
Time Domain

Angelo Montanari∗ and Jan Chomicki+

∗Dipartimento di Matematica e Informatica,
Università degli Studi di Udine, Udine, Italy

+ Department of Computer Science and Engineering
University at Buffalo, SUNY, USA

Synonyms

Temporal domain, temporal structure

Definition

In its full generality, a time domain can be defined as a set of temporal individ-
uals connected by a set of temporal relations. Different choices for the temporal
individuals and/or the temporal relations give rise to different temporal on-
tologies.

In the database context, the most common temporal ontology takes time in-
stants (equivalently, points or moments) as the temporal individuals and a lin-
ear order over them as the (unique) temporal relation [5]. In addition, one may
distinguish between discrete and dense, possibly continuous, time domains
and between bounded and unbounded time domains. In the discrete case, one
may further consider whether the time domain is finite or infinite and, in the
case of unbounded domains, one can differentiate between left-bounded, right-
bounded, and totally unbounded domains. Moreover, besides linear time, one
may consider branching time, where the linear order is replaced with a partial
one (a tree or even a directed acyclic graph), or circular time, which can be used
to represent temporal periodicity.

As for temporal individuals, time instants can be replaced with time inter-
vals (equivalently, periods or anchored stretches of time) connected by (a sub-
set of) Allen’s relations before, meets, overlaps, starts, during, equal,
and finishes, and their inverses or suitable combinations [7]. As in the case
of instant-based domains, one may distinguish between discrete and dense do-
mains, bounded and unbounded domains, linear, branching, and circular do-
mains, and so on.

1



Finally, as most temporal database applications deal with both qualitative
and quantitative temporal aspects, instant-based time domains are usually as-
sumed to be isomorphic to specific numerical structures, such as those of natu-
ral, integer, rational, and real numbers, or to fragments of them, while interval-
based ones are obtained as suitable intervallic constructions over them. In such
a way, time domains are endowed with metrical features.

Historical background

The nature of time and the choice between time instants and time intervals
as the primary objects of a temporal ontology have been a subject of active
philosophical debate since the times of Zeno and Aristotle. In the twentieth
century, major contributions to the investigation of time came from a number
of disciplines. A prominent role was played by Prior who extensively studied
various aspects of time, including axiomatic systems of tense logic based on
different time domains.

Nowadays, besides physics, philosophy, and linguistics, there is a consid-
erable interest in temporal structures in mathematics (theories of linear and
branching orders), artificial intelligence (theories of action and change, rep-
resentation of and reasoning with temporal constraints, planning), and theo-
retical computer science (specification and verification of concurrent and dis-
tributed systems, formal analysis of hybrid temporal systems that feature both
discrete and continuous components). A comprehensive study and logical
analysis of instant-based and interval-based temporal ontologies, languages,
and logical systems can be found in [2].

As for temporal databases, the choice of the time domain over which temporal
components take their value is at the core of any application. In most cases, a
discrete, finite, and linearly ordered (instant-based) time domain is assumed.
This is the case, for instance, with SQL standards [9]. However, there is no a
single way to represent time in a database, as witnessed by the literature in
the field. To model when something happened, time instants are commonly
used; validity of a fact over time is naturally represented by the (convex) set of
time instants at which the fact holds, the time period of validity in the temporal
database terminology; finally, to capture processes as well as some kinds of
temporal aggregation, time intervals are needed.

Scientific fundamentals

Basics. The choice between time instants and time intervals as the basic time
constituents is a fundamental decision step that all temporal systems have in
common. In mathematics, the choice of time instants, that is, points in time
without duration, is prevalent. Even though quite abstract, such an solution
turned out extremely fruitful and relatively easy to deal with in practice. In
computer science, additional motivations for this choice come from the natu-

2



ral description of computations as possibly infinite sequences of instantaneous
steps.

The alternative option of taking time intervals, that is, anchored stretches of
time with duration, as temporal individuals seems to better adhere to the con-
crete experience of people. Physical phenomena as well as natural language
expressions involving time can be more easily described in terms of time inter-
vals instead of time instants. Nevertheless, the complexity of any systematic
treatment of time intervals prevents many systems from the adoption of an
interval-based ontology.

The instant and the interval ontologies are systematically investigated and
compared in [2]. The author identifies the conditions an instant-based (resp.,
interval-based) structure must satisfy to be considered as an adequate model
of time. Then, through an axiomatic encoding of such conditions in an appro-
priate language, he provides a number of (first-order and higher order) logical
theories of both instant-based and interval-based discrete, dense, and contin-
uous structures. Finally, he illustrates the strong connections that link the two
time ontologies. In particular, he shows how interval-based temporal struc-
tures can be obtained from instant-based ones through the standard process of
interval formation and how instant-based temporal structures can be derived
from instant-based ones by a (non-trivial) limiting construction.

A metric of time is often introduced to allow one to deal with time dis-
tance and/or duration. In particular, a time metric is needed to define calendar
times, such as those based on the commonly used Gregorian calendar.

