
Abstract Versus Concrete Temporal Query Languages

Jan Chomicki, University at Buffalo, USA, http://www.cse.buffalo.edu/~chomicki
David Toman, University of Waterloo, Canada, http://www.cs.uwaterloo.ca/~david

SYNONYMS
historical query languages

DEFINITION
Temporal query languages are a family of query languages designed to query (and access in general) time-dependent
information stored in temporal databases. The languages are commonly defined as extensions of standard query
languages for non-temporal databases with temporal features. The additional features reflect the way dependencies
of data on time are captured by and represented in the underlying temporal data model.

HISTORICAL BACKGROUND
Most databases store time-varying information. On the other hand, SQL is often the language of choice for
developing applications that utilize the information in these databases. Plain SQL, however, does not seem to
provide adequate support for temporal applications.
Example. To represent the employment histories of persons, a common relational design would use a schema

Employment(FromDate, ToDate, EID, Company),

with the intended meaning that a person identified by EID worked for Company continuously from FromDate to
ToDate. Note that while the above schema is a standard relational schema, the additional assumption that the
values of the attributes FromDate and ToDate represent continuous periods of time is itself not a part of the
relational model.

Formulating even simple queries over such a schema is non-trivial: for example the query GAPS: “List all persons
with gaps in their employment history, together with the gaps” leads to a rather complex formulation in, e.g.,
SQL over the above schema (this is left as a challenge to readers who consider themselves SQL experts; for a list of
appealing, but incorrect solutions, including the reasons why, see [9]). The difficulty arises because a single tuple
in the relation is conceptually a compact representation of a set of tuples, each tuple stating that an employment
fact was true on a particular day.

The tension between the conceptual abstract temporal data model (in the example, the property that
employment facts are associated with individual time instants) and the need for an efficient and compact
representation of temporal data (in the example, the representation of continuous periods by their start and
end instants) has been reflected in the development of numerous temporal data models and temporal query
languages [3].

SCIENTIFIC FUNDAMENTALS
Temporal query languages are commonly defined using temporal extensions of existing non-temporal query
languages, such as relational calculus, relational algebra, or SQL. The temporal extensions can be categorized in
two, mostly orthogonal, ways:

The choice of the actual temporal values manipulated by the language. This choice is primarily determined by
the underlying temporal data model. The model also determines the associated operations on these values.
The meaning of temporal queries is then defined in terms of temporal values and operations on them, and
their interactions with data (non-temporal) values in a temporal database.

The choice of syntactic constructs to manipulate temporal values in the language. This distinction determines
whether the temporal values in the language are accessed and manipulated explicitly, in a way similar to
other values stored in the database, or whether the access is implicit, based primarily on temporally extending
the meaning of constructs that already exist in the underlying non-temporal language (while still using the
operations defined by the temporal data model).

Additional design considerations relate to compatibility with existing query languages, e.g., the notion of temporal
upward compatibility.

However, as illustrated above, an additional hurdle stems from the fact that many (early) temporal query
languages allowed the users to manipulate a finite underlying representation of temporal databases rather than
the actual temporal values/objects in the associated temporal data model. A typical example of this situation
would be an approach in which the temporal data model is based on time instants, while the query language
introduces interval-valued attributes. Such a discrepancy often leads to a complex and unintuitive semantics of
queries.

In order to clarify this issue, Chomicki has introduced the notions of abstract and concrete temporal databases
and query languages [2]. Intuitively, abstract temporal query languages are defined at the conceptual level of the
temporal data model, while their concrete counterparts operate directly on an actual compact encoding of temporal
databases. The relationship between abstract and concrete temporal query languages is also implicitly present
in the notion of snapshot equivalence [7]. Moreover, Bettini et al. [1] proposed to distinguish between explicit
and implicit information in a temporal database. The explicit information is stored in the database and used to
derive the implicit information through semantic assumptions. Semantic assumptions about fact persistence play
a role similar to mappings between concrete and abstract databases, while other assumptions are used to address
time-granularity issues.

