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19.1 Introduction

Time is ubiquitous in information systems. Almost every enterprise faces the
problem of its data becoming out of date. However, such data is often valuable,
so it should be archived and some means of accessing it should be provided.
Also, some data may be inherently historical, e.g., medical, cadastral, or ju-
dicial records. Temporal databases provide a uniform and systematic way of
dealing with historical data.

This chapter develops point-based data models and query languages for
temporal databases in the relational framework. The models provide a separa-
tion between the conceptual data (what is stored in the database) and the way
the data is compactly represented in the temporal relations (how it is stored).
This approach leads to a clean and elegant data model while still providing an
efficient implementation path. The foundations of the approach can be traced
to the constraint database technology [Kanellakis et al., 1995]: constraint rep-
resentation is used as the basis for a space-efficient representation of temporal
relations.

We first study how logics of time can be used as query and integrity con-
straint languages in the above setting and the differences resulting from choos-
ing a particular logic as a query language for temporal data. Consequently,
model-theoretic notions, particularly formula satisfaction in a fixed model, are
of primary interest. This is in sharp contrast with most major application ar-
eas of temporal reasoning, where the major issues are satisfiability and valid-
ity. For this reason, the formalisms studied are usually propositional which is
insufficient in the database setting. However, decidable fragments of the log-
ics underlying temporal queries have been studied for the purposes of schema
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design and reasoning about integrity constraints.
While considerable effort has been expended on the development of tem-

poral databases and query languages, there is still no universal consensus on
how temporal features should be added to the standard relational model. On
the surface, there appear to be many candidates for an acceptable temporal
data model and query language, e.g., TQuel [Snodgrass, 1987] or TSQL2 [Snod-
grass, 1995], or one of TSQL2’s variants, such as ATSQL [Snodgrass et al.,
1995], SQL/Temporal [Snodgrass et al., 1996] (the latest temporal extension of
SQL3 proposed to the ISO and ANSI standardization committees). However,
none of them has been adopted as the standard language of temporal databa-
ses in practice, and none has established the theoretical foundations for man-
agement of time-dependent data. This is in stark contrast with the relational
model, where the relational calculus (first-order logic) has became the consen-
sus language. In part, the reason for the limited acceptance of earlier temporal
models, and their negligible contribution to the development of practical ap-
plications, is an extremely (and often unnecessarily) complex syntax without
comprehensive theoretical foundations.

This chapter provides a formal foundation for temporal data models and
query languages based on logics that have been developed over the last ten
years [Chomicki, 1994; Chomicki and Toman, 1998; Toman, 1996; Toman, 1997;
Toman and Niwinski, 1996; Toman, 2003c]. In our simple point-based approach
to managing temporal data, temporal attributes naturally range over individ-
ual points in time. This approach can serve as an alternative foundation for
existing temporal data models and shows that all well-founded queries defin-
able in the former approaches can be equivalently and conveniently formulated
using a point-based temporal query language. Moreover, the chapter intro-
duces techniques for compact encoding of temporal data and efficient query
evaluation procedures with computational properties comparable to standard
relational queries.

The chapter is organized as follows: The first part focuses on temporal data
models and query languages. Section 19.2 introduces the necessary notions of
time ontology and time domain used in the rest of the chapter. Section 19.3
shows several ways to introduce time into the standard relational model and
defines the fundamental notions of temporal databases. It also shows how such
databases naturally arise as histories of ordinary relational databases. Sec-
tion 19.4 discusses issues connected with database design and temporal in-
tegrity constraints. Section 19.5 introduces several query languages for tem-
poral databases. Section 19.6 describes techniques needed for efficient query
evaluation over compact representations of temporal databases. Section 19.7
discusses various temporal extensions of SQL, the standard query language of
relational databases, that have been proposed over the past 25 years in the
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framework of abstract and concrete temporal databases and query languages.
Section 19.8 outlines issues related to updating temporal databases. The sec-
ond part of the chapter, Sections 19.9, 19.10, and 19.11, focus on the limita-
tions of simple linearly-ordered, first-order temporal data models and queries
evalueted in a single model (or, equivalently, under the closed world assump-
tion) and on different ways of overcoming these limitations: Section 19.9 dis-
cusses more complex models of time, Section 19.10 discusses non-first-order
extensions of temporal query languages, and Section 19.11 considers the im-
plications connected with relaxing the closed world assumption. Section 19.12
contains brief conclusions.

19.2 Structure of Time

We first introduce a number of fundamental concepts and distinctions that are
used throughout the chapter. First, there is a choice of temporal ontology. How-
ever, and in contrast to rather complex temporal ontologies commonly used for
reasoning about time, we use a very simple notion of time in this chapter—
a linear ordering of time instants.

Definition 19.1 (Temporal Domain) A single-dimensional linearly ordered
temporal domain is a structure

���������
	���
, where

�
is a set of time instants

and
�

is a linear order on
�

.

The subscript in
���

underlines that this is indeed a domain of time points and
distinguishes it from the domain of intervals,

���
, introduced in Section 19.6.1.

In addition to linear ordering, we may consider whether time is discrete or
dense and whether it is bounded or unbounded. These choices are orthogonal
to the development of this chapter and the majority of the results continue to
hold independent of the above choices.

