
Relational Databases

Jan Chomicki
University at Buffalo

Jan Chomicki () Relational databases 1 / 49

Plan of the course

1 Relational databases

2 Relational database design

3 Conceptual database design

4 Object databases

5 XML databases

6 Advanced topics

Jan Chomicki () Relational databases 2 / 49



Part I

Relational data model

Jan Chomicki () Relational databases 3 / 49

Outline of Part I

1 Basic concepts

2 Integrity constraints

Jan Chomicki () Relational databases 4 / 49



Relational data model

Domain

domain: predefined set of atomic values: integers, strings,...

every attribute value comes from a domain or is null (null is not a value)

First Normal Form: domains consist of atomic values

Tuple (row)

tuple: a sequence of values

tuple arity: the number of values in the sequence (including nulls)

Relation

relation name, e.g., Employee

relation schema: finite set of attributes (column labels) and associated domains, for
example

Name:String, Salary:Decimal, Age:Integer

relation instance: finite set of tuples conforming to the schema.

Jan Chomicki () Relational databases 5 / 49

Schema vs. instance

Schema

rarely changes

when it does, database needs to be reorganized

used to formulate queries

Instance

changes with update transactions

used to evaluate queries

Notation

An instance of a schema R is denoted r .

We will need the schema vs. instance distinction in discussing integrity constraints and
query results.

Jan Chomicki () Relational databases 6 / 49



Integrity constraints

Logical conditions that have to be satisfied in every database instance.

Role of constraints

guarding against entering incorrect data into a database (data quality)

providing object identity (key and foreign key constraints)

representing relationships and associations

helping in database design

DBMS support for constraints

all declared constraints are checked after every transaction

if any constraint is violated, the transaction is backed out

typically SQL DBMS support only limited kinds of constraints
I keys, foreign keys, CHECK constraints

Jan Chomicki () Relational databases 7 / 49

Key constraints

Key constraint of a relation schema R

A set of attributes S (called a key) of R.

An instance r satisfies a key constraint S if r does not contain a pair of tuples that agree
on S but disagree on some other attribute of R.

Formally: for each two tuples t1 ∈ r , t2 ∈ r

if t1[S ] = t2[S ], then t1[A] = t2[A] for every attribute A in R.

Jan Chomicki () Relational databases 8 / 49



Properties of keys

Adequacy

uniqueness of key values should be guaranteed by the properties of the application
domain

in other words: it is an error to have different tuples (in the same relation) with the
same key values

a key should be as small as possible (good database design)

Minimality

no subset of a key can also be designated a key

Multiple keys

there may be more than one key in a relation schema

one is selected as the primary key:
I cannot be null (entity integrity)
I typically used in indexing

Jan Chomicki () Relational databases 9 / 49

Relational model is value-based

No duplicates

There cannot be two different “objects” (here: tuples) whose all attribute values are
pairwise equal.

No pointers

The only way to reference an “object” (tuple) is by providing its key value.

No notion of location

It is not possible to refer to the location of an object (tuple).

These properties are not shared by the ER model, object-oriented models, XML etc.

Jan Chomicki () Relational databases 10 / 49



Foreign keys

Relation schemas R1, R2 (not necessarily distinct).

Foreign key constraint

A pair of sets of attributes (S1, S2) such that:

S1 ⊆ R1, S2 ⊆ R2

S2 is a key of R2

the number of attributes and their respective domains in S1 and S2 are the same.

A pair of instances (r1, r2) satisfies a foreign key constraint (S1, S2)

if for every tuple t1 ∈ r1, t1[S1] = t2[S2] for some tuple t2 ∈ r2 or t1[S1] is null.

A primary key (or a part thereof) can be a foreign key at the same time (but then it can’t
be null).

Jan Chomicki () Relational databases 11 / 49

Other kinds of integrity constraints?

Functional dependencies

generalize key constraints

Inclusion dependencies

generalize foreign key constraints

Multivalued dependencies

All rarely supported by current DBMS.