Abstract Temporal Query Languages
Most temporal query languages derived by temporally extending the relational calculus can be classified as

abstract temporal query languages. Their semantics is defined in terms of abstract temporal databases which, in
turn, are typically defined within the point-stamped temporal data model, in particular without any additional
hidden assumptions about the meaning of tuples in instances of temporal relations.
Example. The employment histories in an abstract temporal data model would most likely be captured by a
simpler schema “Employment(Date, EID, Company)”, with the intended meaning that a person identified by EID
was working for Company on a particular Date. While instances of such a schema can be potentially very large
(especially when a fine granularity of time is used), formulating queries is now much more natural.

Choosing abstract temporal query languages over concrete ones resolves the first design issue: the temporal values
used by the former languages are time instants equipped with an appropriate temporal ordering (which is typically
a linear order over the instants), and possibly other predicates such as temporal distance. The second design
issue—access to temporal values—may be resolved in two different ways, as exemplified by the following two
different query languages:

•Temporal Relational Calculus (TRC): a two-sorted first-order logic with variables and quantifiers explicitly
ranging over the time and data domains (see the entry Temporal Relational Calculus).

•First-order Temporal Logic (FOTL): a language with an implicit access to timestamps using temporal
connectives (see the entry Temporal Logic in Database Query Languages).

Example. The GAPS query is formulated as follows:

TRC: ∃t1, t3.t1 < t2 < t3 ∧ ∃c.Employment(t1, x, c) ∧ (¬∃c.Employment(t2, x, c)) ∧ ∃c.Employment(t3, x, c)

FOTL: 3∃c.Employment(x, c) ∧ (¬∃c.Employment(x, c)) ∧2∃c.Employment(x, c)

Here, the explicit access to temporal values (in TRC) using the variables t1, t2, and t3 can be contrasted with the
implicit access (in FOTL) using the temporal operators 3 (read “sometime in the past”) and 2 (read “sometime
in the future”). The conjunction in the FOTL query represents an implicit temporal join. The formulation in

2

TRC leads immediately to an equivalent way of expressing the query in SQL/TP [9], an extension of SQL based
on TRC (see the entry SQL-based Temporal Query Languages).

Example. The above query can be formulated in SQL/TP as follows:
SELECT t.Date, e1.EID
FROM Employment e1, Time t, Employment e2
WHERE e1.EID = e2.EID AND e1.Date < e2.Date
AND NOT EXISTS (SELECT *

FROM Employment e3
WHERE e1.EID = e3.EID AND t.Date = e3.Date
AND e1.Date < e3.Date AND e3.Date < e2.Date)

The unary constant relation Time contains all time instants in the time domain (in our case, all Dates) and is
only needed to fulfill syntactic SQL-style requirements on attribute ranges. However, despite of the fact that the
instance of this relation is not finite, the query can be efficiently evaluated [9].

Note also that in all the above cases, the formulation is exactly the same as if the underlying temporal database
used the plain relational model (allowing for attributes ranging over time instants).

The two languages, FOTL and TRC, are the counterparts of the snapshot and timestamp models (cf. the entry
Point-stamped Data Models) and are the roots of many other temporal query languages, ranging from the more
TRC-like temporal extensions of SQL, to more FOTL-like temporal relational algebras (e.g., the conjunction in
temporal logic directly corresponds to a temporal join in a temporal relational algebra, as both of them induce
an implicit equality on the associated time attributes). The precise relationship between these two groups of
languages is investigated in the entry Temporal Logic in Database Query Languages.

Temporal integrity constraints over point-stamped temporal databases can also be conveniently expressed in
TRC or FOTL (see the entry Temporal Integrity Constraints).

Multiple Temporal Dimensions and Complex Values. While the abstract temporal query languages are typically
defined in terms of the point-based temporal data model, they can similarly be defined with respect to complex
temporal values, e.g., pairs (or tuples) of time instants or even sets of time instants. In these cases, in particular
in the case of set-valued attributes, it is important to remember that the set values are treated as indivisible
objects, and hence truth (i.e., query semantics) is associated with the entire objects, but not necessarily with
their components/subparts. For a detailed discussion of this issue, see the entry Telic Distinction in Temporal
Databases.

Concrete Temporal Query Languages
Although abstract temporal query languages provide a convenient and clean way of specifying queries, they

are not immediately amenable to implementation: the main problem is that, in practice, in temporal databases
facts persist over periods of time. Storing all true facts individually for every time instant during a period would
be prohibitively expensive or, in the case of infinite time domains such as dense time, even impossible.

