Temporal Logic in Database Query Languages

Jan Chomicki, University at Buffalo, USA, http://www.cse.buffalo.edu/"chomicki
David Toman, University of Waterloo, Canada, http://www.cs.uwaterloo.ca/"david

DEFINITION

The term “temporal logic” is used, in the area of formal logic, to describe systems for representing and reasoning
about propositions and predicates whose truth depends on time. These systems are developed around a set of
temporal connectives, such as sometime in the future or until, that provide implicit references to time instants.
First-order temporal logic is a variant of temporal logic that allows first-order predicate (relational) symbols,
variables and quantifiers, in addition to temporal connectives. This logic can be used as a natural temporal query
language for point-stamped temporal databases. A query (a temporal logic formula) is evaluated with respect to
an evaluation point (time instant). Each such point determines a specific database snapshot that can be viewed
as a relational database. Thus, the evaluation of temporal logic queries resembles the evaluation of first-order
(relational calculus) queries equipped with an additional capability to “move” the evaluation point using temporal
connectives. In this way, it becomes possible to refer in a single query to multiple snapshots of a given temporal
database. The answer to a temporal logic query evaluated with respect to all time instants forms a point-stamped
temporal relation.

HISTORICAL BACKGROUND

Temporal Logic was developed, originally under the name of tense logic, by Arthur Prior in the late 1950s for
representing and reasoning about natural languages. It was introduced to computer science by Amir Pnueli [8]
as a tool for formal verification of software systems. The first proposal for using a temporal logic in the database
context was by Sernadas [9]. Subsequently, de Castilho et al. [3] initiated the study of temporal-logic integrity
constraints in relational databases. Tuzhilin and Clifford [12] considered temporal logic as a query language for
temporal databases.

SCIENTIFIC FUNDAMENTALS

Temporal Logic is a variant of modal logic, tailored to expressing statements whose truth is relative to an underlying
time domain which is commonly a linearly ordered set of time instants (see the entry Time Domain). The
modalities are expressed using natural-language statements of the form sometime in the future, always in the
future, etc., and are captured in the syntax of the logic using temporal connectives.

Temporal logics are usually rooted in propositional logic. However, for the purposes of querying (single-
dimensional, valid time) point-stamped temporal databases, Linear-Time First-Order Temporal Logic (FOTL),
an extension of first-order logic (relational calculus) with temporal connectives, is used. More formally, given a
relational schema p (of a snapshot of a point-stamped temporal database), the syntax of FOTL queries is defined
as follows:

Qu=7rTiy,. . Ty) | zi=2; | QANQ | Q| Fz.Q | Q since Q | Q until Q
for r € p. The additional since and until connectives are the temporal connectives. The connectives completely
encapsulate the structure of time: FOTL only refers to time implicitly using these connectives. In contrast,
Temporal Relational Calculus (TRC) uses explicit temporal variables and attributes to refer to time. Note that
there are no restrictions on the nesting of the temporal connectives, the Boolean connectives, and the quantifiers.

The meaning of all temporal logic formulas is defined relative to a particular time instant called the evaluation
point. Intuitively, the evaluation point can be viewed as representing the current instant or now. The standard
first-order parts of FOTL formulas are then evaluated in the snapshot of the temporal database determined by
the evaluation point. The temporal connectives make it possible to change the evaluation point, i.e., to “move” it

to the past or to the future. In this way the combination of first-order constructs and temporal connectives allows
to ask queries that refer to multiple snapshots of the temporal database. For example the query @) since)5 asks
for all answers that make @ true sometime in the past and @; true between then and now. Similarly, queries
about the future are formulated using the until connective. More formally, answers to FOTL queries are defined
using a satisfaction relation that, for a given FOTL query, links a temporal database and an evaluation point
(time instant) with the valuations that make the given query true with respect to the snapshot of that database
at that particular evaluation point. This definition, given below, extends the standard definition of satisfaction
for first-order logic.

Definition. [FOTL Semantics] Let DB be a point-stamped temporal database with a data domain D, a
point-based time domain Tp, and a (snapshot) schema p.