Jan Chomicki () Relational databases 12 / 49



Logical conditions

General conditions

essentially queries

shouldn’t evaluate to False in any valid instance

Scope

can be associated with attributes, tuples, relations, or databases

SQL DBMS often implements only tuple-level conditions (CHECK constraints)

Jan Chomicki () Relational databases 13 / 49

Part II

Relational query languages

Jan Chomicki () Relational databases 14 / 49



Outline of Part II

3 Relational algebra

4 Query evaluation and optimization

5 SQL

Jan Chomicki () Relational databases 15 / 49

Relational query languages

Relational algebra

a set of algebraic operators

each operator takes one or two relations as arguments and returns a relation as the
result

operators can be nested to form expressions

procedural query language: expressions describe how the query can be evaluated

Relational calculus

a logic language: expressions involve Boolean operators and quantifiers

declarative query language: expressions do not describe how to evaluate the query

we will not talk about it

SQL

a mix of relational algebra and logic (procedural/declarative)

the standard query language of the existing DBMS.

Jan Chomicki () Relational databases 16 / 49



Subtle issues

Nulls

relational algebra does not allow nulls

SQL does

Duplicates

relational algebra operates on sets and does not allow duplicates

SQL allows duplicates and operates on multisets (bags)

duplicates irrelevant for most queries

Order

neither relational algebra nor SQL can specify order within sets of tuples

in SQL top-level query results can be ordered
I but not in subqueries

Jan Chomicki () Relational databases 17 / 49

Basic operators

Set operators

union

set difference

Relational operators

Cartesian product

selection

projection

renaming.

This is a minimal set of operators.

Jan Chomicki () Relational databases 18 / 49



Union and difference

Union (∪) of R1 and R2

arity(R1 ∪ R2) = arity(R1) = arity(R2)

t ∈ r1 ∪ r2 iff t ∈ r1 or t ∈ r2.

Difference (−) of R1 and R2

arity(R1 − R2) = arity(R1) = arity(R2)

t ∈ r1 − r2 iff t ∈ r1 and t 6∈ r2.

The arguments of union and difference need to be compatible.

Compatibility of R1 and R2

arity(R1) = arity(R2)

the corresponding attribute domains in R1 and R2 are the same

thus compatibility of two relations can be determined solely on the basis of their
schemas (compile-time property).

Jan Chomicki () Relational databases 19 / 49

Cartesian product of R1 and R2

arity(R1) = k1, arity(R2) = k2

Cartesian product(×)

arity(R1 × R2) = arity(R1) + arity(R2)

t ∈ r1 × r2 iff:
I the first k1 components of t form a tuple in r1, and
I the next k2 components of t form a tuple in r2.

Jan Chomicki () Relational databases 20 / 49



Selection

Selection condition E built from:

comparisons between operands which can be constants or attribute names

Boolean operators: ∧ (AND), ∨ (OR), ¬ (NOT).

Selection σE (R)

arity(σE (R)) = arity(R)

t ∈ σE (r) iff t ∈ r and t satisfies E .

Jan Chomicki () Relational databases 21 / 49

Projection

A1, . . . ,Ak : distinct attributes of R.

Projection πA1,...,Ak
(R)

arity(πA1,...,Ak (R)) = k

t ∈ πA1,...,Ak (r) iff for some s ∈ r , t[A1] = s[A1], . . . , t[Ak ] = s[Ak ].

Jan Chomicki () Relational databases 22 / 49



Renaming

A1, . . . ,An: attributes of R
B1, . . . ,Bn: new attributes

Renaming R(B1, . . . ,Bn)

arity(R(B1, . . . ,Bn)) = arity(R) = n,

t ∈ r(B1, . . . ,Bn)iff for some s ∈ r , t[B1] = s[A1], . . . , t[Bn] = s[An].

Jan Chomicki () Relational databases 23 / 49

Derived operators

1 Intersection.

2 Quotient.

3 θ-join.

4 Natural join.

Jan Chomicki () Relational databases 24 / 49



Intersection

Intersection

arity(R1 ∩ R2) = arity(R1) = arity(R2)

t ∈ r1 ∩ r2 iff t ∈ r1 and t ∈ r2.

Intersection is a derived operator:

R1 ∩ R2 = R1 − (R1 − R2).

Jan Chomicki () Relational databases 25 / 49

Quotient

A1, . . . ,An+k : all the attributes of R1

An+1, . . . ,An+k : all the attributes of R2

r2 nonempty.

Quotient (division)

arity(R1 ÷ R2) = arity(R1)− arity(R2) = n

t ∈ r1 ÷ r2 iff for all s ∈ r2 there is a w ∈ r1 such that
I t[A1] = w [A1], . . . , t[An] = w [An], and
I s[An+1] = w [An+1], . . . , s[An+k ] = w [An+k ].