Concrete temporal query languages avoid these problems by operating directly on the compact encodings of
temporal databases (see the discussion of compact encodings in the entry on Point-stamped Temporal Models).
The most commonly used encoding is the one that uses intervals. However, in this setting, a tuple that associates
a fact with such an interval is a compact representation of the association between the same fact and all the time
instants that belong to this interval. This observation leads to the design choices that are commonly present in
such languages:

•Coalescing is used, explicitly or implicitly, to consolidate representations of (sets of) time instants associated
with the same fact. In the case of interval-based encodings, this leads to coalescing adjoining or overlapping
intervals into a single interval (see the entry Temporal Coalescing). Note that coalescing only changes the
concrete representation of a temporal relation, not its meaning (i.e., the abstract temporal relation); hence
it has no counterpart in abstract temporal query languages.

•Implicit set operations on time values are used in relational operations. For example, conjunction (join)

3

typically uses set intersection to generate a compact representation of the time instants attached to the facts
in the result of such an operation.

Example. For the running example, a concrete schema for the employment histories would typically be defined
as “Employment(VT, EID, Company)”, where VT is a valid time attribute ranging over periods (intervals). The
GAPS query can be formulated in a calculus-style language corresponding to TSQL2 (see the entry on TSQL2)
along the following lines:

∃I1, I2. [∃c.Employment(I1, x, c)] ∧ [∃c.Employment(I2, x, c)] ∧ I1 precedes I2 ∧ I = [end(I1) + 1, begin(I2)− 1].

In particular, the variables I1 and I2 range over periods and the precedes relationship is one of Allen’s interval
relationships. The final conjunct, I = [end(I1) + 1, begin(I2)− 1], creates a new period corresponding to the time
instants related to a person’s gap in employment ; this interval value is explicitly constructed from the end and
start points of I1 and I2, respectively. For the query to be correct, however, the results of evaluating the bracketed
subexpressions, e.g., “[∃c.Employmeent(I1, x, c)] ,” have to to be coalesced. Without the insertion of the explicit
coalescing operators, the query is incorrect. To see that, consider a situation in which a person p0 is first employed
by a company c1, then by c2, and finally by c3, without any gaps in employment. Then without coalescing of
the bracketed subexpressions of the above query, p0 will be returned as a part of the result of the query, which is
incorrect. Note also that it is not enough for the underlying (concrete) database to be coalesced.

The need for an explicit use of coalescing makes often the formulation of queries in some concrete SQL-based
temporal query languages cumbersome and error-prone.

An orthogonal issue is the difference between explicit and implicit access to temporal values: this distinction
carries over to the concrete temporal languages as well. Typically, the various temporal extensions of SQL are
based on the assumption of an explicit access to temporal values (often employing a built-in valid time attribute
ranging over intervals or temporal elements), while many temporal relational algebras have chosen to use the
implicit access based on temporally extending standard relational operators such as temporal join or temporal
projection.

All Timestamp/Snapshot Temporal Databases

Finitely Representable Temporal Databases

Interval-encoded Temporal Databases

'

&

$

%

'

&

$

%
'

&

$

%

{ (1990, John, IBM), . . . , (1997, John, IBM),
(2003, John, MS), . . . , (2008, John, MS),
(1992, Sue, MS), . . . , (2005, Sue, MS),
(2005, Sue, SAP), . . . }

{ (1998, John), (1999, John),
. . . , (2002, John) }

Q(D) -

{ ([1990, 1997], John, IBM),
([2003, 2008], John, MS),
([1992, 2005], Sue, MS),
([2005, +∞], Sue, SAP) }

{ ([1990, 1997], John, IBM),
([2003, 2008], John, MS),
([1992, 1999], Sue, MS),
([2000, 2005], Sue, MS),
([2005, +∞], Sue, SAP) }

{([1998, 2002], John)}

{([1998, 1999], John),
([2000, 2002], John) }

eval(Q)(E1) -

eval(Q)(E2) -

6

‖E2‖

6

‖E1‖

6

‖.‖

6

‖.‖

Figure 1: Query Evaluation over Interval Encodings of Point-stamped Temporal Databases

