
CSE 562: Homework #1: solutions

Database

You are given the following relational schema:

STUDENT(SNO,SNAME,DEPT)

ENROLL(CNO,SNO,GRADE)

COURSE(CNO,DEPT)

PREREQ(CNO,PNO)

Keys are underlined. The column ENROLL(SNO) is a foreign key referencing STUDENT(SNO). All the occur-
rences of the columns CNO and PNO, except for the one in COURSE, are foreign keys referencing COURSE(CNO).

Course numbers are strings, like CSE562. The column COURSE(DEPT) contains just the departmental
acronym, e.g., CSE.

You can assume that no columns are null. You may use views.
The example database is available in the following tables: zhouhany.student, zhouhany.enroll,

zhouhany.course and zhouhany.prereq.

Problem 1 (12 pts)

Write the following queries in relational algebra and SQL:

• 1.1: Find the names of all the students enrolled in CSE562;

πSNAME (σCNO=′CSE562′(STUDENT ./ ENROLL)).

SELECT S.SNAME FROM STUDENT S, ENROLL E

WHERE S.SNO=E.SNO AND E.CNO=’CSE562’

• 1.2: Find the names of all the students, whose grade in CSE531 is lower than the grade in CSE562,
or who took at most one of CSE531 and CSE562;

U1(S1) := πS1(σC1=′CSE531′(ENROLL(C1, S1, G1)) ./
S1=S2,G1<G2

(σC2=′CSE562′(ENROLL(C2, S2, G2))));

U2(N1) := πN1(U1(S1) ./ STUDENT (S1, N1, D1));

U3(SNAME ) := πSNAME ((πSNO(STUDENT )− (πSNO,CNO(ENROLL)÷ {′CSE531′,′ CSE562′}) ./ STUDENT ));

U(S) := U2(N) ∪ U3(N);

(SELECT S.SNAME FROM ENROLL E1, ENROLL E2, STUDENT S

WHERE E1.CNO=’CSE531’ AND E2.CNO=’CSE562’ AND E1.SNO=E2.SNO AND E1.GRADE<E2.GRADE AND S.SNO=E1.SNO)

UNION

(SELECT S.SNAME FROM STUDENT S

WHERE NOT EXISTS

SELECT * FROM ENROLL E WHERE E.CNO=’CSE531’ AND E.SNO=S.SNO

OR NOT EXISTS

SELECT * FROM ENROLL E WHERE E.CNO=’CSE562’ AND E.SNO=S.SNO)

1



• 1.3: Find all the EE students who took all the courses offered by CSE.

U1(SNO) := πSNO,CNO(σDEPT=′EE′(STUDENT ./ ENROLL))÷ πCNO(σDEPT=′CSE′(COURSE));

U2(SNAME ) := πSNAME (U1(SNO) ./ STUDENT );

SELECT S.SNAME FROM STUDENT S

WHERE S.DEPT=’EE’

AND NOT EXISTS

SELECT * FROM COURSE C

WHERE C.DEPT=’CS’

AND NOT EXISTS

SELECT * FROM ENROLL E

WHERE E.CNO=C.CNO AND E.SNO=S.SNO

Problem 2 (8 pts)

Write the following queries in SQL:

• 2.1: For every course, list the course together with the average grade in that course;

(SELECT E.CNO, AVG(Grade) FROM ENROLL E GROUP BY E.CNO)

UNION

(SELECT C.CNO, NULL FROM COURSE C

WHERE NOT EXISTS

SELECT * FROM ENROLL E WHERE E.CNO=C.CNO)

• 2.2: For every course, list the course together with the department that had the maximum number of
students in that course. If multiple departments are in that category, list all of them. If a course has
zero enrollment, return null instead of the department name.