The satisfaction relation DB,0,t = @, where @ is an FOTL formula, # a valuation, and ¢ € Tp, is defined
inductively with respect to the structure of the formula Q:

DB, 0.t rj(wi,,... x5) if (0(zs,),...,0(x;,)) € r) PO

DB797t':Q1/\Q2 1fDB,0,t':Q1 andDB,H,t):QQ
DB,@,t|: ﬁQl if not DB,G,t):Ql
DB,0,t = Jx;.Q1 if there is @ € D such that DB, 0[z; — al],t = Q1

DB,6,t = Qq since Q2 if Jta.to <t and DB, 0ty = Qo and (Viq1.to < t1 < t implies DB, 0,t; E Q1)
DB, H,t ': Ql until QQ if Ito.ty >t and DB, 0,t2 ': Q2 and (th.tg >t >t 1mphes DB,@,tl): Ql)
where r?B(t) is the instance of the relation r; in the snapshot DB(t) of the database DB at the instant ¢.

The answer to an FOTL query QQ over DB is the set of tuples:

Q(DB) :={(t,0(x1),...,0(z)) : DB,6,t = Q},
where 1, ...,z are the free variables of Q.

Note that answers to FOTL queries are (valid-time) point-stamped temporal relations.
Other commonly used temporal connectives, such as & (sometime in the future), O (always in the future),
® (sometime in the past), and B (always in the past) can be defined in terms of since and until as follows:

O Xy = true until X; € X, := true since X;
DXl = _|<>_|X1 .X1 = _|’_|X1

For a discrete linear order, the O (next) and @ (previous) operators are defined as follows:
OX; := false until X; @®.X, := false since X

The connectives since, ¢, B, and @ are called past temporal connectives (as they refer to the past) and until,
<, O, and O future temporal connectives.

Example. The sensor information about who enters or exits a room is kept in the relations Entry (Figure
la) and Fzit (Figure 1b). Consider the query Q,: "For every time instant, who is in the room Bell 224 at that
instant?” It can be written in temporal logic as:

Ir. ((=Ewit(r,p)) since Entry(r,p)) Ar = "Bell 224"

The answer to @@, in the given database is presented in Figure lc, under the assumption that time instants
correspond to minutes.

Extensions
Several natural extensions of FOTL are obtained by modifying various components of the language:

2

: Time | Person
Entry Bt 8:31 | John
Time | Room Person Time | Room Person e .
a)| 8:30 | Bell 224 | John b)| 10:30 | Bell 224 | John ¢)| 10:30 | John
9:00 | Bell 224 Mary 10: 00 | Bell 224 Mary 9:01 | Mary
11:00 | Capen 10 | John 12:00 | Capen 10 | John
10: 00 | Mary

Figure 1: The Entry relation, the Exit relation, and the Who is in Bell 22/ relation.

Multiple Temporal Contexts (Multi-dimensional TLs). Standard temporal logics use a single evaluation point
to relativize the truth of formulas with respect to time. However, there is no principled reason why not to use
more than one evaluation point simultaneously. The logics taking this path are called multidimensional temporal
logics or, more precisely, n-dimensional temporal logics (for n > 1). The satisfaction relation is extended, for a
particular n, in a natural way, as follows:

DB,0,ty,....tn = Q

where t1,...,t, are the evaluation points. In a similar fashion the definitions of temporal connectives are extended
to this setting. Two-dimensional connectives, for example, seem to be the natural basis for temporal logic-style
query language for the bitemporal data model. Unfortunately, there is no consensus on the selection of two-
dimensional temporal operators.

An interesting variant of this extension are interval temporal logics that associate truth with intervals—these,
however, can be considered pairs of time points [5, 13].

More Complex Time Domains. While most temporal logics assume that the time domain is equipped with a
linear order only, in many practical settings the time domain has additional structure. For example, there may
be a way to refer to duration (the distance of two time points). The linear-order temporal connectives are then
generalized to metric temporal connectives:

DB, 0,t = Q1 since.,, Q2 if Jta.t —ta ~m and DB, 0ty = Q2 and (Viq1.to < t1 < t implies DB, 0,t; E Q1)
DB,0,t = Qq until.,, Qs if Jta.ty —t ~m and DB, 0,t5 = Q2 and (Vt1.to >t >t implies DB, 6,t; = Q1)

for ~ € {<,<,=,>,>}. Intuitively, these connectives provide means of placing constraints on how far in the
past/future certain subformulas must be true. The resulting logic is then the Metric First-order Temporal Logic,
a first-order variant of Metric Temporal Logic [7].

