumption 1. The noise in the stochastic gradients is well-behaved, such that: 1) the stochastic
gradient is unbiased, i.e., ∇θU(θ) = Eξ∇θŨ(θ) where ξ denotes the random permutation over

{1, · · · , N}; 2) the variance of stochastic gradient is bounded, i.e., Eξ
∥∥∥U(θ)− Ũ(θ)

∥∥∥2 ≤ σ2; 3) the

gradient function∇θU is Lipschitz (so is∇θŨ ), i.e., ‖∇θU(x)−∇θU(y)‖ ≤ C ‖x−y‖ ,∀x,y.

In the following theorems, we omit the assumption statement for conciseness. Due to the staleness
of the stochastic gradients, the term ∆Vl in S2G-MCMC is equal to L−L̃l−τl , where L̃l−τl arises
from ∇θÛτl . The challenge arises to bound these terms involving ∆Vl. To this end, define flh ,∥∥xlh−x(l−1)h

∥∥, and ψ to be a functional satisfying the Poisson Equation∗:

1

L

L∑
l=1

Lψ(xlh) = φ̂L − φ̄ . (5)

Theorem 2. After L iterations, the bias of S2G-MCMC with a Kth-order integrator is bounded, for
some constant D1 independent of {L, h, τ}, as:∣∣∣Eφ̂L − φ̄∣∣∣ ≤ D1

(
1

Lh
+M1τh+M2h

K

)
,

where M1 , maxl |Lflh|maxl ‖E∇ψ(xlh)‖C, M2 ,
∑K
k=1

∑
l EL̃

k+1
l ψ(x(l−1)h)

(k+1)!L are constants.

Theorem 3. After L iterations, the MSE of S2G-MCMC with a Kth-order integrator is bounded, for
some constant D2 independent of {L, h, τ}, as:

E
(
φ̂L − φ̄

)2
≤ D2

(
1

Lh
+ M̃1τ

2h2 + M̃2h
2K

)
,

where constants M̃1 , maxl ‖E∇ψ(xlh)‖2 maxl (Lflh)
2
C2, M̃2 , E(

∑
l L̃

K+1
l ψ(x(l−1)h)

L(K+1)! )2.
The theorems indicate that both the bias and MSE depend on the staleness parameter τ . For a fixed
computational time, this could possibly lead to unimproved bounds, compared to standard SG-MCMC,
when τ is too large, i.e., the terms with τ would dominate, as is the case in the distributed system
discussed in Section 4. Nevertheless, better bounds than standard SG-MCMC could be obtained if
the decrease of 1

Lh is faster than the increase of the staleness in a distributed system.

Variance Next we investigate the convergence behavior of the variance, Var(φ̂L) ,

E
(
φ̂L − Eφ̂L

)2
. Theorem 4 indicates the variance is independent of τ , hence a linear speedup in the

decrease of variance is always achievable when stale gradients are computed in parallel. An example
is discussed in the Bayesian distributed system in Section 4.
Theorem 4. After L iterations, the variance of S2G-MCMC with a Kth-order integrator is bounded,
for some constant D, as:

Var
(
φ̂L

)
≤ D

(
1

Lh
+ h2K

)
.

The variance bound is the same as for standard SG-MCMC, whereas L could increase linearly
w.r.t. the number of workers in a distributed setting, yielding significant variance reduction. When
optimizing the the variance bound w.r.t.h, we get an optimal variance bound stated in Corollary 5.
Corollary 5. In term of estimation variance, the optimal convergence rate of S2G-MCMC with a
Kth-order integrator is bounded as: Var

(
φ̂L

)
≤ O

(
L−2K/(2K+1)

)
.

∗The existence of a nice ψ is guaranteed in the elliptic/hypoelliptic SDE settings when x is on a torus [25].
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In real distributed systems, the decrease of 1/Lh and increase of τ , in the bias and MSE bounds,
would typically cancel, leading to the same bias and MSE level compared to standard SG-MCMC,
whereas a linear speedup on the decrease of variance w.r.t. the number of workers is always achievable.
More details are discussed in Section 4.

3.3 Extension to multiple parallel chains
This section extends the theory to the setting with S parallel chains, each independently running an
S2G-MCMC algorithm. After generating samples from the S chains, an aggregation step is needed to
combine the sample average from each chain, i.e., {φ̂Ls

}Ms=1, where Ls is the number of iterations on
chain s. For generality, we allow each chain to have different step sizes, e.g., (hs)

S
s=1. We aggregate

the sample averages as φ̂SL ,
∑S
s=1

Ts

T φ̂Ls
, where Ts , Lshs, T ,

∑S
s=1 Ts.