While considering only linear order may seem limiting at first, we shall see
that, since the temporal data models and the associated temporal query lan-
guages discussed in this chapter are considerably more powerful than those
used for reasoning about time, we can model most of the additional structure
often associated with a time ontology in a uniform framework of temporal da-
tabases. For example, the question of whether time is single-dimensional or
multi-dimensional (i.e., whether truth of facts is associated with a single time
instant or with multiple instants) will be a property of the temporal data model
rather than of the time ontology. Note that multiple time dimensions can oc-
cur naturally if, for example, multiple kinds of time (e.g., transaction time vs.
valid time [Snodgrass and Ahn, 1986]) are required in an application. Simi-
larly, other extensions of the simple model time, such as temporal durations,
calendars, etc., and their representation in our framework are discussed in
Section 19.9.
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Finally, there is a choice of linear vs. nonlinear time, i.e., whether time
should be viewed as a single line or rather as a tree [Emerson, 1990; Hodkinson
et al., 2002], or even an acyclic graph [Wolper, 1989]. Although the branching-
time view is potentially applicable to some database problems like version con-
trol or workflows, there has been very little work in this area. Therefore, in this
chapter we concentrate on temporal domains that are linearly ordered sets.

19.3 Abstract Data Models and Temporal Databases

It is useful to introduce a distinction between the abstract, representation-
independent meaning of a temporal database and its concrete, finite represen-
tation. This section focuses on the abstract databases while Section 19.6 will
explore the concrete ones.

A standard relational database is a first-order structure built from a data
domain

�
, usually equipped with a built-in equality (diagonal) relation. This

domain is extended to a relational database by adding to it a finite instance����� 	������ 	��
	 
of a user-defined relational database schema � � ���� 	������ 	���	 

over�
. Intuitively, a database (instance)

�
believes that a fact

��� ��� � 	������ 	�� 	 
is true

whenever the elements
��� 	������ 	���	

are
� �

-related (i.e,
����	������ 	���	����
�� ) in the in-

stance
�

and false otherwise. This is equivalent to the closed world assumption
(CWA).

19.3.1 1NF Models

First we consider temporal data models that associate truth of facts with indi-
vidual time instants. This, in database terminology, is equivalent to the first
normal form requirement [Codd, 1971]: the requirement that relations only
relate atomic values. Note that while this requirement may not be fully met
by some of the temporal models below at the syntactic level, all the models are
equivalent to (or subsumed by) such a model.

One obtains an abstract temporal database by linking a standard rela-
tional database with a temporal domain. There are several alternative ways of
achieving this [Chomicki, 1994] that we discuss next.

19.3.1.1 The Timestamp Model

This is defined by augmenting all tuples in relations with an additional tempo-
ral attribute.

Definition 19.2 (Abstract Timestamp Temporal Database) A relational
symbol � � is a temporal extension of the symbol

���
if it contains all attributes

of
���

and a single additional attribute � of sort
� �

(w.l.o.g. we assume it is the
first attribute). The sort of the attributes of � � is

�������! �"�#%$'&�(*)�+-,
.
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Booking

Meeting Room Time
DB Group DC1331 06-Jan-04.10:00
DB Group DC1331 06-Jan-04.10:01
DB Group DC1331 06-Jan-04.10:02

����� ����� �����
DB Group DC1331 16-Jan-04.11:59
Intro to Databases MC4042 06-Jan-04.10:00

����� ����� �����
Intro to Databases MC4042 06-Jan-04.11:19
Intro to Databases MC4042 08-Jan-04.10:00

����� ����� �����
Intro to Databases MC4042 08-Jan-04.11:19

Fig. 19.1 A Fragment of a Timestamp Instance of the Booking relation from Example 19.1.

A timestamp temporal database is a first-order structure
��� � � ����� � ����� 		� 	�


,
where

� �
are temporal relations— instances of the temporal extensions � �

. In
addition we require that the set

���� � � 	��  ��� � 

be finite for every � � � � and� �������

.

Note that at this point there are no cardinality restrictions imposed on the
number of time instants in the instances of abstract temporal relations; we ad-
dress issues connected with the actual finite representation of these relations
in Section 19.6. In the rest of the chapter we use the following example to
illustrate various concepts.

Example 19.1 Consider a database recording room bookings for meetings
in a university. A relational schema booking

�
Meeting

	
Room


links meetings

to rooms. We assume that rooms are identified by their room numbers and
meetings have distinct descriptions (names). Thus our temporal database, as-
suming the use of the timestamp model, contains a single relational schema
with three attributes,

Booking
�
Meeting

	
Room

	
Time

��

A tuple
��� 	�� 	 �  in an instance of this relation denotes the fact that a meet-

ing
�

is in a room
�

at time � . For simplicity in this chapter we assume that
time is measured in minutes. An example instance of this schema is shown in
Figure 19.1. To distinguish between non-temporal relations and (the derived)
timestamp relations we capitalize the name of the later. The granularity of
time in our examples is one minute (more on granularities in Section 19.9).

It is important to understand that, e.g., the “DB group” meeting has booked
room DC1331 for every time instant between 06-Jan-04.10:00 and 06-Jan-04.11:59.
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This set of tuples, depending on properties of the time domain, can be infi-
nite (e.g., when dense time domain is considered). There are several things to
note about the example: an instance of the Booking relation represents com-
plete information about meeting schedule; in particular it contains information
about meetings that have already finished (e.g., for accounting and evaluation
purposes) as well as about meetings scheduled in the future (e.g., to avoid over-
booking of rooms). This is necessary, for example, if we want to schedule an-
other meeting in the future, as we need to make sure no other meeting conflicts
with it. For this purpose we need to query the database for empty rooms at the
particular future time we desire and such a query is only possible utilizing the
closed-world assumption.

