### Relational Database Design

Jan Chomicki University at Buffalo



### "Good" and "bad" database schemas

"Bad" schema

- Repetition of information. Leads to redundancies, potential inconsistencies, and update anomalies.
- Inability to represent information. Leads to anomalies in insertion and deletion.

### "Good" schema

• relation schemas in normal form (redundancy- and anomaly-free): BCNF, 3NF.

Relational database design

#### Schema decomposition

- improving a bad schema
- desirable properties:

Jan Chomicki ()

- lossless join
- dependency preservation

### Integrity constraints

#### Functional dependencies

- key constraints cannot express uniqueness properties holding in a proper subset of all attributes
- key constraints need to be generalized to functional dependencies

### Other constraints

- not relevant for decomposition
- need to be accounted for

### Functional dependencies (FDs)

#### Notation

- Relation schema  $R(A_1, \ldots, A_n)$
- r is an instance of R
- Sets of attributes of  $R: X, Y, Z, \ldots \subseteq \{A_1, \ldots, A_n\}$
- $A_1 \cdots A_n$  instead of  $\{A_1, \ldots, A_n\}$ .
- XY instead of  $X \cup Y$ .

Functional dependency

- syntax:  $X \to Y$
- semantics: r satisfies  $X \to Y$  if for all tuples  $t_1, t_2 \in r$ : if  $t_1[X] = t_2[X]$ , then also  $t_1[Y] = t_2[Y]$ .

Jan Chomicki ()

# Dependency implication

### Implication

A set of FDs *F* implies an FD  $X \rightarrow Y$ , if every relation instance that satisfies all the dependencies in *F*, also satisfies  $X \rightarrow Y$ .

### Notation

 $F \models X \rightarrow Y \ (F \text{ implies } X \rightarrow Y).$ 

Closure of a dependency set F

The set of dependencies implied by F.

#### Notation

 $F^+ = \{X \to Y : F \models X \to Y\}.$ 

### Keys

### Key

- $X \subseteq \{A_1, \ldots, A_n\}$  is a key of R if:
  - the dependency  $X \to A_1 \cdots A_n$  is in  $F^+$ .
  - 2 for all proper subsets Y of X, the dependency  $Y \to A_1 \cdots A_n$  is not in  $F^+$ .

#### Related notions

- *superkey:* superset of a key.
- primary key: one designated key.
- candidate key: one of the keys.

#### Jan Chomicki ()

Relational database design

## Inference of functional dependencies

### Dependency inference

How to tell whether  $X \to Y \in F^+$ ?

### Inference rules (Armstrong axioms)

- reflexivity: infer  $X \to Y$  if  $Y \subseteq X \subseteq attrs(R)$  (*trivial* dependency)
- **2** augmentation: From  $X \to Y$  infer  $XZ \to YZ$  if  $Z \subseteq attrs(R)$
- **③** transitivity: From  $X \to Y$  and  $Y \to Z$ , infer  $X \to Z$ .

Armstrong axioms are:

- sound: if  $X \to Y$  is derived from F, then  $X \to Y \in F^+$ .
- complete: if  $X \to Y \in F^+$ , then  $X \to Y$  is derived from F.

Additional (implied) inference rules

Jan Chomicki ()

- 4. union: from  $X \to Y$  and  $X \to Z$ , infer  $X \to YZ$
- 5. decomposition: from  $X \to Y$  infer  $X \to Z$ , if  $Z \subseteq Y$

### Boyce-Codd Normal Form (BCNF) and 3NF

### BCNF

A schema R is in BCNF if for every nontrivial FD  $X \rightarrow A \in F$ , X contains a key of R.

Each instance of a relation schema which is in BCNF does not contain a redundancy (that can be detected using FDs alone).

#### 3NF

*R* is in 3NF if for every nontrivial FD  $X \rightarrow A \in F$ :

- X contains a key of R, or
- A is part of some key of R.

### BCNF vs. 3NF

- if R is in BCNF, it is also in 3NF
- there are relations that are in 3NF but not in BCNF.

