
Temporal Data Exchange

Ladan Golshanara
Supervised by Jan Chomicki

State University of New York at Buffalo
Buffalo, NY, USA

ladangol@buffalo.edu
Expected graduation date: September 2018

ABSTRACT
In this work, we study data exchange for temporal data.
There are two views associated with temporal data: the
concrete temporal view, which depicts how temporal data
is compactly represented and on which implementations are
based, and the abstract temporal view, which defines the
semantics of temporal data. Based on the chase procedure,
which is a fundamental tool in relational data exchange, two
new kinds of chase are proposed in this paper: the abstract
chase for the abstract temporal view and the concrete chase
for the concrete temporal view. While labeled nulls are suffi-
cient for relational data exchange, they have to be refined in
temporal data exchange to keep the connection between the
result produced by the concrete chase and the result of the
abstract chase. We show that the concrete chase respects
the semantics defined by the abstract chase and provides a
foundation for query answering.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems; H.2.5 [Database
Management]: Heterogeneous Databases—Data transla-
tion

Keywords
Data exchange; Chase; Temporal database; Unknown val-
ues; Incomplete information

1. INTRODUCTION
A temporal database is a relational database where there

is at least one time attribute associated with each relation
schema. Temporal data is needed by many organizations
such as insurance companies to support audit trails and
store when what facts are true. Facts in temporal databases
persist over intervals of time. For example, the fact that
Ada worked for IBM between 2010 and 2013 can be repre-
sented as (Ada, IBM, [2010, 2014)) where [2010, 2014) is a
clopen interval consisting of the years 2010, 2011, 2012, and

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGMOD’16 PhD Symp, June 26–July 1, 2016, San Francisco, CA, USA.
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4192-9/16/06.. . . $15.00

DOI: http://dx.doi.org/10.1145/2926693.2929900

2013. The fact that Ada has worked for Intel since then
can be represented as (Ada, Intel, [2014,∞)). Using an in-
terval type for time attributes provides a compact way of
storing the same data spanning multiple time points. Inter-
vals can be finite or infinite. An infinite interval, such as
[2014,∞), is a useful abstraction when the end point is not
provided. Apart from storage concerns, it is simpler and
more natural to view information at discrete time points.
For these reasons, prior work on temporal databases [2, 7,
12] has provided two views of temporal data: concrete tem-
poral view (or concrete view in short) and abstract temporal
view (or abstract view in short). The concrete view pro-
vides a compact representation of temporal data over time
intervals, such as Ada’s employment history in the examples
above. This view is an extension of the relational model
where the time attributes take intervals as values. On the
other hand, the abstract view shows temporal data at ev-
ery time instant in order to give semantics to the concrete
view. For example, there are four abstract facts, one for
each year between 2010 to 2013, corresponding to the fact
that Ada worked in IBM, and infinitely many abstract tuples
{(Ada, Intel, 2014), (Ada, Intel, 2015), ...}, that correspond
to the concrete temporal tuple (Ada, Intel, [2014,∞)). The
abstract view is based on the relational model with infinite
relations. Note that SQL:2011 [9] implicitly supports both
views. It provides features for defining tables with intervals,
while the semantics of integrity constraints are defined with
respect to time points.

Data exchange is the problem of translating data that con-
forms to one schema (called the source schema) into data
that conforms to another schema (called the target schema),
given a specification of the relationship between the two
schemas. This relationship is specified by means of a schema
mapping [4, 5]. The problem of data exchange has been
extensively studied in the context where a schema mapping
consists of source-to-target tuple generating dependencies (s-
t tgds), target generating dependencies (tgds) and equality
generating dependencies (egds). Given a schema mapping,
the goal of data exchange is to determine an instance that
conforms to the target schema and satisfies the specification.
This target instance is called a solution. For a given source
instance, there may be no solutions since there may not ex-
ist a target instance that satisfies the specification. On the
other hand, there may be many solutions. It was shown
in [4] that among all solutions of a given source instance,
the universal solutions are the preferred solutions because
they are the most general. In [4] the chase procedure is
used to find a universal solution. Universal solutions can be

17

used to determine certain answers of the union of conjunc-
tive queries posed over a target schema. Certain answers of
a query Q consist of all tuples that will be in the answer
of Q over any arbitrary solution for a source instance and a
schema mapping.