Quotient is a derived operator:

R1 ÷ R2 = πA1,...,An (R1)−

πA1,...,An (πA1,...,An (R1)× R2 − R1)

Jan Chomicki () Relational databases 26 / 49



θ-join

θ: a comparison operator (=, 6=, <,>,≥,≤)
A1, . . . ,An: all the attributes of R1

B1, . . . ,Bk : all the attributes of R2

θ-join

arity(R1 ./
AiθBj

R2) = arity(R1) + arity(R2)

R1 ./
AiθBj

R2 = σAiθBj (R1 × R2)

Equijoin

θ-join where θ is equality.

Jan Chomicki () Relational databases 27 / 49

Natural join

A1, . . . ,An: all the attributes of R1

B1, . . . ,Bk : all the attributes of R2

m - the number of attributes common to R1 and R2

Natural join

arity(R1 1 R2) = arity(R1) + arity(R2)−m

to obtain r1 1 r2:
1 select from r1 × r2 the tuples that agree on all attributes common to R1 and R2
2 project duplicate columns out from the resulting tuples.

Jan Chomicki () Relational databases 28 / 49



Query evaluation

Basic

queries evaluated bottom-up: an operator is applied after the arguments have been
computed

temporary relations for intermediate results

Advanced

using indexes, sorting and hashing

special algorithms

input/output streams, blocking

parallelism

Jan Chomicki () Relational databases 29 / 49

Indexing

Fast access to individual rows using the values of one or more index columns.

Used to implement:

selection: atomic conditions (σA=c), conjunctive conditions

equijoin

Underlying technologies:

B-trees

hashing

...

Jan Chomicki () Relational databases 30 / 49



Query optimization

Logical query optimization

algebraic laws

rewrite rules

Cost-based query optimization

cost analysis of evaluation plans

enumeration of evaluation plans

Jan Chomicki () Relational databases 31 / 49

Algebraic laws (examples)

Join reordering

E1 1 E2 = E2 1 E1

(E1 1 E2) 1 E3 = E1 1 (E2 1 E3).

Pushing selection

σF (E1 × E2) = σF (E1)× E2 if F involves only the attributes of E1

σF (E1 ∪ E2) = σF (E1) ∪ σF (E2)

σF (E1 − E2) = σF (E1)− σF (E2)

Jan Chomicki () Relational databases 32 / 49



SQL

Support

virtually all relational DBMS

vendor-specific extensions

Standardized (partially)

SQL2 or SQL-92 (completed 1992)

SQL3, SQL:1999, SQL:2003 (completed)

SQL:2006 (ongoing work)

Jan Chomicki () Relational databases 33 / 49

SQL language components

query language

data definition language

data manipulation language

integrity constraints and views

API’s (ODBC, JDBC)

host language preprocessors (Embedded SQL, SQLJ)

support XML data and queries

...

Jan Chomicki () Relational databases 34 / 49



Basic SQL queries

Basic form

SELECT A1, . . . ,An

FROM R1, . . . ,Rk

WHERE C

Corresponding relational algebra expression

πA1,...,An (σC (R1 × · · · × Rk))

Jan Chomicki () Relational databases 35 / 49

Range variables

To refer to a relation more than once in the FROM clause, range variables are used.

Example

SELECT R1.A, R2.B

FROM R R1,R R2

WHERE R1.B=R2.A

corresponds to

πA,D(R(A,B) ./
B=C

R(C ,D)).

Jan Chomicki () Relational databases 36 / 49



Manipulating the result

SELECT *: all the columns are selected.

SELECT DISTINCT: duplicates are eliminated from the result.

ORDER BY A1, . . . ,Am: the result is sorted according to A1, . . . ,Am.

E AS A can be used instead of an column A in the SELECT list to mean that the value of
the column A in the result is determined using the (arithmetic or string) expression E .

Jan Chomicki () Relational databases 37 / 49

Set operations

UNION set union.

INTERSECT set intersection.

EXCEPT set difference.

Note

INTERSECT and EXCEPT can be expressed using other SQL constructs

Jan Chomicki () Relational databases 38 / 49



Nested queries

Subquery

A query Q can appear as a subquery in the WHERE clause which can now contain:

A IN Q: for set membership (A ∈ Q)

A NOT IN Q: for the negation of set membership (A 6∈ Q)

A θ ALL Q: A is in the relationship θ to all the elements of Q
(θ ∈ {=, <,>,>=, <=, <>})
A θ ANY Q: A is in the relationship θ to some elements of Q

EXISTS Q: Q is nonempty

NOT EXISTS Q: Q is empty

Notes

the subqueries can contain columns from enclosing queries

multiple occurrences of the same column name are disambiguated by choosing the
closest enclosing FROM clause.