### Decompositions

We will identify a relation schema with its set of attributes.

#### Decomposition

Replacement of a relation schema R by two relation schema  $R_1$  and  $R_2$  such that  $R = R_1 \cup R_2$ .

Lossless-join decomposition

 $(R_1, R_2)$  is a lossless-join decomposition of R with respect to a set of FDs F if for every instance r of R that satisfies F:

 $\pi_{R_1}(r) \bowtie \pi_{R_2}(r) = r.$ 

A simple criterion for checking whether a decomposition  $(R_1, R_2)$  is lossless-join:

- $R_1 \cap R_2 \rightarrow R_1 \in F^+$ , or
- $R_1 \cap R_2 \rightarrow R_2 \in F^+$ .

A sequence of decompositions of R into  $R_1$  and  $R_2$ ,  $R_1$  into  $R'_1$  and  $R''_1$  etc. may be viewed as a decomposition of R into more than two relation schemas.

Relational database design

### Dependency preservation

Jan Chomicki ()

Dependencies associated with relation schema  $R_1$  and  $R_2$  in a decomposition  $(R_1, R_2)$ :

$$F_{R_1} = \{ X \to Y | X \to Y \in F^+ \land XY \subseteq R_1 \}$$

$$F_{R_2} = \{ X \to Y | X \to Y \in F^+ \land XY \subseteq R_2 \}.$$

 $(R_1, R_2)$  preserves a dependency f iff  $f \in (F_{R_1} \cup F_{R_2})^+$ .

### Decomposition into BCNF

### Algorithm: decomposition of schema R

- **()** For some nontrivial nonkey dependency  $X \to A$  in  $F^+$ :
  - reate a relation schema  $R_1$  with the set of attributes XA and FDs  $F_{R_1}$ .
  - create a relation schema  $R_2$  with the set of attributes  $R \{A\}$  and FDs  $F_{R_2}$ .
- ② Decompose further the resulting schemas which are not in BCNF.

This algorithm produces a lossless-join decomposition into BCNF which does not have to preserve dependencies.

### Decomposition (synthesis) into 3NF

#### Minimal basis F' for F

Jan Chomicki ()

- set of FDs equivalent to  $F(F^+ = (F')^+)$ ,
- all FDs in F' are of the form  $X \rightarrow A$  where A is a single attribute,
- further simplification by removing dependencies or attributes from dependencies in F' yields a set of FDs inequivalent to F.

### Algorithm: 3NF synthesis

- Create a minimal basis F'.
- **2** Create a relation with attributes XA for every dependency  $X \to A \in F'$ .
- Oreate a relation X for some key X of R.
- Remove redundancies.

This algorithm produces a lossless-join decomposition into 3NF which preserves dependencies.

### Multivalued dependencies (MVDs)

#### Notation

- Relation schema  $R(A_1, \ldots, A_n)$ .
- r is an instance of R
- Sets of attributes:  $X, Y, Z, \ldots \subseteq \{A_1, \ldots, A_n\}$ .

### Multivalued dependency

- syntax: a pair  $X \to Y$ .
- semantics: *r* satisfies  $X \rightarrow Y$  if for all tuples  $t_1, t_2 \in r$ :
  - if  $t_1[X] = t_2[X]$ , then there is a tuple  $t_3 \in r$  such that  $t_3[XY] = t_1[XY]$ and  $t_3[Z] = t_2[Z]$ ,

where  $Z = \{A_1, ..., A_n\} - XY$ .

### Implication

Defined in the same way as for FDs.

### Fourth Normal Form (4NF)

Jan Chomicki ()

F is the set of FDs and MVDs associated with a relation schema  $R = \{A_1, \ldots, A_n\}$ .

### 4NF

*R* is in 4NF if for every multivalued dependency  $X \rightarrow \rightarrow Y$  entailed by *F*:

- $Y \subseteq X$  or  $XY = \{A_1, \ldots, A_n\}$  (trivial MVD), or
- X contains a key of R.