4

Compilation and Query Evaluation. An alternative to allowing users direct access to the encodings of temporal
databases is to develop techniques that allow the evaluation of abstract temporal queries over these encodings.
The main approaches are based on query compilation techniques that map abstract queries to concrete queries,
while preserving query answers. More formally:

Q(‖E‖) = ‖eval(Q)(E)‖,

where Q an abstract query, eval(Q) the corresponding concrete query, E is a concrete temporal database, and
‖.‖ a mapping that associates encodings (concrete temporal databases) with their abstract counterparts (cf.
Figure 1). Note that a single abstract temporal database, D, can be encoded using several different instances of
the corresponding concrete database, e.g., E1 and E2 in Figure 1.

Most of the practical temporal data models adopt a common approach to physical representation of temporal
databases: with every fact (usually represented as a tuple), a concise encoding of the set of time points at which the
fact holds is associated. The encoding is commonly realized by intervals [6, 7] or temporal elements (finite unions
of intervals). For such an encoding it has been shown that both First-Order Temporal Logic [4] and Temporal
Relational Calculus [8] queries can be compiled to first-order queries over a natural relational representation of
the interval encoding of the database. Evaluating the resulting queries yields the interval encodings of the answers
to the original queries, as if the queries were directly evaluated on the point-stamped temporal database. Similar
results can be obtained for more complex encodings, e.g., periodic sets, and for abstract temporal query languages
that adopt the duplicate semantics matching the SQL standard, such as SQL/TP [9].

KEY APPLICATIONS
Temporal query languages are primarily used for querying temporal databases. However, because of their
generality they can be applied in other contexts as well, e.g., as an underlying conceptual foundation for querying
sequences and data streams [5].

CROSS REFERENCE
Allen’s relations, bitemporal relation, constraint databases, key, nested relational model, non first normal form
(N1NF), point-stamped temporal models, relational model, snapshot equivalence, SQL, telic distinction in
temporal databases, temporal coalescing, temporal data models, temporal element, temporal granularity, temporal
integrity constraints, temporal join, temporal logic in database query languages, temporal relational calculus and
algebra, time domain, time instant, TSQL2, transaction time, valid time.

RECOMMENDED READING

[1] C. Bettini, X. S. Wang, and S. Jajodia. Temporal Semantic Assumptions and Their Use in Databases. Knowledge
and Data Engineering, 10(2):277–296, 1998.

[2] J. Chomicki. Temporal Query Languages: A Survey. In D. Gabbay and H. Ohlbach, editors, Temporal Logic, First
International Conference, pages 506–534. Springer-Verlag, LNAI 827, 1994.

[3] J. Chomicki and D. Toman. Temporal Databases. In M. Fischer, D. Gabbay, and L. Villa, editors, Handbook of
Temporal Reasoning in Artificial Intelligence, pages 429–467. Elsevier Foundations of Artificial Intelligence, 2005.

[4] J. Chomicki, D. Toman, and M. H. Böhlen. Querying ATSQL Databases with Temporal Logic. ACM Transactions
on Database Systems, 26(2):145–178, 2001.

[5] Y.-N. Law, H. Wang, and C. Zaniolo. Query Languages and Data Models for Database Sequences and Data Streams.
In International Conference on Very Large Data Bases, pages 492–503, 2004.

[6] S. B. Navathe and R. Ahmed. Temporal Extensions to the Relational Model and SQL. In A. Tansel, J. Clifford,
S. Gadia, S. Jajodia, A. Segev, and R. T. Snodgrass, editors, Temporal Databases: Theory, Design, and
Implementation, pages 92–109. Benjamin/Cummings, 1993.

[7] R. T. Snodgrass. The Temporal Query Language TQuel. ACM Trans. Database Syst., 12(2):247–298, 1987.
[8] D. Toman. Point vs. Interval-based Query Languages for Temporal Databases. In ACM Symposium on Principles of

Database Systems, pages 58–67, 1996.
[9] D. Toman. Point-based Temporal Extensions of SQL. In International Conference on Deductive and Object-Oriented

Databases, pages 103–121, 1997.

5