CREATE VIEW CDEPT(CNO,DEPT,NUM) AS

SELECT E.CNO, S.DEPT, COUNT(*)

FROM ENROLL E, STUDENT S

WHERE E.SNO=S.SNO

GROUP BY E.CNO, S.DEPT;

(SELECT CD.CNO, CD.DEPT FROM CDEPT CD

WHERE NOT EXISTS

SELECT * FROM CD CD1

WHERE CD1.CNO=CD.CNO AND CD1.NUM>CD.NUM)

UNION

(SELECT C.CNO, NULL

FROM COURSE C

WHERE NOT EXISTS

SELECT * FROM ENROLL E

WHERE E.CNO=C.CNO)

Problem 3 (8 pts)

Write the following queries in SQL, possibly using recursion:

2



• 3.1: Find all the prerequisites, direct or indirect, of CSE562, assuming that the maximum length of
prerequisite chains is 3.

• 3.2: Find all the prerequisites, direct or indirect, of CSE562, without assuming a maximum length of
prerequisite chains.

WITH

RECURSIVE FULL(CNO,PNO) AS

(SELECT * FROM PREREQ)

UNION

(SELECT P.CNO, F.PNO

FROM PREREQ P, FULL F

WHERE P.PNO=F.CNO)

SELECT DISTINCT F.PNO FROM FULL F

WHERE F.CNO=’CSE562’

• 3.3: Find all the departments that have a course requiring a CSE course as a direct or indirect prere-
quisite, without assuming a maximum length of prerequisite chains.

WITH

RECURSIVE FULL(CNO,PNO) AS

(SELECT * FROM PREREQ

UNION

SELECT P.CNO, F.PNO

FROM PREREQ P, FULL F

WHERE P.PNO=F.CNO)

SELECT DISTINCT C1.DEPT

FROM COURSE C1, FULL F, COURSE C2

WHERE C1.CNO=F.CNO AND F.PNO=C2.CNO AND C2.DEPT=’CSE’

Note: Please bear in mind that Oracle does not support recursion. If you want to test your recursive queries,
use PostgreSQL.

Problem 4 (12 pts)

Consider the following SQL queries:

• 4.1:

SELECT *

FROM STUDENT S

WHERE NOT EXISTS

SELECT * FROM ENROLL E

WHERE E.SNO = S.SNO

AND E.GRADE > 3.0

Answer: List all the students who never got a grade above 3.0.

(πSNO(STUDENT )− πSNO(σGRADE>3.0(ENROLL))) ./ STUDENT

• 4.2:

3



SELECT E1.CNO, S.SNAME

FROM ENROLL E1, STUDENT S

WHERE E1.SNO = S.SNO

AND NOT EXISTS

SELECT * FROM ENROLL E2

WHERE E2.CNO = E1.CNO

AND E2.GRADE > E1.GRADE

Answer: For every course, return the names of the highest-scoring students.

U1(C1, S1) := πC1,S1(ENROLL(C1, S1, G1));

U2(C1, S1) := πC1,S1(ENROLL(C1, S1, G1) ./
G1<G2,C1=C2

ENROLL(C2, S2, G2));

U(C,N) : −πC,N ((U1(C, S)− U2(C, S)) ./ STUDENT (S,N,D));

For both queries:

• Explain what the query is doing.

• Translate the query to relational algebra.

Problem 5 (10 pts)

The relax-join operator is defined as follows:

• if the natural join of the relations R and S is nonempty, then return the result of this join;

• otherwise, return the Cartesian product of R and S.

Write queries in relational algebra and SQL that return the relax-join of two relations. Do not use
IF-THEN-ELSE.
Update (02/13/12). It is enough to consider natural joins defined as:

πA,B,D(R(A,B) ./
B=C

S(C,D)).

Update (02/16/12). Replace “natural join” by “equijoin.” Replace the above expression by

R(A,B) ./
B=C

S(C,D).

Solution.

U1(A,B,C,D) := σB=C(R(A,B)× S(C,D));

U2(A,B,C,D) := πA,B,C,D(U1(A1, B1, C1, D1)×R(A,B)× S(C,D));

U(A,B,C,D) := U1(A,B,C,D) ∪ (R(A,B)× S(C,D)− U2(A,B,C,D));

The SQL translation is obtained by direct encoding of relational algebra operators.

4