Second, we assume that distinct meetings have distinct names. Thus the
same meeting (e.g., a class) can meet in several different rooms at different
times. Moreover the meeting times may not be continuous (as is common, e.g.,
for classes). If we wish to distinguish between instances of a particular meeting
we need to use distinguished names (or an additional attribute).

19.3.1.2 The Snapshot Model

The sbstract temporal databases in this model are defined as a mapping of the
temporal domain to the class of standard relational databases. This gives a
Kripke structure with the temporal domain serving as the accessibility rela-
tion.

Definition 19.3 (Abstract Snapshot Temporal Database) A snapshot tem-
poral database over

�
,
���

, and � is a map
���  ��������� �� 	 �  , where

��� �� 	 � 
is the class of finite relational databases over

�
and � .

It is easy to see that snapshot and timestamp abstract temporal databases are
merely different views of the same data and thus can represent the same class
of temporal databases. Formally, a snapshot temporal database

�
corresponds

to a timestamp temporal database
�
	

if and only if
�� � 	������ 	 � 	��%��� (�� , � � � 	������ 	 � 	 ���� ����� � � 	 � � 	������ 	 � 	  	

for all
�

(and � ) in the schema of
�

(
�
	

), where
� � (�� , (

� � � ) are the instances
of the relations

�
( � ) in

�
(
�
	

), respectively, where
� ���������! �

. This correspon-
dence allows us to move freely between the two models.

Example 19.2 A snapshot representation of the instance in Figure 19.1 is
shown in Figure 19.2.

Note that the relationship between the timestamp and snapshot models is es-
sentially currying and uncurrying [Barendregt, 1984] (the correspondence is
exact if the relations are considered to be boolean functions from tuples to the
set

�"�#��$&% 	�'(�*)�+�% 

).
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Time booking

06-Jan-04.10:00
�

(DB Group,DC1331), (Intro to Databases,MC4042)



06-Jan-04.10:01
�

(DB Group,DC1331), (Intro to Databases,MC4042)



�����
06-Jan-04.11:19

�
(DB Group,DC1331), (Intro to Databases,MC4042)




06-Jan-04.11:20
�

(DB Group,DC1331)



�����
06-Jan-04.11:59

�
(DB Group,DC1331)




06-Jan-04.12:00
� 


�����
06-Jan-04.12:00

� 


08-Jan-04.10:00
�

(Intro to Databases,MC4042)



�����
08-Jan-04.11:19

�
(Intro to Databases,MC4042)




Fig. 19.2 A Fragment of a Snapshot Instance of the Booking relation.

Thus, in the rest of the chapter we use the timestamp abstract temporal da-
tabases as the common underlying temporal data model. Also, let us reiterate
that the abstract data models are used solely at the conceptual level; relations
will likely be stored in a different, more space-efficient format, e.g., one that
uses time intervals (see Section 19.6).

19.3.1.3 Relational Database Histories

Relational databases are updatable and it is natural to consider sequences of
database states resulting from the updates.

Definition 19.4 (Finite History) A history over a database schema � and
a data domain

�
is a sequence

� � �(��� 	������ 	 ��� 
of database instances (called

states) such that

(1) all the states
� � 	������ 	 � �

share the same schema � and the same data
domain

�
,

(2)
� �

is the initial instance of the database,
(3)

� �
results from applying an update to

� ��� �
,
���
	

,

There is a clear correspondence between histories over
�

and � and snapshot
temporal databases over

�
, N (natural numbers), and � (see Definitions 19.3

and 19.2). Consequently, any query language for abstract temporal databases
can also be used to query database histories. However, there is a difference
in the restrictions placed on updates: while there are no a priori limitations
placed on snapshot temporal database updates (they can involve any snapshot),
histories are append-only (the past cannot be modified). This property is often
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associated with transaction time databases—temporal databases in which time
instants correspond to commitment time of transactions; the append-only na-
ture of such databases corresponds to the requirement of durable transactions.
Indeed, transaction-time temporal databases can be viewed as finite histories
of standard relational databases.

19.3.2 Multiple Temporal Dimensions

So far we have considered only single-dimensional temporal databases: tem-
poral relations were allowed only a single temporal attribute. To motivate the
introduction of multiple temporal dimensions in the context of temporal data-
bases, consider the following examples:

� Bitemporal databases: with each tuple in a relation two kinds of time
are stored—the valid time (when a particular tuple is true) and the
transaction time (when the particular tuple was inserted/deleted in the
database) [Jensen et al., 1993].

� Spatial databases: multiple dimensions over an interpreted domain
can be used for representing spatial data where multiple dimensions
serve as coordinates of points in a

�
-dimensional Euclidean space.

Most of the data modeling techniques require only fixed-dimensional data.
However, the true need for arbitrarily large dimensionality of data models orig-
inates in the requirement of having a first-order complete query language (see
Theorem 19.5 in Section 19.5). Thus, there are two cases to consider:

� temporal models with a fixed number of dimensions
���
	�

, and
� temporal models with a varying number of temporal dimensions with-

out an upper bound.