Temporal models and query languages. The choice of the time domain has
an impact on various components of temporal databases. In particular, it influ-
ences temporal data models and temporal query languages.

As for temporal data models, almost all of them adopt an instant-based time
ontology. Moreover, most of them assume the domain to be linear, discrete
and finite. However, many variants of this basic structure have been taken into
consideration [8]. Right-unbounded domains have been used to record infor-
mation about the future. Dense and continuous domains have been considered
in the context of temporal constraint databases, that allow one to represent
large, or even infinite, sets of values, including time values, in a compact way.
Branching time has been exploited in applications where several alternatives
have to be considered in the future and/or past evolution of temporal data.

Many data models distinguish between absolute (anchored) and relative
(unanchored) time values. Absolute time values denote specific temporal in-
dividuals. In general, they are associated with a time metric, such as that of
calendar times. As an example, the 14th of September 2007 is an absolute time
value that denotes a specific element of the domain of days in the Gregorian
calendar. Relative time values specify the distances between pairs of time in-
stants or the durations of time intervals. Absolute and relative time values can
also be used in combination. As an example, the expression 7 days after the
14th of September 2007 denotes the 21st of September 2007.

3



As for temporal query languages, they typically assume that time is isomor-
phic to natural numbers. This is in agreement with the most common, linear-
time dialect of temporal logic. In temporal constraint databases, however, the
use of classical query languages like relational calculus or algebra accommo-
dates a variety of time domains, including dense and continuous ones.

Time domain and granularity. Despite its apparent simplicity, the addition
of the notion of time domain to temporal databases presents various subtleties.
The main ones concern the nature of the elements of the domain. As soon as
calendar times come into play, indeed, the abstract notion of instant-based time
domain must be contextualized with respect to a specific granularity [3, 6]. Any
given granularity can be viewed as a suitable abstraction of the real time line
that partitions it into a denumerable sequence of homogeneous stretches of
time. The elements of the partition, granules in the temporal database termi-
nology, become the individuals (non-decomposable time units) of a discrete
time domain. With respect to the considered granularity, these temporal in-
dividuals can be assimilated to time instants. Obviously, if a shift to a finer
granularity takes place, e.g., if one moves from the domain of months to the
domain of days, a single granule must be replaced with a set of granules. In
such a way, being instantaneous is not more an intrinsic property of a tempo-
ral individual, but it depends on the time granularity one refers to. A detailed
analysis of the limitations of the temporal database management of instant-
based time domains can be found in [9].

The association of time with data. The association of the elements of the
time domain with data is done by timestamping. A timestamp is a time value
associated with a data object. In the relational setting, one distinguishes be-
tween attribute-timestamped data models, where timestamps are associated
with attribute values, and tuple-timestamped data models, where timestamps
are associated with tuples of values. As a third possibility, a timestamp can be
associated with an entire relation/database.

Timestamps can be single elements as well as sets of elements of the time
domain. Time instants are usually associated with relevant events, e.g., they
can be used to record the day of the hiring or of the dismissal of an employee.
(Convex) sets of time instants are associated with facts that hold over time. As
an example, if a person E works for a company C from the 1st of February 2007
to the 31st of May 2007, one keeps track of the fact that every day in between
the 1st of February 2007 and the 31st of May 2007, endpoints included, E is an
employee of C.

Time intervals are needed to deal with situations where validity over an
interval cannot be reduced to validity over its subintervals (including point
subintervals) [10]. This is the case with processes that relate to an interval as a
whole, meaning that if a process consumes a certain interval it cannot possibly
transpire during any proper subinterval thereof. Examples are the processes
of baking a cake or of flying from Venice to Montreal. This is also the case

4



when validity of a fact at/over consecutive instants/intervals does not imply
its validity over the whole interval. As an example, two consecutive phone
calls with the same values are different from a single phone call over the whole
period. This is also the case for some kinds of temporal aggregation [4]. Finally,
the use of time intervals is common in several areas of AI, including knowledge
representation and qualitative reasoning, e.g., [1].

It is important to avoid any confusion between this latter use of intervals
as timestamps and their use as compact representations of sets of time points
(time periods in the temporal database literature). Time intervals are indeed
often used to obtain succinct representations of (convex) sets of time instants.
In such a case, validity over a time period is interpreted as validity at every
time instant belonging to it. As an example, the fact that a person E worked
for a company C from the 1st of February 2007 to the 31st of May 2007 can
be represented by the tuple (E, C, [2007/02/01, 2007/05/31]) meaning that E
worked for C every day in the closed interval [2007/02/01, 2007/05/31] .

Key applications

As already pointed out, the time domain is an essential component of any tem-
poral data model, and thus its addition to SQL standards does not come as a
surprise.

