Source Capabilities

Jan Chomicki

University at Buffalo

Source capabilities [YGMU99]

Limited interface

- sources (or source wrappers) support only limited query patterns
- mediators defined using views
- full query evaluation at the mediator level

Issues

- describing source (wrapper) capabilities
- describing mediator capabilities
- capability-based query rewriting

Templates

- template \equiv a vector of attribute adornments
- sources export sets of templates
- view templates depend on mediator properties:
 - basic evaluation
 - postprocessing
 - passing bindings between join arguments
- a query has to match some view template to be answerable

Adornments

Attribute adornments

- 1 f: the attribute may or may not be specified in the query (free)
- **2** u: the attribute cannot be specified in the query (*unspecifiable*)
- **3** b: the attribute must be specified in the query (*bound*)
- c[S]: the attribute must be specified and its value must be among the elements of the set S (constant)
- o[S]: the attribute may or may not be specified in the query but, if it is specified, its value must be among the elements of the set S (optional)

Matching

	f	o[<i>S</i>]	b	c[<i>S</i>]	u
constant a	+	<i>a</i> ∈ <i>S</i>	+	<i>a</i> ∈ <i>S</i>	-
variable	+	+	_	-	+

Union views

Deriving view templates

- composing base-view templates attribute-wise
- all combinations are considered but some may yield no result
- repeat if more than two views (composition is commutative and associative)

Composition of adornments

	f	o[<i>S</i> ₂]	b	c[<i>S</i> ₂]	u
f	f	o[<i>S</i> ₂]	b	c[<i>S</i> ₂]	u
o[<i>S</i> ₁]	o[<i>S</i> ₁]	$o[S_1 \cap S_2]$	c[<i>S</i> ₁]	$c[S_1 \cap S_2]$	u
b	b	c[<i>S</i> ₂]	b	c[<i>S</i> ₂]	-
c[<i>S</i> ₁]	c[<i>S</i> ₁]	$c[S_1 \cap S_2]$	c[<i>S</i> ₁]	$c[S_1 \cap S_2]$	-
u	u	u	_	-	u

Other operations

Join

- join attributes: as for union
- non-join attributes: copy base-view adornments

Selection

copy base-view adornments

Projection

- copy base-view adornments
- hidden attributes have to have f, o, or u adornments

Postprocessing for union

Filtering

- adding a filter operation
- converting **u** and **o** to **f**

Composition of adornments with filtering

	f	o[<i>S</i> ₂]	b	c[<i>S</i> ₂]	u
f	f	f	b	c[<i>S</i> ₂]	f
o[<i>S</i> ₁]	f	f	b	c[<i>S</i> ₂]	f
b	b	b	b	c[<i>S</i> ₂]	b
c[<i>S</i> ₁]	$c[S_1 \cap S_2]$	c[<i>S</i> ₁]			
u	f	f	b	c[<i>S</i> ₂]	f

Postprocessing for join

Join

- pass the bindings from the first argument of the join to the second argument
- converting **b** in the second argument to **f**

Composition of adornments with passing bindings

	f	o[<i>S</i> ₂]	b	c[<i>S</i> ₂]	u
f	f	f	f	c[<i>S</i> ₂]	f
o[<i>S</i> ₁]	f	f	f	c[<i>S</i> ₂]	f
b	b	b	b	c[<i>S</i> ₂]	b
c[<i>S</i> ₁]	$c[S_1 \cap S_2]$	c[<i>S</i> ₁]			
u	f	f	f	c[<i>S</i> ₂]	f

Postprocessing for selection

Selection

- converting u and o to f through filtering
- converting b to f if the value of the attribute can be inferred from the selection condition
- converting c[S] to f if some element of S can be inferred from the selection condition

Dynamic mediation

A query may be answerable in a given database state even if it does not match any of the view templates.

Liberal and conservative templates

- liberal: convert c (in the second argument) to f for joins
- conservative: as before

Query-template matching

- query answerable if it matches at least one conservative template
- query not answerable if it does not match any of the liberal templates
- query may be answerable otherwise: dynamic execution

R. Yerneni, H. Garcia-Molina, and J. Ullman.

Computing Capabilities of Mediators.

In ACM SIGMOD International Conference on Management of Data, pages 443–454, 1999.