In this paper, we extend the standard framework of data
exchange to the context of temporal data, studying tem-
poral data exchange. To elicit the challenges that arise in
temporal data exchange, we start by examining the most
basic case where we assume that every relation in a source
instance has exactly one temporal attribute and source in-
stances are complete (i.e. have no unknown values). In
our framework, the specification between the source and
target schema consists of s-t tgds, and temporal key con-
straints [2] over the target schema. As a result of data
exchange, unknown values may occur in target instances.
One of the extensions we bring to the framework of tem-
poral data exchange is the notion of dynamic nulls under
the concrete view, which is used to model the unknown val-
ues of an attribute that may possibly vary over time. In
data exchange, named nulls (or labeled nulls) are used to
model unknown values in the solutions of a data exchange
problem, where distinct named nulls denote possibly dis-
tinct unknown values. While named nulls continue to be
sufficient in temporal data exchange under the abstract per-
spective, they are no longer sufficient under the concrete per-
spective as each concrete tuple represents multiple, possibly
distinct, abstract tuples in general. To see this, consider the
schema Emp(Name, Position,Company, T ime). The ab-
stract tuple (Ada, Programmer,N2011, 2011) contains the
named null N2011. This tuple states that Ada was a pro-
grammer at an unknown company in 2011. On the other
hand, the concrete tuple (Ada,N [2008,∞), IBM, [2008,∞))

contains the dynamic null N [2008,∞), and the tuple denotes
that the position of Ada at IBM is unknown and the po-
sition is possibly different every year since 2008. Though
the idea of (named) nulls is not new and is used to model
incompleteness in databases [6], the notion of a dynamic
null, which is necessary to accurately model incompleteness
in temporal data exchange under the concrete view is new
to the best of our knowledge. Note that dynamic nulls are
only used to show the correspondence between the result of
data exchange on a concrete instance and the result of data
exchange on an abstract instance. In other words, dynamic
nulls are hidden from end users if the semantics of query
answering is certain answers.

Every dynamic null N [s,e) in a concrete tuple has a time
context [s, e) which is inherited from the time interval of the
tuple. Hence, dynamic nulls are context-dependent. Also, ev-
ery dynamic null of the same concrete tuple will have identi-
cal time context as a consequence. Therefore, tuples such as
(Ada, Programmer,N [2008, 2012), [2000,∞)) are prohibited
in our framework as it is unclear what the corresponding
null for Ada’s affiliation is in the abstract view of this tuple
in the year 2000, or 2014.

A fundamental challenge of temporal data exchange is
that the data exchange semantics over concrete source in-
stance (which is the representation on which implementa-
tions are based) has to be carefully defined so that it corre-
sponds to the standard semantics of data exchange over the
corresponding abstract source instance. Here we provide an
example of temporal data exchange:

Example 1. Suppose we have the following relation in the

source schema that represents the employment histories of
persons:

Employee(Name,Company, T ime).

A concrete source instance is shown in figure 1(a), while
the corresponding abstract instance is shown in figure 2(a).
Due to space restrictions, only the last two digits of years
are shown. We want to move the data to a bigger schema
with two relations:

Emp(Name, Position,Company, T ime),
Sal(Position, Salary, T ime).

Suppose we have the following s-t tgd:

∀n∀c∀t Employee(n, c, t)→ ∃p∃s Emp(n, p, c, t)∧Sal(p, s, t)

and the temporal key constraint:

∀p∀s1∀s2∀t Sal(p, s1, t) ∧ Sal(p, s2, t)→ s1 = s2

A solution for the concrete source instance, that can be ob-
tained using the concrete chase, is depicted in figures 1(b)
and 1(c). A solution for the abstract instance, that can be
constructed using the abstract chase, is shown in figures 2(b)
and 2(c). Note that both solutions satisfy the above s-t tgd
and temporal key constraint. Also note that the concrete
and abstract solutions are semantically aligned. 2

Research Problems and Results Here are our prelimi-
nary research problems and results :

1. How can we define the chase procedure on the abstract
view where the relations can be infinite?

2. How can we define the chase procedure on the concrete
view where the domain of the time attribute is the
intervals?

3. Is the concrete chase correct? In other words, are the
results of the concrete chase and the abstract chase
semantically aligned?