Interestingly, with increasing S, using multiple chains does not seem to directly improve the conver-
gence rate for the bias, but improves the MSE bound, as stated in Theorem 6.

Theorem 6. Let Tm , maxl Tl, hm , maxl hl, T̄ = T/S, the bias and MSE of S parallel S2G-
MCMC chains with a Kth-order integrator are bounded, for some constants D1 and D2 independent
of {L, h, τ}, as:

Bias:
∣∣∣Eφ̂SL − φ̄∣∣∣ ≤ D1

(
1

T̄
+
Tm
T̄

(
M1τhs +M2h

K
s

))
MSE: E

(
φ̂SL − φ̄

)2
≤ D2

(
1− 1/T̄

T
+

1

T̄ 2
+
T 2
m

T̄ 2

(
M2

1 τ
2h2s +M2

2h
2K
s

))
.

Assume that T̄ = T/S is independent of the number of chains. As a result, using multiple chains
does not directly improve the bound for the bias†. However, for the MSE bound, although the last
two terms are independent of S, the first term decreases linearly with respect to S because T = T̄ S.
This indicates a decreased estimation variance with more chains. This matches the intuition because
more samples can be obtained with more chains in a given amount of time.

The decrease of MSE for multiple-chain is due to the decrease of the variance as stated in Theorem 7.
Theorem 7. The variance of S parallel S2G-MCMC chains with a Kth-order integrator is bounded,
for some constant D independent of {L, h, τ}, as:

E
(
φ̂SL − Eφ̂SL

)2
≤ D

(
1

T
+

S∑
s=1

T 2
s

T 2
h2Ks

)
.

When using the same step size for all chains, Theorem 7 gives an optimal variance bound of
O
(
(
∑
s Ls)

−2K/(2K+1)
)
, i.e. a linear speedup with respect to S is achieved.

In addition, Theorem 6 with τ = 0 and K = 1 provides convergence rates for the distributed SGLD
algorithm in [14], i.e., improved MSE and variance bounds compared to the single-server SGLD.

4 Applications to Distributed SG-MCMC Systems

Our theory for S2G-MCMC is general, serving as a basic analytic tool for distributed SG-MCMC
systems. We propose two simple Bayesian distributed systems with S2G-MCMC in the following.

Single-chain distributed SG-MCMC Perhaps the simplest architecture is an asynchronous dis-
tributed SG-MCMC system, where a server runs an S2G-MCMC algorithm, with stale gradients
computed asynchronously from W workers. The detailed operations of the server and workers are
described in Appendix A.

With our theory, now we explain the convergence property of this simple distributed system with
SG-MCMC, i.e., a linear speedup w.r.t. the number of workers on the decrease of variance, while
maintaining the same bias level. To this end, rewrite L = WL̄ from Theorems 2 and 3, where L̄ is the
average number of iterations on each worker. We can observe from the theorems that when M1τh >
M2h

K in the bias and M̃1τ
2h2 > M̃2h

2K in the MSE, the terms with τ dominate. Optimizing the
bounds with respect to h yields a bound of O((τ/WL̄)1/2) for the bias, and O((τ/WL̄)2/3) for the
MSE. In practice, we usually observe τ ≈ W , making W in the optimal bounds cancels, i.e., the
same optimal bias and MSE bounds as standard SG-MCMC are obtained, no theoretical speedup is
†It means the bound does not directly relate to low-order terms of S, though constants might be improved.
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achieved when increasing W . However, from Corollary 5, the variance is independent of τ , thus a
linear speedup on the variance bound can be always obtained when increasing the number of workers,
i.e., the distributed SG-MCMC system convergences a factor of W faster than standard SG-MCMC
with a single machine. We are not aware of similar conclusions from optimization, because most of
the research focuses on the convex setting, thus only variance (equivalent to MSE) is studied.

Multiple-chain distributed SG-MCMC We can also adopt multiple servers based on the multiple-
chain setup in Section 3.3, where each chain corresponds to one server. The detailed architecture
is described in Appendix A. This architecture trades off communication cost with convergence
rates. As indicated by Theorems 6 and 7, the MSE and variance bounds can be improved with more
servers. Note that when only one worker is associated with one server, we recover the setting of S
independent servers. Compared to the single-server architecture described above with S workers,
from Theorems 2–7, while the variance bound is the same, the single-server arthitecture improves the
bias and MSE bounds by a factor of S.
More advanced architectures More complex architectures could also be designed to reduce
communication cost, for example, by extending the downpour [7] and elastic SGD [29] architectures
to the SG-MCMC setting. Their convergence properties can also be analyzed with our theory since
they are essentially using stale gradients. We leave the detailed analysis for future work.