The representation of multiple temporal dimensions in abstract temporal da-
tabases is quite straightforward: we simply index relational databases by the
elements of an appropriate self-product of the temporal domain (in the case
of snapshot temporal databases), or add the appropriate number of temporal
attributes (in the case of timestamp temporal databases).

19.3.3 Non 1NF Temporal Models

Several temporal data models associate relationships between data values—
truth of facts recorded in the database— with sets of time instants (rather than
with a single time instant). These models are no longer in first normal form
(N1NF) and are often called temporally grouped models [Clifford et al., 1993;
Clifford et al., 1994].
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Example 19.3 The instance of the Booking relation from Figure 19.1 rep-
resented in the N1NF (temporally grouped) model is as follows

Booking

Meeting Room Time
DB group DC1331

�
06-Jan-04.10:00, 06-Jan-04.10:01,

. . . ,06-Jan-04.11:59



Intro to Databases MC4042
�
06-Jan-04.10:00, . . . ,06-Jan-04.11:19,
08-Jan-04.10:00, . . . ,08-Jan-04.11:19




However, the set-based attributes can be flattened, perhaps by introducing ad-
ditional surrogate keys, to obtain a 1NF temporal database containing the
same information [Clifford et al., 1993; Wijsen, 1999]. Without introducing
additional keys, however, this transformation can be lossy.

Example 19.4 Consider a fragment of a N1NF temporal relation

booking(DB group, DC1331,
�
06-Jan-04.10:00, . . . ,06-Jan-04.11:59



)

booking(DB group, DC1331,
�
09-Jan-04.10:00, . . . ,09-Jan-04.11:59



)

The meetings in this design are no longer identified by their names, but rather
by their name and the set of all meeting times. The same information, however,
can be captured by explicitly identifying meetings. Also, such an assumption
prevents us from representing a situation where a particular meeting takes
place in two different rooms at two different times.

Note that the difference between 1NF and N1NF models is intrinsic to these
models and can be exhibited without introducing temporal aspects into the pic-
ture. Also, the differences at the level of abstract databases do not necessarily
impact the way the relations are actually stored at the concrete (or physical)
level; indeed both of the above examples may be simply two different views of
the same physical design.

Another salient point is that a common assumption made by various tempo-
ral data models when using the N1NF representation is that facts associated
with sets of time instants are also implicitly true at all time instants contained
in these sets (as in the above example). This, however, may not be the case in
general, as demonstrated by the following example.

Example 19.5 First consider the following two tuples in an instance of a
N1NF temporal database:

Booking(DB group, DC1331, [06-Jan-04.10:00, 06-Jan-04.11:59])
Booking(AI meeting, MC5114, [06-Jan-04.09:00, 06-Jan-04.10:59])

In this case the sets (represented by intervals in this case) serve as encodings
of their internal points: the database group indeed meets in the DC1331 room
every time instant between 06-Jan-04.10:00 and 06-Jan-04.11:59; similarly for



30th January 2004 16:9 WorldScientific/ws-b9-75x6-50 book-timeai

10 Time in Database Systems

the AI meeting. Thus, a meaningful question is whether these two meetings
conflict, i.e., whether there is a time instant related to both meetings. On the
other hand, consider another fragment of a temporal database:

Electricity(Jones A., 40, [15-May-03.00.00, 14-Jun-03.23:59])
Electricity(Smith J., 35, [01-May-03.00.00, 31-May-03.23:59])

The intervals in this example do not represent the collections of their inter-
nal points, but rather the names of the sets themselves (or points in a 2-
dimensional space). Thus applying set-based operations on these sets, e.g.,
computing their intersection, does not have a clear meaning.

This example also clarifies the difference between two distinct uses of intervals
in temporal databases:

(1) intervals as encodings of the extents of convex 1-dimensional sets, or
(2) intervals as (otherwise uninterpreted) names for such sets.

These two approaches assume completely different meaning to be assigned to
the same construct (often a pair of time instants) in different contexts. Note
that in Sections 19.5 and 19.6 we use solely the first paradigm.

An interesting observation at this point is that the keys introduced in the
flattening transformation essentially represent names of sets of time instants.
This idea, however, can be formalized using a 1NF temporal model, e.g., the
timestamp model: we simply add an abstract relation that links names of sets
of time instants with their extents (essentially the membership relation). For
example, to describe intervals, the relation would look as follows:

������� ��� 	 �   � � � 		� � � 	 ��
� 	 	 �   � � � � � ��
 


Note that
	 � � � 	 ��
� 	 is now an otherwise uninterpreted element of the data do-

main. Similarly we can introduce constants (as singleton sets), calendars, etc.
It has to be understood that association of other data values with names of
sets does not say anything about the truth of facts with respect to the time
instants belonging to these sets. Also, the extents of these sets do not have to
be closed under set operations, e.g., an intersection or union of the extents of
two such sets, while it always exists, may not have a name � . Similar approach
can be used to introduce names for other sets, e.g., singleton sets for constants,
periodic sets for time granularities (see Section 19.9), etc.