Example. To demonstrate the expressive power of Metric Temporal Logic, consider the query Q: ”For every
time instant, who has been in the room Bell 224 at that instant for at least 2 hours?”:

Ir. ((mEwxit(r,p)) sinces2.00 Entry(r,p)) Ar = "Bell 224"

More Powerful Languages for Defining Temporal Connectives. Another extension introduces a more powerful
language for specifying temporal connectives over the underlying linearly-ordered time domain. Vardi and Wolper
show that temporal logics with connectives defined using first-order formulas cannot express various natural
conditions such as “every other day”. To remedy this shortcoming, they propose temporal connectives defined
with the help of regular expressions (ETL [15]) or fizpoints (temporal p-calculus [14]). Such extensions carry over
straightforwardly to the first-order setting.

More Complex Underlying Query Languages. Last, instead of relational calculus, temporal connectives can be
added to a more powerful language, such as Datalog. The resulting language is called Templog [2]. With suitable
restrictions, query evaluation in this language is decidable and the language itself is equivalent to Datalog; g [2].

3

Expressive Power
The since and until temporal connectives can be equivalently defined using formulas in the underlying theory
of linear order as follows:

X7 since Xy := dto.tg > ta A Xo /\Vt1<t0 >t >ty — Xl)
X until X, = Ehfg.to <ty N X9 /\th(to <ty <ty — X1)

where X; and X, are placeholders that will be substituted with other formulas to be evaluated at the time
instants ¢; and ts, respectively. This observation indicates that every FOTL query can be equivalently expressed
in TRC. The explicit translation parallels the inductive definition of FOTL satisfaction, uniformly parameterizing
the formulas by to. In this way, an atomic formula r(z1,...,z;) (where r is a non-temporal snapshot relation)
becomes R(to,x1,...,2x) (where R is a point-timestamped relation), and so on. For a particular ¢y, evaluating
r(z1,...,2) in DB(tp), the snapshot of the database DB at tg, yields exactly the same valuations as evaluating
R(tg,x1,...,2x) in DB. The embedding of the temporal connectives uses the definitions above. For example,
the embedding of the since connective looks as follows:

Embed(Q; since Q2) = Tta(to > ta A Vig(ta = tg — Embed(Q2))A
Vti(to >ty >ty — Vig(t1 = to — Embed(Q1))))

Note that ¢ is the only free variable in Embed(Q1), Embed(Q2), and Embed(Q; since Q2). Thus, in addition to
applying the (first-order) definition of the temporal connective, the embedding performs an additional renaming
of the temporal variable denoting the evaluation point for the subformulas, because the only free variable outside
of the expanded temporal connectives must be called ¢g.

Additional temporal connectives can be defined using the same approach, as formulas in the underlying theory
of the temporal domain. However, for linear orders—the most common choice for such a theory—Kamp [6] has
shown that all the connectives that are first-order definable in terms of linear order can be readily formulated
using since and until.

In addition, it is easy to see on the basis of the above embedding that all FOTL queries (and their subqueries)
define point-stamped temporal relations. This closure property makes FOTL amenable to specifying operators
for temporal relational algebra(s) over the point-stamped temporal model. On the other hand, many, if not most,
other temporal query languages, in particular various temporal extensions of SQL, are based on TRC and use
temporal variables and attributes to explicitly access to timestamps. These languages do not share the above
closure property. Surprisingly, and in contrast to the propositional setting, one can prove that query languages
based on FOTL are strictly weaker than query languages based on TRC [1, 11]. The query

SNAPSHOT EQUALITY:
“are there two distinct time instants at which a unary relation R contains exactly the same values?”

cannot be expressed in FOTL. On the other hand, SNAPSHOT EQUALITY can be easily expressed in TRC as
follows:
Ehfl, to.t1 < ta A Vx.R(tl, .T) < R(tg, Z‘)

Intuitively, the subformula “Va.R(t1,2) <= R(t2,x)” in the above query requires the simultaneous use of two
distinct evaluation points ¢; and ¢y in the scope of a universal quantifier, which is not possible in FOTL. The
result can be rephrased by saying that FOTL and other temporal query languages closed over the point-stamped
temporal relations fail to achieve (the temporal variant of) Codd’s completeness. In particular, there cannot be
a temporal relational algebra over the (single-dimensional) point-stamped temporal model that can express all
TRC queries.