4. Is the result of the concrete chase representative of the
solution space?

We define two chase procedures, one for each view (abstract
vs. concrete) of temporal data. We establish that the re-
sult of the abstract chase (a-chase) over the abstract view,
is semantically aligned to the result of the concrete chase
procedure (c-chase) over the concrete view. We also show
that the result of c-chase provides a foundation for query
answering.

The remainder of this paper is organized as follows. Sec-
tion 2 provides an overview of the related work. In section 3
some preliminaries are given. The abstract chase is defined
in section 4, while the concrete chase is defined in section 5.
Section 6 discusses the universality property of the results of
the proposed chases. We report our future plans in section
7. Section 8 provides some concluding remarks.

2. RELATED WORK
Here we overview the previous relevant work on data ex-

change and temporal databases.
The formal foundations of data exchange was developed

by Fagin et al. in [4]. The authors applied the chase al-
gorithm, previously used for checking implication of data

18

Name Company Time
Ada IBM [08, 10)
Ada Intel [10, 13)

(a)Employee(Source)

Name Position Company Time

Ada N [08,10) IBM [08, 10)

Ada N [10,13) Intel [10, 13)

(b)Emp(Target)

Position Salary Time

N [08,10) M [08,10) [08, 10)

N [10,13) M [10,13) [10, 13)

(c)Sal(Target)

Figure 1: Concrete source and target instances

Name Company Time
Ada IBM 08
Ada IBM 09
Ada Intel 10
Ada Intel 11
Ada Intel 12

(a)Employee(Source)

Name Position Company Time

Ada N08 IBM 08

Ada N09 IBM 09

Ada N10 Intel 10

Ada N11 Intel 11

Ada N12 Intel 12

(b)Emp(Target)

Position Salary Time

N08 M08 08

N09 M09 09

N10 M10 10

N11 M11 11

N12 M12 12

(c)Sal(Target)

Figure 2: Abstract source and target instances

dependencies, for data exchange and query answering. The
original chase, which we call the standard chase throughout
the paper, assumes finite relational instances. Further ex-
tensions to the standard chase were surveyed in [10]. In
[3] a parallel chase was proposed for s-t tgds, that can be
used for infinite relations, but the details in the case of egds
were missing. Our work is different from previous work on
data exchange in two aspects: the abstract view requires in-
finite sets of tuples and the concrete view is an extension of
relational model with intervals as attributes values.

The formal foundations of temporal data models and query
languages were studied in [2, 13]. Abstract versus concrete
temporal views were first developed in the context of seman-
tics of temporal query languages. The papers [2, 13] did not
discuss incomplete temporal information and its possible se-
mantics. Koubarakis proposed a unified framework for both
finite and infinite, definite and indefinite temporal data [8,
7]. His suggested framework extends c-tables [6] and can be
used to store facts such as room1 is booked from 2 to some-
time between 5 to 8. He used global conditions to store the
constraints on the start point or end point of a time interval.
In his framework, the temporal attribute can be unknown.
On the other hand, we are dealing with unknown values for
non-temporal attributes in the concrete view (i.e., dynamic
nulls).

3. PRELIMINARIES
A named null is a pair Ns where N is a label and the su-

perscript s is a time point which shows the temporal context.
A dynamic null is a pair N [s,e) where the base is a label and
the superscript [s, e) is a time interval carrying the temporal
context. Two dynamic nulls (resp., named nulls) are equal,
if they are syntactically identical.

An incomplete abstract relation has the schema {A1, ..., Am,
T}, where the domain of T is a set of time points and the
domain of attributes A1, ..., Am is a set of constants and
named nulls. A complete abstract relation is a special case
of an incomplete relation where the attributes A1, ..., Am

take only constant values. An abstract instance is a set of
abstract relations. If it is a complete instance all relations in
it are complete abstract relations; otherwise, it is an incom-
plete instance. Similarly, a concrete relation has the same
schema, but the domain of T is a set of time intervals. A
concrete relation is incomplete, if the attributes A1, ..., Am

take values from a set of constants and dynamic nulls. In

case of a complete concrete relation, the values for A1, ..., Am

are taken only from a set of constants.