Jan Chomicki () Relational databases 39 / 49

Aggregation

Instead of a column A, the SELECT list can contain the results of some aggregate
function applied to all the values in the column A in the relation.

Aggregation functions

COUNT(A): the number of all values in the column A (with duplicates)

SUM(A): the sum of all values in the column A (with duplicates)

AVG(A): the average of all values in the column A (with duplicates)

MAX(A): the maximum value in the column A

MIN(A): the minimum value in the column A.

Notes

DISTINCT A, instead of A, considers only distinct values

aggregation queries not expressible in relational algebra

Jan Chomicki () Relational databases 40 / 49



Grouping

The clause

GROUP BY A1, . . . ,An

assembles the tuples in the result of the query into groups with identical values in
columns A1, . . . ,An.

The clause

HAVING C

leaves only those groups that satisfy the condition C .

Notes

The SELECT list of a query with GROUP BY can contain only:

the columns mentioned in GROUP BY (or expressions with those), or

the result of an aggregate function, which is then viewed as applied group-by-group.

Jan Chomicki () Relational databases 41 / 49

Building complex queries

A complex query can be broken up into smaller pieces using:

nested queries in the FROM clause

views.

View

Computed relation whose contents are defined by an SQL query.

Creating a view

CREATE VIEW View-name(Attr1,...,Attrn)
AS Query

Dropping a view

DROP VIEW View-name

Jan Chomicki () Relational databases 42 / 49



Nulls

Various interpretations: unknown, missing value, inapplicable, no information...

In SQL columns that are not explicitly or implicitly designated as NOT NULL can contain
nulls.

Behavior of nulls

comparisons return the unknown truth value if at least one of the arguments is null

IS NULL returns true

null values counted by COUNT(*), discarded by other aggregate operators.

Jan Chomicki () Relational databases 43 / 49

Three-valued logic

NOT

T F

F T

? ?

AND T F ?

T T F ?

F F F F

? ? F ?

OR T F ?

T T T T

F T F ?

? T ? ?

Jan Chomicki () Relational databases 44 / 49



Outer joins

To keep the tuples in the result if there are no matching tuples in the other argument of
the join:

LEFT: preserve only the tuples from the left argument

RIGHT: preserve only the tuples from the right argument

FULL: preserve the tuples from both arguments.

The result tuples are padded with nulls.

Syntax (in the FROM clause):

R1 OUTER JOIN R2 ON Condition USING Columns

Notes

outer joins can be expressed using other SQL constructs

some DBMS, e.g., Oracle, use a different syntax for outerjoins.

Jan Chomicki () Relational databases 45 / 49

Limitations of relational query languages

They cannot express queries involving transitive closure of binary relations:

“List all the ancestors of David.”

“Find all the buildings reachable from Bell Hall without going outside.”

Solution

Recursive views.

Jan Chomicki () Relational databases 46 / 49



Recursion in SQL3

A relation R depends on a relation S if S is used, directly or indirectly, in the definition of
R.

In a recursive view definition a relation may depend on itself!

Recursive views in SQL

SQL3, still unsupported in most DBMS

recursively defined relations should be preceded by RECURSIVE.

syntax:

WITH R AS
definition of R
query to R

Jan Chomicki () Relational databases 47 / 49

Example

Find all the ancestors of David:

WITH RECURSIVE Anc(Upper,Lower) AS

(SELECT * FROM Parent)

UNION

(SELECT P.Upper, A.Lower

FROM Parent AS P, Anc AS A

WHERE P.Lower=A.Upper)

SELECT Anc.Upper

FROM Anc

WHERE Anc.Lower=’David’;

Stratification restriction

No view can depend on itself through EXCEPT or aggregation.

Jan Chomicki () Relational databases 48 / 49



Evaluating queries with recursive views

Evaluation algorithm

1 Initially, the contents of all views are empty.

2 Compute the new contents of the views, using database relations and the current
contents of the views.

3 Repeat the previous step until no changes in view contents occur.

Why does this terminate?

Jan Chomicki () Relational databases 49 / 49


	Relational databases
	Relational database design
	Conceptual database design
	Object databases
	XML databases
	Advanced topics
	Relational data model
	Basic concepts
	Integrity constraints

	Relational query languages
	Relational algebra
	Query evaluation and optimization
	SQL