5 Experiments
Our primal goal is to validate the theory, comparing with different distributed architectures and
algorithms, such as [30, 31], is beyond the scope of this paper. We first use two synthetic experiments
to validate the theory, then apply the distributed architecture described in Section 4 for Bayesian
deep learning. To quantitatively describe the speedup property, we adopt the the iteration speedup
[12], defined as: iteration speedup , #iterations with a single worker

average #iterations on a worker , where # is the iteration count when the
same level of precision is achieved. This speedup best matches with the theory. We also consider the
time speedup, defined as: running time for a single worker

running time forW worker , where the running time is recorded at the same
accuracy. It is affected significantly by hardware, thus is not accurately consistent with the theory.

5.1 Synthetic experiments

10 1 10 2 10 3 10 4

#iterations: L

10 0

10 1

M
S

E

= = 1
= = 2
= = 5
= = 10
= = 15
= = 20

Achieving the 
same MSE level

Figure 1: MSE vs. # iterations (L =
500× τ ) with increasing staleness τ .
Resulting in roughly the same MSE.

Impact of stale gradients A simple Gaussian model is used
to verify the impact of stale gradients on the convergence
accuracy, with di ∼ N (θ, 1), θ ∼ N (0, 1). 1000 data samples
{di} are generated, with minibatches of size 10 to calculate
stochastic gradients. The test function is φ(θ) , θ2. The
distributed SGLD algorithm is adopted in this experiment.
We aim to verify that the optimal MSE bound ∝ τ2/3L−2/3,
derived from Theorem 3 and discussed in Section 4 (with
W = 1). The optimal stepsize is h = Cτ−2/3L−1/3 for some
constant C. Based on the optimal bound, setting L = L0 × τ
for some fixed L0 and varying τ ’s would result in the same
MSE, which is∝ L−2/30 . In the experiments we setC = 1/30,
L0 = 500, τ = {1, 2, 5, 10, 15, 20}, and average over 200 runs to approximate the expectations in
the MSE formula. As indicated in Figure 1, approximately the same MSE’s are obtained after L0τ
iterations for different τ values, consistent with the theory. Note since the stepsizes are set to make
end points of the curves reach the optimal MSE’s, the curves would not match the optimal MSE
curves of τ2/3L−2/3 in general, except for the end points, i.e., they are lower bounded by τ2/3L−2/3.

Convergence speedup of the variance A Bayesian logistic regression model (BLR) is adopted
to verify the variance convergence properties. We use the Adult dataset‡, a9a, with 32,561 training
samples and 16,281 test samples. The test function is defined as the standard logistic loss. We
average over 10 runs to estimate the expectation Eφ̂L in the variance. We use the single-server
distributed architecture in Section 4, with multiple workers computing stale gradients in parallel. We
plot the variance versus the average number of iterations on the workers (L̄) and the running time in
Figure 2 (a) and (b), respectively. We can see that the variance drops faster with increasing number

‡http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html.

6

http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html


10 0 10 1 10 2 10 3

#iterations

10 -8

10 -6

10 -4

10 -2

10 0

V
ar

1 worker
2 workers
3 workers
4 workers
5 workers
6 workers
7 workers
8 workers
9 workers

10 -1 10 0

Time (s)

10 -6

10 -4

10 -2

V
ar

1 worker
2 workers
3 workers
4 workers
5 workers
6 workers
7 workers
8 workers
9 workers

2 4 6 8
#workers

1

2

3

4

5

6

7

8

9

S
pe

ed
up

linear speedup
iteration-speedup
time-speedup

(a) Variance vs. Iteration L̄ (b) Variance vs. Time (c) Speedup
Figure 2: Variance with increasing number of workers.

of workers. To quantitatively relate these results to the theory, Corollary 5 indicates that L1

L2
= W1

W2
,

where (Wi, Li)
2
i=1 means the number of workers and iterations at the same variance, i.e., a linear

speedup is achieved. The iteration speedup and time speedup are plotted in Figure 2 (c), showing
that the iteration speedup approximately scales linearly worker numbers, consistent with Corollary 5;
whereas the time speedup deteriorates when the worker number is large due to high system latency.

5.2 Applications to deep learning

We further test S2G-MCMC on Bayesian learning of deep neural networks. The distributed system is
developed based on an MPI (message passing interface) extension of the popular Caffe package for
deep learning [32]. We implement the SGHMC algorithm, with the point-to-point communications
between servers and workers handled by the MPICH library.The algorithm is run on a cluster of five
machines. Each machine is equipped with eight 3.60GHz Intel(R) Core(TM) i7-4790 CPU cores.

