Datalog

A language of logical facts and rules.

A subset of Prolog (no data structures).

Basic concepts:

predicate (relation)
term, constant, variable
goal

clause, rule, fact
substitution

unification



Terms

Terms can be:

e constant symbols:
— atoms (names)

— numbers (integers, floats)

e (logical) variable symbols

Variables and constants are distinguished using a syntactic convention (e.g.,

variables start with an upper-case letter).

A logical variable:
e placeholder (stands for any value)
e can be instantiated by substituting it by another term

e cannot be assigned (no assignment in the language).



Goals and clauses
Concept Syntax Semantics
Goal P(Ty,...,Tn) Predicate P is true of terms 77 and ... and T},
Query Aq, ..., AL Aq and ... Ay are true
Implication Ag : — Aq1,..., Ag Ag if A1 and --- and Ayg
The head of an implication is Ag, the body is Ay, A2, ..., Ar. The body may be true
(k =0) and “: —” is then skipped. No variables appear only in the head.

Recursive rule: the same predicate appears in the head and the body of a rule.




An implication is also called a clause:
e unit clause (fact) - if empty body.

e nonunit clause (rule) - if nonempty body.

Typically, predicates are defined only using facts (EDB predicates) or only
rules (IDB predicates).

A logic program is a collection of clauses viewed logically as their conjunction.



Example

Program Pj: determining ancestors.

%/ Rules
anc(X,Y) :- parent(X,Y).
anc(X,Z) :- parent(X,Y), anc(Y,Z).

%% Facts

parent (witold,tom) .
parent (tom, jan) .
parent (tom,tony) .

parent (jan,dave) .

%% Query 1
anc(X,dave)

%% Query 2
anc (X,dave), anc(X,tony)



Another example

Public-key infrastructure:

e principals: (public key,Internet address)
pkd(P,N,K) = the principal P has the principal key K for the name N.
pkd(p_alice,alice,p_alice).

pkd(p_alice,bob,p_bob).
pkd(p_alice,X,Y) :- pkd(p_alice,bob,Z), pkd(Z,X,Y).

Can also be used to model PGP, DNS, LDAP,...



Logical meaning of a logic program

The least Herbrand model Mp:
e the set of facts implied by the program
e contains all the facts in the program

e contains also all the facts that can be derived (directly or indirectly) by the
rules

e contains no other facts



M p, consists of all parent facts and:

1

%/ First-level ancestors
anc(witold,tom) .
anc(tom, jan) .

anc (tom,tony) .

anc(jan,dave) .

%7 Second-level ancestors
anc(witold, jan).
anc(witold,tony) .

anc (tom,dave) .

%% Third-level ancestors

anc(witold,dave).



Substitutions

In logic programs, variables are implicitly universally quantified. This
means that every implication is true for all instantiations to its variables (the
occurrences of the same variable in a single clause have to be instantiated in

the same way).

Formally, a substitution is a mapping of variables to terms. A substitution h
can be applied to a goal G by replacing all the variables in the domain of A in
such a way that all the occurrences of a variable x are replaced by the same
term h(x). This yields the goal Gh (an instance of G).

Substitutions can be applied to clauses and composed. A ground
substitution replaces all the variables in its domain by constants. The ground
version ground(P) of a program P consists of all the ground instances of the

clauses in P.



Fixpoint semantics

For a given logic program P and a set of ground facts I:

Tp(I) = {A|3r € ground(P).
r=A:—Ay,...,An NALEIN---A, €T}

I is a fixpoint of Tp if Tp(I) = 1.

Properties of T'p:
1. Tp has a least fixpoint [fp(Tp) (contained in all the fixpoints)

2. lfp(Tp) is obtained by iterating T'p finitely many times

3. lfp(Tp) = Mp

10



Datalog: query evaluation

Bottom-up:

e compute

Tp(0), Tp(Tp(0)),...

until the result does not change
e at the end evaluate the query using the obtained set of facts (Mp)

e find appropriate substitutions by matching the goals in the body against
the set of facts

e built-in predicates (=, <,...) should be made true by the substitutions

e the evaluation terminates and can be further optimized to avoid duplicating

work and computing unnecessary facts (by using information in the query).