Definition 1. Semantics mapping:
Each concrete tuple (a1, ..., ak, [s, e)) is mapped to a set of
abstract tuples under the semantics mapping, denoted by
J.K. That is, J(a1, ..., ak, [s, e))K = { (a′1, ..., a

′
k, t0) | s ≤

t0 < e where a′i = ai if ai is a constant, and a′i is the
named null N t0 if ai is a dynamic null N [s,e)}. Similarly,
JRK =

⋃
u∈R(JuK), where R denotes a concrete relation.

If the named nulls were not introduced, one had to gener-
ate a fresh labeled null for each time point in a dynamic
null’s context [s, e). To clarify, suppose we have two facts

in two different relations Emp(Ada,N [s,e), IBM, [s, e)) and

Sal(N [s,e], 20000, [s, e)). When we take the semantics map-
ping of these two facts, in order not to lose the connection
between the concrete and the corresponding abstract facts,
we need to keep track of the labeled nulls we generate for
N [s,e) in JEmpK to produce the same set in JSalK. Named
nulls, on the other hand, keep the base identical to the cor-
responding dynamic null and carry the context with their
superscript.

Definition 2. Source-to-Target Dependency (s-t tgd) :
An s-t tgd is a dependency of the form:

∀x̄, t α(x̄, t)→ ∃ȳ β(x̄, ȳ, t)

where α (resp.,β) is a conjunction of relational atoms (i.e.,
α = α1 ∧ ... ∧ αm (resp., β = β1 ∧ ... ∧ βn)) over the source
schema (resp., target schema), x̄ and ȳ are non-temporal
variables and t denotes the temporal variable.

Definition 3. Temporal Key Constraint :
A temporal key constraint over a relational schemaR(Ā, B̄, T)
is of the form:

R(x̄, ȳ, t) ∧R(x̄, ȳ′, t)→ ȳ = ȳ′

In this case, we say the set {Ā, T} of attributes is the tem-
poral key1 of relation R.

Throughout the paper, σ is used to refer to a single s-t tgd
or temporal key constraint, while Σst and Σk refer to a set
of s-t tgds and temporal key constraints, respectively.

1Temporal key attributes can have named null and dynamic
null values in our framework.

19

Definition 4. Homomorphism:
A homomorphism h from a formula α(x̄, t), denoting an s-t
tgd or a temporal key constraint, to an abstract instance
(resp., concrete instance) I is a mapping from the variables
x̄ to constants and named nulls (resp., dynamic nulls) and
from t to time points (resp., time intervals) such that for
every atom Ri(x̄, t) in α, the fact Ri(h(x̄, t)) is in I.

Definition 5. Solution:
Let RS be a source schema and RT be a target schema.
Let Σst be a set of s-t tgds and Σk a set of temporal key
constraints. Let I be a source instance over RS , then an
instance J over RT is called a solution if (I, J) satisfies Σst∪
Σk.

4. ABSTRACT CHASE
An abstract instance is very similar to a relational in-

stance, but it can be infinite. Hence, the standard chase
cannot be used because it is a sequential procedure. This
motivates us to define the chase in parallel and as the union
of individual chase steps. Indeed, it is much easier to reason
about an infinite union of single steps rather than an infi-
nite sequence of them where one needs to define appropriate
notions of fix-point and convergence. The abstract chase
procedure consists of a parallel abstract chase step with s-t
tgds followed by a parallel abstract chase step with temporal
key constraints.

Let Ia be a complete abstract instance. Let Σst be a
set of s-t tgds. We define Ja to be the result of a parallel
abstract chase step(or a-chase∗Σst

in short) on Ia, obtained
by union of the results of all chase steps, applied on the
tuples of Ia with all dependencies in Σst. Note that Ja is
an incomplete abstract instance and (Ia, Ja) satisfies Σst. In
other words, Ja is a solution for Ia with respect to Σst. Next,
we apply the parallel abstract chase step with temporal key
constraints on Ja. If this application is successful, then the
result is a solution that satisfies both s-t tgds and temporal
key constraints; otherwise, the abstract chase procedure fails
and no solution is produced.

Defining the parallel application of chase steps for tempo-
ral key constraints (or egds in general) is trickier. For these
constraints we cannot apply chase steps independently, be-
cause we might equate one null value with two distinct con-
stants in two chase steps. The following example clarifies
this point.