19.3.3.1 The Parametric Model

This model [Clifford et al., 1994] considers the values stored in individual fields
of tuples in the database to be functions of time. It is easy to see that every
�
This issue resurfaces when one attempts to define an interval-based temporal data model as
a restriction of the N1NF model: since unions of intervals are not necessarily describable as
intervals the notion of temporal elements is needed to maintain closure under boolean operations.
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instance of a relation
�

represented in a parametric temporal database
�

can
be represented in the timestamp model as an instance

��	
as follows:

� � � � � � � 	 � ��� �  	������ 	 � 	 � �    � � ��	������ 	 � 	  � � � 	 � � ��� 


Note that this transformation loses the identity of the tuples [Clifford et al.,
1993]. However, introducing tuple identifiers as outlined in the previous sec-
tion alleviates this deficiency. Wijsen [Wijsen, 1999] also argues that this
transformation indeed simplifies further technical development of integrity
constraints and queries.

Moreover, if the functions used in the parametric model are total, then
there are instances of a timestamp database containing a single unary relation,
e.g.,

� � � � � 	��  	 � 	 		�  	 � 	 	��  

, that cannot be represented using the parametric

model (since the number of tuples at time 0 differs from the number of tuples
at time 1). Thus we need to allow partial functions and/or life-span attributes
to regain the expressiveness of the simple 1NF model. We do not consider the
parametric model in this chapter any further.

19.4 Temporal Database Design

The equivalence between snapshot and timestamp temporal databases (Defini-
tions 19.2 and 19.3) makes it possible to view the design of temporal database
schemas as a special case of the design of relational database schemas.

19.4.1 Temporal Functional Dependencies

Jensen et al. [Jensen et al., 1996] propose a formal framework for temporal
database design that encompasses and generalizes earlier approaches in this
area. We provide here a purely relational reconstruction of that framework,
eliminating at the same time its inherent technical limitations. We use the
timestamp model and assume first a single temporal dimension with temporal
domain

���
.

The cornerstone of the approach of [Jensen et al., 1996] is the notion of
temporal functional dependency (temporal FD). A temporal FD � ���� holds
in a snapshot temporal relation � � if the (classical) FD � ���

holds in every
snapshot of � � . Viewing � � as a timestamp database 	 ��� , this is equivalent
to the classical FD � � �
�

holding in 	 ��� .

Example 19.6 Assume the relation booking with attributes Meeting and
Room from Example 19.1. The temporal FD Meeting �� Room expresses the
fact that every meeting is held in a single room at any given time. In the
corresponding timestamp relation Booking, the above condition is captured
by the FD Meeting Time

�
Room.
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Avoiding the introduction of a new notion of a temporal FD has numerous ad-
vantages. First, one can use the classical notions of FD inference (Armstrong
axioms), dependency closure, keys, normal forms, and lossless decompositions
without any change. In [Jensen et al., 1996], new notions of temporal keys,
temporal normal forms, etc. are derived as temporal versions of their relational
analogues. Second, it is no longer necessary to restrict temporal relations to be-
ing finite (as in [Jensen et al., 1996]) in order to test satisfaction of temporal
FDs. It is enough for such relations to be finitely representable (in the sense of
the constraint databases [Kanellakis et al., 1995]). Every classical FD can be
written as a first-order sentence and evaluated as a relational calculus query
over any finitely representable relation. Third, one can now mix temporal and
non-temporal FDs.

Example 19.7 The dependency Meeting
�

Room in the timestamp relation
Booking is non-temporal and expresses the property that for every specific
meeting the same room is always booked.

With multiple temporal dimensions, the advantages of the relational frame-
work are even more pronounced. For concreteness, we assume two such di-
mensions: valid time (VT) and transaction time (TT). Timestamp relations will
now have zero, one (TT or VT), or two (TT VT) temporal attributes. Now we
can have, in addition to non-temporal FDs, three kinds of temporal FDs formu-
lated as classical FDs: transaction-time ( � TT

� �
), valid-time ( � VT

� �
),

and bitemporal ( � TT VT
� �

).

Example 19.8 The bitemporal dependency captured by the FD

Meeting TT VT
�

Room

expresses the constraint that the record at any time of the room booked for
a meeting at any time is uniquely determined. This is a very weak constraint.
If we want to say that the room booked for a meeting at any time is uniquely
determined, we need to use the FD Meeting VT

�
Room which captures a

valid-time dependency.

Jensen et al. [Jensen et al., 1996] considered the presence of two tempo-
ral dimensions but didn’t analyze the consequences of this fact for FDs and
other concepts of database design. There are essentially two choices. The
first is to limit the attention to bitemporal dependencies. But then valid- and
transaction-time FDs become inexpressible, and as a consequence one will not
be able to define relational normal forms that truly capture all kinds of FD-
related temporal redundancies. For example, the FD Meeting VT

�
Room (Ex-

ample 19.8) identifies a potential redundancy, which should be removed during
the database design process.

The second choice is to allow three kinds of temporal FDs: � � �� � , �
�

���� ,
and � � �

�

��
� �

. But then one can no longer talk about, e.g., temporal keys, but
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only about valid-time, transaction-time or bitemporal keys. The framework
becomes so complicated that it is unlikely to be of any use.

The relational framework does not suffer from any of those problems. The
classical notion of FD is fine enough to capture all the varieties of temporal de-
pendencies. At the same time, the framework does not require any conceptual
extensions.

We should mention that temporal functional dependencies have been gener-
alized to multiple temporal granularities [Wang et al., 1997] and to the object-
oriented setting [Wijsen, 1999].