In addition, this weakness is inherent to other languages with implicit access to timestamps, provided the
underlying time domain is a linear order. In particular:

eadding a finite number of additional temporal connectives defined in the theory of linear order (including
constants) is not sufficient for expressing SNAPSHOT EQUALITY [11];

eintroducing multidimensional temporal connectives [4], while sufficient to express SNAPSHOT EQUALITY,
is still not sufficient to express all TRC queries [10]. This also means that in the bitemporal model, the
associated query languages cannot simultaneously preserve closure with respect to bitemporal relations and
be expressively equivalent to TRC;

eusing temporal connectives that are defined by fixpoints and/or regular expressions (see the earlier
discussion) is also insufficient to express SNAPSHOT EQUALITY. Due to their non-first-order nature,
the resulting query language(s) are incomparable, in terms of their expressive power, to TRC [1].

The only currently known way of achieving first-order completeness is based on using temporal connectives defined
over a time domain whose structure allows the definition of pairing and projections (e.g., integer arithmetic). In
this way temporal connectives can use pairing to simulate an unbounded number of variables and in turn the full
TRC. However, such a solution is not very appealing, as the timestamps in the intermediate temporal relations
do not represent time instants, but rather (encoded) tuples of such instants.

KEY APPLICATIONS

The main application area of FOTL is in the area of temporal integrity constraints. It is based on the observation
that a sequence of relational database states resulting from updates may be viewed as a snapshot temporal
database and constrained using Boolean FOTL formulas. Being able to refer to the past states of the database,
temporal logic constraints generalize dynamic constraints. Temporal logic is also influential in the area of design
and analysis of temporal query languages such as temporal relational algebras.

CROSS REFERENCE

bitemporal data model, Datalog, point-stamped data model, relational calculus, temporal integrity constraints,
temporal query languages, temporal relational calculus, temporal algebras, time domain, time instant, TSQL2,
valid time.

RECOMMENDED READING

[1] S. Abiteboul, L. Herr, and J. Van den Bussche. Temporal Versus First-Order Logic to Query Temporal Databases.
In ACM Symposium on Principles of Database Systems, pages 49-57, 1996.

[2] M. Baudinet, J. Chomicki, and P. Wolper. Temporal Deductive Databases. In A. Tansel, J. Clifford, S. Gadia,
S. Jajodia, A. Segev, and R. T. Snodgrass, editors, Temporal Databases: Theory, Design, and Implementation,
chapter 13, pages 294-320. Benjamin/Cummings, 1993.

[3] J. M. V. de Castilho, M. A. Casanova, and A. L. Furtado. A Temporal Framework for Database Specifications. In
International Conference on Very Large Data Bases, VLDB’82, pages 280291, 1982.

[4] D. Gabbay, I. Hodkinson, and M. Reynolds. Temporal Logic: Mathematical Foundations and Computational Aspects.
Oxford University Press, 1994.

[5] V. Goranko, A. Montanari, and G. Sciavicco. A Road Map of Interval Temporal Logics and Duration Calculi. Journal
of Applied Non-Classical Logics, 14(1-2):9-54, 2004.

[6] J. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, University of California, Los Angeles, 1968.

[7] R. Koymans. Specifying Real-Time Properties with Metric Temporal Logic. Real-Time Systems, 2(4):255-299, 1990.

[8] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems. Springer-Verlag, 1992.

[9] A. Sernadas. Temporal Aspects of Logical Procedure Definition. Information Systems, 5:167-187, 1980.

[10] D. Toman. On Incompleteness of Multi-dimensional First-order Temporal Logics. In International Symposium on
Temporal Representation and Reasoning and International Conference on Temporal Logic, pages 99-106, 2003.

[11] D. Toman and D. Niwinski. First-Order Queries over Temporal Databases Inexpressible in Temporal Logic. In
International Conference on Extending Database Technology (EDBT’96), Avignon, France, 1996.

[12] A. Tuzhilin and J. Clifford. A Temporal Relational Algebra as a Basis for Temporal Relational Completeness. In
D. McLeod, R. Sacks-Davis, and H.-J. Schek, editors, International Conference on Very Large Data Bases, VLDB’90,
pages 13-23, 1990.

[13] J. van Benthem. The Logic of Time. D.Reidel, 2nd edition, 1991.

[14] M. Y. Vardi. A Temporal Fixpoint Calculus. In ACM Symposium on Principles of Programming Languages, 1988.

[15] P. Wolper. Temporal Logic Can Be More Expressive. Information and Control, 56:72-99, 1983.