Example 2. Consider the following Emp relation :

Name Position Company Time

Ada N2008 IBM 2008
Ada DBA IBM 2008

David N2008 Intel 2008
David Manager Intel 2008

and the temporal key constraint:

Emp(n, p, c, t) ∧ Emp(n, p′, c, t)→ p = p′

Notice that the sequential application of chase steps on this
instance fails because DBA 6= Manager. Indeed, there is no
solution for this instance with the above temporal key con-
straint. However, the parallel application of chase steps will
not fail because one of the chase steps results in replacing
N2008 with DBA in the first tuple and the other replaces

N2008 with Manager in the third tuple, independently of
each other. Therefore, we define a chase step with a tempo-
ral key constraint σ on an incomplete abstract instance Ja
such that, it identifies a set of equalities, representing the
modifications, instead of modifying the relation. Then, in
the parallel abstract chase step with temporal key constraints
(a-chase∗Σk

in short) we take the union of all equalities ob-
tained in individual chase steps and reason about the equal-
ities that can be deduced by considering their symmetric
transitive closure. If we can deduce an equality between two
distinct constants, then the abstract chase procedure fails.
Otherwise, the named nulls in Ja are replaced by other con-
stants or named nulls based on the set of equalities. The
final result is a solution w.r.t. Σst ∪ Σk.

5. CONCRETE CHASE
Like a relational instance, a concrete instance is finite.

However, we cannot apply the standard chase because we
have intervals as values for the time attribute. In order to
find a homomorphism from an s-t tgd or a temporal key
constraint to a concrete instance Ic, the tuples in that in-
stance should be normalized. A set of concrete tuples (that
might be over different schemas) is normalized if the time
intervals of the tuples are either equal or disjoint (i.e., no
overlap in the intervals). Intuitively, normalization makes
time intervals behave like time points.

To be aligned with the abstract chase, the concrete chase
procedure consists of two parallel concrete chase steps which
are applied successively. The parallel concrete chase step
with s-t tgds (c-chase∗Σst

in short) is defined as the union
of individual c-chase steps. For the parallel concrete chase
step with temporal key constraints Σk (c-chase∗Σk

in short),
the approach is to generate a set of equalities for each c-
chase step and modify the instance after reasoning on all
the equalities, same as the abstract case.

We have shown that we can simulate the abstract chase
procedure by the concrete chase procedure for both s-t tgds
and temporal key constraints. In other words, given a con-
crete instance Ic, the proof for Σst shows that Jc-chase∗Σst

(Ic)K
is homomorphically equivalent to a-chase∗Σst

(JIcK). This is
depicted in figure 3.

6. UNIVERSAL SOLUTION
For a source instance and a set of dependencies in Σst∪Σk

there might be infinitely many solutions. The class of univer-
sal solutions consists of good candidates to be materialized,
because there is a homomorphism from them to any other
solution for the source instance. We have shown that the
concrete instance obtained by the concrete chase is a good
candidate to be materialized and used to answer queries
posed over it. In order to show this, we have proved that the
result of the abstract chase is a universal solution and then
used our previous result that the semantics mapping of the
result of the concrete chase is homomorphically equivalent
to the result of the abstract chase.

For proving that the solution obtained by abstract is uni-
versal, we need to show that there is a homomorphism from
it to any other solution. This was proved for the result of
the standard chase in [4]. However, we cannot use this re-
sult directly because our chase steps are applied in parallel
on the source instance (and not sequentially as in [4]). For s-
t tgds, we proved that there is a homomorphism from partial

20

Ic Ia

Jc Ja

J.K

c-chase∗Σst
a-chase∗Σst

J.K

Figure 3: Simulation of a-chase and c-chase for s-t
tgds

results of a single a-chase step to any arbitrary solution. Us-
ing this property, we have shown there is a homomorphism
from the union of these partial results which is obtained by
a-chase∗Σst

to any arbitrary solution. For temporal key con-
straints, we showed that there is a homomorphism from the
result of a-chase∗Σk

to any instance that satisfies Σk.