19.4.2 Constraint-generating Dependencies

If we consider the first-order formulation of temporal functional dependencies
in timestamp databases, we notice that the formulas obtained in this way con-
tain equalities between temporal variables. It is natural to consider a general-
ization of such dependencies that allows not only equalities but also arbitrary
constraints over the given temporal domain. Then we can formulate integrity
constraints like “the transaction time of a given tuple should always be greater
than or equal to the valid time of this tuple.” Note that the constraints over the
temporal domain are not used here to represent infinite sets (as in constraint
databases [Kanellakis et al., 1995]) but rather to obtain a more expressive lan-
guage of integrity constraints.

The above idea was first formulated in [Ginsburg and Hull, 1983; Ginsburg
and Hull, 1986] and then formalized in [Baudinet et al., 1999] using the notion
of a constraint-generating dependency (CGD). Baudinet et al. [Baudinet et al.,
1999] described a general reduction of the implication problem for such de-
pendencies to the problem of validity of universal formulas in the appropriate
constraint theory. Complexity results for restricted classes of CGDs were also
given. A similar idea was studied in the temporal database context in [Wijsen,
1998].

19.5 Abstract Temporal Queries

Most logic-based query languages have their semantics defined in terms of
abstract temporal databases—they will be termed abstract as well. Other
languages whose semantics is defined in terms of concrete databases will be
appropriately called concrete. Here we discuss abstract databases and query
languages—the concrete ones are discussed in Section 19.6.

Since databases are inherently first-order structures, in this chapter we
are primarily interested in temporal extensions of first-order logic (relational
calculus).

A natural first-order query language over such databases—the relational
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calculus—coincides with first-order logic over the vocabulary
� � 	�� � 	������ 	 ��	 

of
the extended structure. An answer to a query in relational calculus is the set
of valuations (tuples) that make the query true in the given relational data-
base. Domain independent relational calculus queries (those that depend only
on the instance of � and not on the underlying domain of values

�
) can be

equivalently expressed in relational algebra [Codd, 1972]. In this way the re-
lational model provides both a natural declarative paradigm for representing
and querying information stored in a relational database and the possibility of
efficient implementation of queries through relational algebra.

Following are several temporal queries we may ask over our sample tempo-
ral database.

� find all meetings that always meet in the same room.
� find all rooms in which the last meeting was ’DB group’.
� find all meetings with a scheduled break (or multi-part meetings, such

as classes).

We discuss two major approaches to introducing time into relational query lan-
guages. Both of them are developed in the context of abstract temporal databa-
ses and thus lead to abstract query languages. The first approach uses modal
temporal connectives and implicit temporal contexts; the second adds explicit
variables (attributes) and quantifiers over the temporal domain. We report on
the relative expressive power of these extensions.

The two different ways of linking time with a relational database (Defini-
tions 19.3 and 19.2) lead to two different temporal extensions of the relational
calculus (first-order logic). The snapshot model gives rise to temporal connec-
tives, while the timestamp model introduces explicit attributes and quantifiers
for handling time. The first approach is appealing because it encapsulates all
the interaction with the temporal domain inside the temporal connectives. In
this way the manipulation of the temporal dimension is completely hidden from
the user, as it is performed on implicit temporal attributes.

19.5.1 First-order Temporal Logic

Historically, many different variants of temporal logic based on different sets of
connectives have been developed [Gabbay et al., 1994]. Some connectives, such
as

�
(“sometime in the future”), � (“always in the future”), or �������
	 are well-

known and have been universally accepted. But in general any appropriate
first-order formula in the language of the temporal domain (or, as we will see
in Section 19.10, even a second-order one) can be used to define a temporal
connective.
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Definition 19.5 (First-order Temporal Connectives) Let
�   � � � � ����� ����� �	� � �	
 � � � � � � �

be the first-order language of
� �

extended with the propositional variables � � .
We define a (k-ary) temporal connective to be an

�
-formula with exactly one

free variable � � and
�

free propositional variables � � 	������ 	 � 	 . We assume that
� � is the only temporal variable free in the formula to be substituted for � � .
We define � to be a finite set of definitions of temporal connectives: pairs of
names � � � ��	������ 	 � 	  and (definitional)

�
-formulas � � for temporal connectives.

We call the variables � � the temporal contexts: � � defines the outer temporal
context of the connective that is made available to the surrounding formula; the
variables � � 	������ 	 � 	 define the temporal contexts for the subformulas substituted
for the propositional variables � � 	������ 	 � 	 .

The above definition allows only first-order temporal connectives. This is
sufficient to define the common temporal connectives  �
����� , ������� 	 , and their
derivatives.

Example 19.9 The common temporal connectives are defined as follows:

� � ������� 	 � 
��� 
 � 
 � � � � � 
 � � 
 ��� � � � � � � � � � � 
 � � � 
� �  �
����� � 
 �� 
 ��
 � � � � ��
 � � 
 ��� � ��� � � � � � � ��
 � � � 

Other commonly used temporal connectives, sometime in the future,
�

, always
in the future, � , sometime in the past, � , and always in the past, � , are defined
in terms of  �
����� and �������
	 as follows:

� � � �� ���#$&% ������� 	 � � � � � �� � � � � �
� � � �� ���#$&%  �
���	� � � � � � �� � � � � �

For a discrete linear order we also define the � (next) and � (previous) opera-
tors as

� � � �� 
 � � � � � � � ��� 	 � � � � � � �� 
 � � � � ��� 	�� � � � � �

Clearly, all of the above connectives are definable in the first-order language
of
� �

(the successor
� 	

and the equality
�

on the domain
� �

are first-order
definable in the theory of discrete linear order).
The connectives  � ���	� , � , � , and � are called the past temporal connectives (as
they refer to the past) and � � � � 	 , � , � , and � the future temporal connectives.