We evaluate S2G-MCMC on the above BLR model and two deep convolutional neural networks
(CNN). In all these models, zero mean and unit variance Gaussian priors are employed for the weights
to capture weight uncertainties, an effective way to deal with overfitting [33]. We vary the number of
servers S among {1, 3, 5, 7}, and the number of workers for each server from 1 to 9.

LeNet for MNIST We modify the standard LeNet to a Bayesian setting for the MNIST
dataset.LeNet consists of 2 convolutional layers, 2 max pool layers and 2 ReLU nonlinear lay-
ers, followed by 2 fully connected layers [34]. The detailed specification can be found in Caffe. For
simplicity, we use the default parameter setting specified in Caffe, with the additional parameter B in
SGHMC (Algorithm 1) set to (1−m), where m is the moment variable defined in the SGD algorithm
in Caffe.

Cifar10-Quick net for CIFAR10 The Cifar10-Quick net consists of 3 convolutional layers, 3 max
pool layers and 3 ReLU nonlinear layers, followed by 2 fully connected layers. The CIFAR-10
dataset consists of 60,000 color images of size 32×32 in 10 classes, with 50,000 for training and
10,000 for testing.Similar to LeNet, default parameter setting specified in Caffe is used.

In these models, the test function is defined as the cross entropy of the softmax outputs {o1, · · · ,oN}
for test data {(d1, y1), · · · , (dN , yN )} with C classes, i.e., loss = −

∑N
i=1 oyi +N log

∑C
c=1 e

oc .
Since the theory indicates a linear speedup on the decrease of variance w.r.t. the number of workers,
this means for a single run of the models, the loss would converge faster to its expectation with
increasing number of workers. The following experiments verify this intuition.

5.2.1 Single-server experiments
We first test the single-server architecture in Section 4 on the three models. Because the expectations
in the bias, MSE or variance are not analytically available in these complex models, we instead plot
the loss versus average number of iterations (L̄ defined in Section 4) on each worker and the running
time in Figure 3. As mentioned above, faster decrease of the loss with more workers is expected.

For the ease of visualization, we only plot the results with {1, 2, 4, 6, 9} workers; more detailed
results are provided in Appendix I. We can see that generally the loss decreases faster with increasing
number of workers. In the CIFAR-10 dataset, the final losses of 6 and 9 workers are worst than the one
with 4 workers. It shows that the accuracy of the sample average suffers from the increased staleness
due to the increased number of workers. Therefore a smaller step size h should be considered to
maintain high accuracy when using a large number of workers. Note the 1-worker curves correspond
to the standard SG-MCMC, whose loss decreases much slower due to high estimation variance,
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Figure 3: Testing loss vs. #workers. From left to right, each column corresponds to the a9a, MNIST
and CIFAR dataset, respectively. The loss is defined in the text.

though in theory it has the same level of bias as the single-server architecture for a given number of
iterations (they will converge to the same accuracy).

5.2.2 Multiple-server experiments
Finally, we test the multiple-servers architecture on the same models. We use the same criterion as
the single-server setting to measure the convergence behavior. The loss versus average number of
iterations on each worker (L̄ defined in Section 4) for the three datasets are plotted in Figure 4, where
we vary the number of servers among {1, 3, 5, 7}, and use 2 workers for each server. The plots of
loss versus time and using different number of workers for each server are provided in the Appendix.
We can see that in the simple BLR model, multiple servers do not seem to show significant speedup,
probably due to the simplicity of the posterior, where the sample variance is too small for multiple
servers to take effect; while in the more complicated deep neural networks, using more servers results
in a faster decrease of the loss, especially in the MNIST dataset.
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Figure 4: Testing loss vs. #servers. From left to right, each column corresponds to the a9a, MNIST
and CIFAR dataset, respectively. The loss is defined in the text.

6 Conclusion
We extend theory from standard SG-MCMC to the stale stochastic gradient setting, and analyze the
impacts of the staleness to the convergence behavior of an S2G-MCMC algorithm. Our theory reveals
that the estimation variance is independent of the staleness, leading to a linear speedup w.r.t. the
number of workers, although in practice little speedup in terms of optimal bias and MSE might be
achieved due to their dependence on the staleness. We test our theory on a simple asynchronous
distributed SG-MCMC system with two simulated examples and several deep neural network models.
Experimental results verify the effectiveness and scalability of the proposed S2G-MCMC framework.
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