7. RESEARCH PLAN
This PhD project is at the end of its second year. We

came up with a formal framework for temporal data ex-
change and introduced two novel chase procedures: the ab-
stract chase and the concrete chase. It is still open whether
named/dynamic nulls can be simulated by labeled nulls.

We have started to investigate the problem of query an-
swering over concrete instances. We plan to choose certain
answers as the semantics of query answering in our frame-
work because it is the prevailing semantics in data exchange.
Our goal is to find tractable query classes and explore näıve
evaluation [1] on a concrete instance as a technique to evalu-
ate queries. Two classes of queries that are of our interest are
the unions of conjunctive queries and queries involving com-
parison operators on the temporal variable. A good starting
point to deal with the latter queries is the paper [11] which
explores arithmetic operations in s-t tgds and tgds.

We also plan to evaluate the practical applicability of
what we have proposed by implementing a temporal data
exchange system for real use cases.

8. CONCLUSIONS
In this paper, we proposed a framework for temporal data

exchange. We considered a basic case where the source in-
stance is complete and has a single temporal dimension. The
schema mappings consist of a set of s-t tgds and temporal
key constraints. We proposed two chase procedures: one for
a concrete temporal instance and one for an abstract tempo-
ral instance. The abstract chase makes it possible to define
the semantics of the concrete chase and to prove that the
concrete chase is correct. We have defined the abstract chase
as the parallel application of chase steps to avoid reasoning
over an infinite sequence of chase steps. We also discussed
that application of chase steps for temporal key constraints
requires more care as not to equate one unknown value with
two different constants in two chase steps. Then we defined
the concrete chase and proved that its result is semantically
aligned to the one achieved by the abstract chase. Finally,
we showed the result of the abstract chase is a universal
solution and since we can simulate the abstract chase by
the concrete chase, the result of the concrete chase is a good
candidate to be materialized and used for answering queries.

9. ACKNOWLEDGMENTS
This work is supported in part by NSF grant IIS-1450590.

We thank our collaborator Dr. Wang-Chiew Tan for her
fruitful discussion and support.

10. REFERENCES
[1] M. Arenas, P. Barceló, L. Libkin, and F. Murlak.

Foundations of Data Exchange. Cambridge University
Press, New York, NY, USA, 2014.

[2] J. Chomicki. Temporal query languages: A survey. In
Temporal Logic, First International Conference, ICTL
’94, Bonn, Germany, July 11-14, 1994, Proceedings,
pages 506–534, 1994.

[3] A. Deutsch, A. Nash, and J. B. Remmel. The chase
revisited. In Proceedings of the Twenty-Seventh ACM
SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS 2008, June 9-11, 2008,
Vancouver, BC, Canada, pages 149–158, 2008.

[4] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa.
Data exchange: semantics and query answering.
Theor. Comput. Sci., 336(1):89–124, May 2005.

[5] R. Fagin, P. G. Kolaitis, and L. Popa. Data exchange:
getting to the core. ACM Trans. Database Syst.,
30(1):174–210, March 2005.

[6] T. Imielinski and W. L. Jr. Incomplete information in
relational databases. J. ACM, 31(4):761–791,
September 1984.

[7] M. Koubarakis. Database models for infinite and
indefinite temporal information. Inf. Syst.,
19(2):141–173, March 1994.

[8] M. Koubarakis. Foundations of indefinite constraint
databases. In Principles and Practice of Constraint
Programming, Second International Workshop, pages
266–280. Springer, 1994.

[9] K. G. Kulkarni and J. Michels. Temporal features in
SQL: 2011. SIGMOD Record, 41(3):34–43, October
2012.

[10] A. Onet. The chase procedure and its applications in
data exchange. In Data Exchange, Information, and
Streams, volume 5 of Dagstuhl Follow-Ups, pages 1–37.
2013.

[11] B. ten Cate, P. G. Kolaitis, and W. Othman. Data
exchange with arithmetic operations. In Proceedings of
the 16th International Conference on Extending
Database Technology, EDBT ’13, pages 537–548, 2013.

[12] D. Toman. Point vs. interval-based query languages
for temporal databases. In Proceedings of the Fifteenth
ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, PODS ’96, pages
58–67, 1996.

[13] D. Toman. SQL/TP: A temporal extension of SQL. In
Constraint Databases, pages 391–399, 2000.

21

