Data Integration: Query Evaluation

Jan Chomicki

University at Buffalo

Interpreting schema mappings

Semantics

e M: function mapping source instances to sets of target instances:
M : 1(S) — 2"
where S is a source schema and T is a target schema
e specified using assertions (source-to-target dependencies) or queries

e completeness assumptions: OWA vs. CWA
e special classes: GAV, LAV, GLAV

Certain answers
A tuple t is a certain answer to a query Q over the source instance s € /(S)
with respect to M if t € Q(w) for every target instance w € M(s).

CWA vs. OWA

e Closed World Assumption (CWA): complete knowledge
e Open World Assumption (OWA): incomplete knowledge

Global-as-view (GAV)

Setting

o source-to-target dependencies:

e under OWA: Vt. ¢5(t) = R(t)
e under CWA: Vt. ¢s(t) & R(t)
e ¢s(t): disjunction of conjunctions of source atoms

e queries: unions of conjunctive queries (defined using Datalog)

Query evaluation by unfolding
@ preprocessing: each atom in the query is replaced by one with fresh
variables and additional conditions added

@® applicability: can the head A of a rule r can be made identical to a query
atom B by a renaming substitution 0 of all variables?

® unfolding: replace B by the body of a rule r to which € has been applied
@ termination: stop when only source atoms are left
@ result: take the union @, of all obtained queries

@ correctness: the evaluation of @, over the source instances returns the
certain answers (under both OWA and CWA)

Unfolding example

Setting

e Databases:

e Source: emp(N,A), num(N,Id)

e Target: name(Id,N), addr(Id,A)
e Source-to-target dependency (GAV):

VN, A, Id. emp(N,A) A num(N,Id) = name(ld,N)

@ Query:
query(N) :- emp101(N).
emp101(N) :- name(101,N).

® Preprocessing and renaming of the query atoms:
query(N) :- emp101(N).
emp101(N1) :- name(X,N1), X=101.

® Unfolding the first query rule with the second:
query(N) :- name(X,N), X=101.

@ Renaming of the source-to-target dependency:
name (Id2,N2) :- emp(N2,A2), num(N2,Id2).

® Unfolding with the source-to-target dependency:
query(N) :- emp(N,A2), num(N,X), X=101.

Local-as-view (LAV)

Setting
o Source-to-target dependencies (OWA):
Vt. R(t) = é7(t)

e ¢7(t): conjunctive query over the target

e queries: sets of Datalog rules (no inequalities).

Query rewriting

e the rewriting produces a set of Datalog rules with Skolem function
symbols:
e EDB predicates: source relations
o IDB predicates: target relations

e function symbols can be eliminated.

Query evaluation in LAV

Inverse rules

o for every source-to-target dependency:
Vxt, . s Xm-(A= 3y1, ... yk.Bi A+ A Bp)

produce n inverse rules By : —A, ..., B;: —A

e B! is like B;, except that each of yi, ...y is replaced by the (Skolem)
term f(xi,...,xm) where f is a different, unique function symbol.

e all the occurrences of the same variable are replaced by the same term

Query evaluation through rewriting

@ construct the inverse rules
® the query rule and the inverse rules are evaluated bottom-up
© the evaluation terminates

@ only the substitutions that do not contain Skolem terms are returned to
the user

@ the result is the set of certain answers

Global-and-Local-as-view (GLAV)

Assertions

e source-to-target (ST) dependencies:

Vt. ¢s(t) = o7(t)

where ¢s, ¢, and Y1 are conjunctive queries
e target integrity constraints ¥,

o tuple-generating dependencies (tgds): Vx (¢1(x) = 3y ¥1(x,Y))
e equality-generating dependencies: Vx (¢7(x) = x1 = x2).

Query evaluation in data exchange

@ construct any universal solution Jy
® evaluate the query over Jy
© discard answers with nulls

@ the above returns certain answers for unions of conjunctive queries without
inequalities

Solutions and certain answers

Solution
Given a source instance /, a target instance J is

e a solution for | if J satisfies target integrity constraints and (/, J) satisfy
source-to-target dependencies

e a universal solution for [if it is a solution for / and there is a
homomorphism from it to any other solution for /

e solutions can contain labelled nulls

There may be multiple solutions...

Certain answers

e query answers obtained in every solution J for /

Building a universal solution

Apply repetitively a variant of the chase to the source instance using target and
source-to-target dependencies.

Chasing a tgd

® find a substitution h that (1) h makes the LHS true in the constructed
instance, and (2) h cannot be extended to a substitution that makes the
RHS true in that instance

® apply h to the RHS, mapping the existentially quantified variables to fresh
labelled nulls

® add the resulting facts to the instance.

Chasing an egd

Find a substitution h such that makes the LHS true and h(x1) # h(x2):
e if h(x1) and h(xz) are constants, then FAILURE
e otherwise, identify h(x1) and h(x2) (preferring constants).

Chase at work

Source and target databases
Source: Emp(N, A), Num(N, Id) Target: Name(ld, N), Addr(Id,A)

Source-to-target dependencies
Vn,a. Emp(n, a) = 3id. Name(id, n) A\ Addr(id, a)
Vn, a,id. Emp(n,a) A Num(n, id) = Name(id, n)

Target constraints
Name: N — Id,Id — N, Addr : Id — A.

Chase sequence
lo = {Emp(Li, LA), Num(Li,111)}
h = {Emp(Li, LA), Num(Li, 111), Name(ic:, Li), Addr(idi, LA)}
b = {Emp(Li, LA), Num(Li, 111), Name(ids, Li), Addr(idy, LA), Name(111, Li)}
Iz = {Emp(Li, LA), Num(Li,111), Name(111, Li), Addr(111, LA)}

Chase

Result
e there is a sequence of chase applications that ends in failure: no universal
solution

e otherwise: every finite sequence that cannot be extended yields a universal
solution

Acyclic tgds

e no cycles in the program dependency graph
e nodes: relations
o edges from the relations in the body of a tgd to the one in the head

e prevent the recurrent generation of labelled nulls

e more fine-grained analysis possible

Termination
For acyclic tgds, each chase sequence is of length polynomial in the size of the
input.