We discuss the use of more expressive language in the definition of temporal
connectives, e.g., monadic second-order logic over the signature of

� �
, to define

a richer class of temporal connectives in Section 19.10.
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The modal query language—first-order temporal logic—is defined to be the
original single-sorted first-order logic (relational calculus) extended with a fi-
nite set of temporal connectives.

Definition 19.6 (First-order Temporal Logic: syntax) Let � be a finite
set of (names of) temporal connectives. First-order Temporal Logic (FOTL)

���
over a schema � is defined as:

�   � � � � ��� 	������ 	 � ���  � � � � � ��� � � � �	� � � � ��� ��	������ 	�� 	  �	
 � �	�

where
� � � and � � � .

A standard linear-time temporal logic can be obtained from this definition us-
ing the temporal connectives from Example 19.9:

Example 19.10 The standard FOTL language
��
����������� �������	�	�

is defined as

�   ��� � � � � 	������ 	 � � �  � � � � � � � � � � � � � � � �  � ���	� � 
 � � � �������
	 � 
 � 
 � �	�

where  �
���	� and ��� � � 	 are the names for the connectives defined in Exam-
ple 19.9.

Example 19.11 We show here how various temporal connectives are used to
formulate the queries over the temporal database introduced in Example 19.1.

� find all meetings that always meet in the same room.

� � 
�� � booking � � 	 �  � � � �! � booking � � 	   �� � �   

� find all rooms in which the last meeting was ‘DB group’.

� ��
�� � booking � � 	 �    �
����� booking � DB group
	 � 

Note that this query returns all time instants at which the above state-
ment is true for room

�
.

� find all meetings with a scheduled break.

� 
"� � booking � � 	 �  � � 
�� � booking � � 	 �  � � 
�� � booking � � 	 � ��

The standard way of giving semantics to such a language is as follows.

Definition 19.7 (FOTL: semantics) Let
���

be a snapshot temporal data-
base over

�
,
���

, and � , # a formula of
�$�

, � � ��� , and % a valuation. We define
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a relation
��� 	 % 	 � � � # by induction on the structure of # :

��� 	 % 	 � � � � � � � � � 	������ 	 � � �  if
� � � � 	 � % � � � �  	������ 	 % � � � �   ��� � � (��,�

��� 	 % 	 � � � � � � � � if % � � �  � % � � � 
��� 	 % 	 � � � # ���

if
��� 	 % 	 � � � # and

��� 	 % 	 � � � �
��� 	 % 	 � � � � # if not

��� 	 % 	 � � � #
��� 	 % 	 � � � 
 � � � # if there is

� � �
such that

��� 	 % � � ���� � � 	 � � � #
��� 	 % 	 � � � � � � � 	������ 	 � 	  if

� � 	 � � � �� �	��� � � � where����	�� � � � � is interpreted as
��� 	 % 	�� � � �  � � � �

where
� � � (�� ,� is the interpretation of the predicate symbol

� �
in
���

at time � .
We assume the rigid interpretation of constants (they do not change over time).
The answer to a query # over

���
is the set of tuples # �(���   � � � � 	 %	� 
 � (���,  

��� 	 % 	 � � � # 
 where % � 
 � (���, is the restriction of % to the free variables of # .

Example 19.12 The above definition can be applied to the standard lan-
guage

� 
���	����� � ��������� �
for which it gives the usual semantics of the  � ���	� and ��� � � 	

connectives:

� 	 % 	 � � � � # �������
	 � � ' 
 ��
 � ��
 � � � � � 	 % 	 ��
 � � � ��� � ��� ��
 � � � � � � � � 	 % 	 � � � � # �

There are even more restricted versions of FOTL. Gabbay, et al. [Gabbay et al.,
1994] introduce first-order temporal logics where the temporal connectives are
always outside of the first-order quantifiers. While such logics may provide
sufficient expressive power for some applications, they are generally weaker
than

�$�
(for the same set of temporal connectives � ).

19.5.2 Two-sorted First-order Logic

The second natural extension of the relational calculus to a temporal query
language is based on explicit variables and quantification over the temporal
domain

���
. It is just the two-sorted version (variables are temporal or non-

temporal) of first-order logic (2-FOL) over
�

and
� �

, with the limitation that
the predicates can have only one temporal argument [Bacchus et al., 1991].

Definition 19.8 (2-FOL: syntax) The two-sorted first-order language
� �

over a database schema � is defined by:

   � � � � � 	 � � � 	������ 	 � � �  ��� � � � � � � � � � � �  �  �	�  ��
 � � �� �	
 � � ��

where � is the temporal extension of
�

for
� � � . We use � � to denote temporal

variables and
� �

to denote data (non-temporal) variables.

Similarly to FOTL we can use 2-FOL to formulate temporal queries:
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Example 19.13 The query find all meetings with a scheduled break can be
formulated in 2-FOL using the following formula:


 � ��	 ��
 � � ��� � � ��
 � 
"� � Booking � � 	 � 	 � �  � � 
�� � Booking � � 	 � 	 � � 
�� � Booking � � 	 � 	 � 
  �

Note that, similarly to the FOTL query in Example 19.11, the query returns
names of meetings with a break together with the time of the break; should
we require the names alone we would need to use an additional existential
quantifier for � .
The semantics for this language is defined in the standard way, similarly to the
semantics of relational calculus [Abiteboul et al., 1995].