In SQL, time domains are encoded via temporal data types (they have been
introduced in SQL-92 and preserved in SQL:1999). In SQL-92, five (anchored)
time instant data types, three basic forms and two variations, are supported
(DATE, TIME, TIMESTAMP, TIME WITH TIME ZONE, TIMESTAMP WITH
TIME ZONE). In addition, SQL-92 features two (unanchored) data types that
allow one to model positive (a shift from an instant to a future one) and nega-
tive (a shift from an instant to a past one) distances between instants. One can
be used to specify distances in terms of years and months (the YEAR-MONTH
INTERVAL type), the other to specify distances in terms of days, hours, min-
utes, seconds, and fractions of a second (the DAY-TIME INTERVAL type). As
a matter of fact, the choice of using the word interval to designate a time dis-
tance instead of a temporal individual – in contrast with the standard use of
this word in computer science – is unfortunate, because it confuses a derived
element of the time domain (the interval) with a property of it (its duration).
An additional (unanchored) temporal data type, called PERIOD, was included
in the SQL/Temporal proposal for the SQL3 standard, which was eventually
withdrawn. A period is a convex sets of time instants that can be succinctly
represented as a pair of time instants, namely, the first and the last instants
with respect to the given order.

SQL also provides predicates, constructors, and functions for the management
of time values. General predicates, such as the equal-to and less-than predi-
cates, can be used to compare pairs of comparable values of any given tempo-
ral type; moreover, the specific overlap predicate can be used to check whether
two time periods overlap. Temporal constructors are expressions that return a

5



temporal value of a suitable type. We may distinguish datetime constructors,
that return a time instant of one of the given data types, and interval construc-
tors, that return a value of YEAR-MONTH INTERVAL or DAY-TIME INTER-
VAL types. As for functions, they include the datetime value functions, such as
the CURRENT DATE function, that return an instant of the appropriate type,
the CAST functions, that convert a value belonging to a given (temporal or non
temporal) source data type into a value of the target temporal data type, and
the extraction functions, that can be used to access specific fields of instant or
interval time values.

Future directions

Despite the strong prevalence of instant-based data models in current temporal
databases, a number of interesting problems, such as, for instance, that of tem-
poral aggregation, motivate a systematic study and development of interval-
based data models. Moreover, in both instant-based and interval-based data
models intervals are defined as suitable sets of elements of an instant-based
time domain. The possibility of assuming time intervals as the primitive tem-
poral constituents of the temporal domain is still largely unexplored. We be-
lieve that such an alternative deserves a serious investigation.

Cross references

Temporal Data Model, Temporal Query Languages, Temporal Granularity, Tem-
poral Indeterminacy, Temporal Periodicity, Point-Stamped Temporal Models,
Period-Stamped Temporal Models, Temporal Constraints, Temporal Algebras,
Now in Temporal Databases

References

[1] James Allen and G. Ferguson, Actions and Events in Interval Temporal
Logic, Journal of Logic and Computation, 4(5):531-579, 1994.

[2] Johan van Benthem, The Logic of Time. A Model-Theoretic Investigation into
the Varieties of Temporal Ontology and Temporal Discourse (second edition),
Kluwer Academic Publisher, 1991.

[3] Claudio Bettini and Sushil Jajodia and X. Sean Wang, Time Granularities
in Databases, Data Mining, and Temporal Reasoning, Springer, 2000.

[4] Michael H. Böhlen, Johann Gamper, and Christian S. Jensen, How Would
You Like to Aggregate Your Temporal Data? In Proceedings of the 13th
International Symposium on Temporal Representation and Reasoning
(TIME), IEEE Comp. Society, 2006, pp. 121-136.

6



[5] Jan Chomicki and David Toman, Temporal Databases. Chapter 14 of the
Handbook of Temporal Reasoning in Artificial Intelligence, M. Fisher, D.
Gabbay, and L. Vila (Eds.), Elsevier B. V., 2005, pp. 429-467.

[6] Jerome Euzenat and Angelo Montanari, Time Granularity, Chapter 3 of the
Handbook of Temporal Reasoning in Artificial Intelligence, M. Fisher, D.
Gabbay, and L. Vila (Eds.), Elsevier B. V., 2005, pp. 59-118.

[7] Valentin Goranko, Angelo Montanari, and Guido Sciavicco, A Road Map
of Interval Temporal Logics and Duration Calculi, Journal of Applied Non-
Classical Logics, 14(1-2):9-54, 2004.

[8] Angelo Montanari and Barbara Pernici, Temporal Reasoning. Chapter 21 of
Temporal Databases: Theory, Design and Implementation, A. Tansell, J.
Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass (Eds.), Database
Systems and Applications Series, Benjamin/Cummings Pub. Co., Red-
wood City, CA, 1993, pp.534-562.

[9] Richard T. Snodgrass, Developing Time-Oriented Database Applications in
SQL. Chapter 3: Instants and Intervals, Morgan Kauffman Publishers,
2000, pp. 24-87.

[10] Paolo Terenziani and Richard T. Snodgrass, Reconciling Point-Based and
Interval-Based Semantics in Temporal Databases: A Treatment of the
Telic/Atelic Distinction, IEEE Transactions on Knowledge and Data Engi-
neering, 16(5):540–551, 2004

7