Basic mode for most deductive DBMS: LDL (LDL-++), Coral, ...

11



Top-down query evaluation

Evaluation of a ground goal A:
1. A succeeds immediately if there is a fact A in the program

2. A succeeds if there is a clause Ag : —A1,..., A, in the program and a
ground substitution A such that

e h(Ag)=A
e the evaluation of h(A1), h(A2), ..., h(Ay) all succeed

Failure: backtracking (substitutions are undone).

Infinite looping: tabling (some systems, e.g. XSB).

12



Finding substitutions

Evaluation of a non-ground goal A:
e unify A with a fact or a rule head (after renaming apart)
e propagate the substitutions to the body of the rule

e evaluate the body
Two goals unify if there is a substitution that maps both to the same goal. A

substitution is a most general unifier (mgu) of two goals if all other unifying

substitutions can be obtained from it by composition.

13



Unification algorithm

Unification of two goals G1 and G2 that either fails, or succeeds and returns

an mgu h:

h:={}

if predicate(Gl)<>predicate(G2) or arity(Gl)<>arity(G2)
then success := false

else for i=1 to arity(Gl) do

Al=arg(Gl,i); A2=arg(G2,i)

if variable(A1l) and A1<>A2 then
instantiate all the occurrences of Al
in G1 and h to A2
add (A1,A2) to h

else if variable(A2) and A1<>A2 then
instantiate all the occurrences of A2
in G2 and h to A1l
add (A2,A1) to h

else if A1<>A2 then
success := false

success := true

14



Open vs. Closed World Assumption

Closed World Assumption (CWA.:

What is not implied by a program is false.

Open World Assumption (OWA):

What is not implied by a program is unknown.
Scope:

e traditional database applications: CWA

e information integration: OWA or CWA

15



Datalog —

Rules with negated goals in the body:
Ag:—A1,...,Ar,not By,...,not By,.
Example:

forebear(X,Y) :- anc(X,Y), not parent(X,Y).

Problems with negation:

e not every program has a clear logical meaning (due to the interaction of

negation with recursion)
e bottom-up evaluation does not always produce an intuitive result
Example:

p(X) :- not q(X).
q(X) :- not p(X).

16



Implicit quantification

Example:
bachelor(X) :- male(X), not married(X,Y).
Does it mean:
1. X is a bachelor if X is a male and X is not married to anyone, or
2. X is a bachelor if X is a male and X is not married to everyone?
Logically:
1. (VX)(bachelor(X) < male(X) A (=3Y)(married(X,Y)))
2. (VX)(bachelor(X) < male(X) A (3Y)(—married(X,Y)))

17



The proper logical reading is 2, because it is equivalent to:

(VX)(VY)(bachelor(X) < male(X) A (—married(X,Y)))

If the reading 1 is desired, replace the rule by:

bachelor(X) :- male(X), not husband(X).
husband(X) :- married(X,Y).

We will assume that every variable that appears in a negative goal appears also

in a positive goal.

18



Stratified programs

The dependency graph pdg(P) of a logic program P:
e vertices: predicates of P

e edges:

— a positive edge (p, q) if there is a clause in P in which p appears in a
positive goal in the body and q appears in the head

— a negative edge (p, q) if there is a clause in P in which p appears in a

negative goal in the body and q appears in the head

A Datalog— program P is stratified if no cycle in its dependency graph
pdg(P) contains a negative edge.

19



Stratifications

Stratification of P: a mapping s from the set of predicates in P to

nonnegative integers such that:
1. if a positive edge (p, q) is in pdg(P), then s(p) < s(q)

2. if a negative edge (p, q) is in pdg(P), then s(p) < s(q)

There is a polynomial-time algorithm to:
e determine whether a program is stratified,

e if it is, to find a stratification for it

20



Datalog—: query evaluation

Bottom-up:
1. compute a stratification of a program P

2. partition P into Pi,..., Pp, each P; consisting of all and only rules whose

head belongs to a single stratum

3. evaluate bottom-up Pi,..., P, (in that order):
e find the substitutions to the positive goals first
e use negative subgoals only as tests

e — A succeeds if A is not in the result of the lower strata

The result of bottom-up evaluation:
e does not depend on the stratification

e can be semantically characterized in various ways

21



Expressive power

There are some queries that are not expressible in relational algebra but

expressible in Datalog;:

e transitive closure of a binary relation

There are some queries that are not expressible in Datalog but expressible in

relational algebra:

e set difference (nonmonotonic query)

Every relational algebra query can be expressed in Datalog—.

