Problem 1 (20 pts)
Design an Entity-Relationship schema for a database of tourist information. The database should contain the information about:

- cities: name, state, population;
- services: name, city, street address;
- tourist guides: title, featured services with the associated ratings.

Each city is only in a single state. City names are unique within each state. Each service has a unique name. A service is a hotel or a restaurant. For each restaurant the information about its cuisine (American, Chinese, Italian,...) is kept. The ratings are captured as numbers of stars (between 1 and 5). Different guides may rate the same service differently. You can make any other additional assumptions that make sense in the real world.

Solution.
Entity types:

- City with attributes Name, State and Population, and key (Name, State);
- Service with attributes Name, Address, and key Name;
- Hotel with attribute Name which is a key;
- Restaurant with attributes Name (key) and Cuisine;
- Guide with attribute Title.

Relationship types:

- Location(Service, City), N:1;
- Listing(Guide, Service), N:M, with attribute Stars.

isa relationships:

- Hotel isa Service;
- Restaurant isa Service.

Problem 2 (20 pts)
Produce a relational schema in BCNF from the E-R schema obtained in Problem 1. Identify keys and foreign keys. Eliminate redundancies.

Solution. Keys are underlined.
Relations:

- CITY(CNAME, STATE, POPULATION);
The relations SERVICE and LOCATION can be merged to yield a single relation

\[
\text{SERVICE}(\text{SNAME}, \text{ADDRESS}, \text{CNAME}, \text{STATE})
\]

with foreign keys: \text{SNAME} referencing SERVICE(\text{SNAME}) and \text{(CNAME,STATE)} referencing CITY(\text{CNAME}, \text{STATE}).

Problem 3 (20 pts)

Let \(R(ABC) \) be a relation schema together with the set of dependencies \(F = \{ A \rightarrow B, B \rightarrow C, C \rightarrow B \} \).

1. Find the keys of \(R \) and check whether \(R \) is in BCNF or 3NF. Explain the answers, using the appropriate definitions.

2. If \(R \) is not in BCNF, provide a lossless join decomposition of \(R \) into BCNF and check which dependencies in \(F^+ \) it preserves.

Solution.

Answers:

- One key: \(A \),

- Check that \(BC \) is not a key using a counterexample \(r = \{(3, 1, 2), (4, 1, 2)\} \) which satisfies \(F \) but not \(BC \rightarrow A \).

- \(R \) is not in BCNF because there is a nontrivial, nonkey FD \(B \rightarrow C \) in \(F \). (\(C \rightarrow B \) also violates BCNF.) It is not in 3NF because \(C \) does not belong to any key.

- A lossless-join decomposition into BCNF, \((AB, BC) \), preserves all FDs. (Note that another lossless-join decomposition, \((AC, BC) \), also preserves all FDs, while \((AC, AB) \) is also lossless-join but loses \(B \rightarrow C \) and \(C \rightarrow B \).)