22



Computational complexity

Data complexity: complexity as a function of the number of the facts

(tuples) in the logic program (database).

Bottom-up computation for Datalog and Datalog— terminates in polynomial

time.

23



Recursion in SQL3

General form:
WITH R AS definition of R query to R
If R is recursively defined, it should be preceded by RECURSIVE.

Example:

WITH RECURSIVE Anc(Upper,Lower) AS

(SELECT * FROM Parent)
UNION

(SELECT P.Upper, A.Lower
FROM Parent AS P, Anc AS A
WHERE P.Lower=A.Upper)

SELECT Anc.Upper

FROM Anc

WHERE Anc.Lower=’Dave’;

24



Recursion in SQL3 (cont’d)

Mutual recursion: more than relation can be defined simultaneously.

Linear recursion: each definition can have only one occurrence of a relation

mutually recursive with the relation being defined.

Negation and recursion: if EXCEPT is used, the definitions should be stratified.

25



Disjunction

Disjunctive facts or rule heads:

A1(...)or ... or Ag(...).
Ai1(...)or ... or Ag(...): —B1(...)y-- -, Bm(...).

Examples:

student (123456, toronto) or student(123456,buffalo).

bloodtype(Z,T1) or bloodtype(Z,T2) :-
parent(X,Z), parent(Y,Z), X\==Y,
bloodtype(X,T1), bloodtype(Y,T2).

Properties:

e a logic program may have multiple minimal models, not necessarily the
(single) least model

e Closed-World Assumption is typically inconsistent and needs to be modified

e disjunctive logic programs are computationally harder than those without
disjunction.

26



Incomplete information

Different kinds of incompleteness:
e the object is an element of a finite set (but we don’t know which one)
= disjunctive logic programs
e the object exists but we don’t know anything about it

= SQL null

27



Constraint databases

Finite representation of infinite, multidimensional sets using constraints.

Constraint theory:
e a domain: reals, integers, uninterpreted constants...

e atomic formulas

Atomic constraints:
e should be closed under negation and quantifier elimination
e cqualities * = y and disequalities x # y
e order constraints r < y and = <y

e linear arithmetic constraints a1x1 + - --arxr < ap and
a1xy + - apxi < ap-

28



Constraint databases: basic notions

Generalized tuple: conjunction of atomic constraints. Semantics: the set of

tuples satisfying the formula.

Generalized relation: finite set of generalized tuples. Semantics: the set of

tuples satisfying at least one generalized tuple in this set.

Example:

X>2ANY >2ANX>Y
X>0NX<<IANY >0ANY <1

29



Relational algebra for constraint databases

Selection o¢(R): conjoin C' with every generalized tuple in R.
Cartesian product R x S: take t A s for every t € R and s € S.

Union R U S: union of sets of generalized tuples R and S.
Difference R — S:

1. write down the complement of S as a formula
2. put it in disjunctive normal form
3. conjoin every resulting generalized tuple with every tuple in S in turn.

Projection mx (R): apply quantifier elimination to every generalized tuple in

R in turn.

30



Fourier elimination

Quantifier elimination procedure for linear arithmetic constraints and order

constraints over a dense domain (rational or reals).

A conjunction of linear arithmetic constraints

a1x1+---—|-an£lfn+y§ao
biz1 4+ -+ bnxn —y < bo

can be replaced by a single arithmetic constraint
(a1 +b1)z1 + -+ (an + bn)xn < ap + bo

from which y has beeen eliminated (projected out).

This is repeated for every pair of constraints in a generalized tuple. The

resulting constraints are conjoined together.

31



Datalog for constraint databases

Facts defined by generalized tuples.

Termination:
e equalities/disequalities, order constraints: can be obtained

e linear arithmetic constraints: cannot be obtained.

32