Definition 19.9 (2-FOL: semantics) Let
���

be a timestamp temporal da-
tabase over

�
,
� �

, and � , # a formula in
� �

, and % a two-sorted valuation. We
define the satisfaction relation

��� 	 % � � # as follows:

��� 	 % � � � � � � � 	 � � � 	������ 	 � � �  if � � � � 	 � % � � �  	 % � � � �  	������ 	 % � � � �   ��� � ����� 	 % � � � � � ��� if % � � � 
� % � ��� 
��� 	 % � � � � � � � if % � � �  � % � � � 
��� 	 % � � # ���

if
��� 	 % � � # and

��� 	 % � � �
��� 	 % � � � # if not

��� 	 % � � #
��� 	 % � � 
 � � � # if there is �

� � �
such that

��� 	 % � � � �� � � � � #
��� 	 % � � 
 � � � # if there is

� � �
such that

��� 	 % � � � �� � � � � #

where
� � �� is the interpretation of the predicate symbol � � in the database

���
.

An
� �

query is an
� �

formula with exactly one free temporal variable.
An answer to an

� �
query # over

���
is the set # �(���   � � % � 
 � (���,  ��� 	 %�� � # 


where % � 
 � ( � , is the restriction of the valuation % to free variables of # .

The restriction to a single temporal attribute in the signature of queries guar-
antees closure over the universe of single-dimensional temporal relations. Note
that this restriction applies only to queries, not to subformulas of queries.

19.5.2.1 Expressive Power

In the remainder of this section we compare the expressive power of FOTL
and 2-FOL. First we define a mapping

����� %��  �$� � � �
to show that the

�$�
formulas can be expressed in the

� �
language:

Definition 19.10 (Translation) Let
����� %��

be a mapping of
� �

formulas to
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� �
formulas defined as follows:
����� %�� �� � � � � 	������ 	 � � +   � � � � � � 	 � � 	������ 	 � � + 
����� %�� � � � � � �  � � � � � �
����� %�� � � � � � 
  � ����� %�� � � �  � ����� %�� � � 
 
����� %�� � � �  � � ����� %�� � � 
����� %�� � 
 � �	�  � 
 � � ����� %�� � � 
����� %�� � � � � � 	������ 	 � 	   � � � � ����� %�� � � �  � � ��� � � � 	������ 	 ����� %�� � � 	  � � ��� � 	 � 

where � � � � 	������ 	 � 	  is the name of ��� in � and
� � � � � � � � is a substitution of � �

for � � in
�

.

We know that we can freely move between snapshot and timestamp represen-
tations (see Definitions 19.3 and 19.2). Definition 19.10 allows us to translate
queries in

�$�
to queries in

� �
while preserving their semantics.

Theorem 19.1 Let
� �

be a snapshot temporal database and
� 
 an equivalent

timestamp database. Then
� � 	 % 	 � � � # ��� � 
 	 % � � � �� � � � � ����� %�� � #  for all

# � � �
.

Therefore Definition 19.10 can also be used to define the semantics of
���

queries
over timestamp temporal databases. Also, it shows that

� �
is at least as ex-

pressive as
�$�

(denoted by
�$��� � �

). What is the relationship in the other
direction? While both snapshot and timestamp temporal models are equiva-
lent in their ability to represent temporal databases equivalently, the derived
query languages differ in expressive power � . The separation results are as
follows:

Theorem 19.2 ([Kamp, 1971]) � 
���	������� ��������� ��� � 
���	����� � ��������� � �	��
 ��� � �
for

dense linearly ordered time (
�

denotes the “strictly weaker than” relationship of
languages).

The proof of this fact uses structures that cannot be modeled as abstract tem-
poral databases because they are infinite in both the data and temporal dimen-
sions. Moreover, the proof technique does not consider arbitrary temporal con-
nectives and discrete linear orders. The following results show that

����� � �
holds in general:

Theorem 19.3 ([Abiteboul et al., 1996]) � 
���	������� �������	� ��� � �
over the class

of finite timestamp temporal databases.

Theorem 19.4 ([Toman and Niwinski, 1996; Bidoit et al., 2004; Toman,
2003c]) � �� � �

over the class of timestamp temporal databases for an arbi-
trary finite set of first-order temporal connectives � .
�
This is a major difference from the propositional case where linear-time temporal logic has the
same expressive power as the monadic first-order logic over linear orders [Kamp, 1968].
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In both cases
� �

is shown not to be able to express the query “are there two
distinct time instants at which a unary relation � contains exactly the same
values?” On the other hand, this query can be easily expressed in

� �
using the

formula


 � � 	 � 
 � � � � � 
 ��� � � � � � � 	 �  ��� � � � 
 	 � ��

This formula can be also expressed in a temporal logic in which connectives
are allowed to refer to two temporal contexts simultaneously,

��� ( 
 , (see Sec-
tion 19.5.4).

19.5.3 Temporal Relational Algebras

The separation results (Theorems 19.3 and 19.4) have several unpleasant con-
sequences. In particular, a single-dimensional first-order complete temporal
query language cannot be subquery closed. This means that in general we can-
not define all queries to be combinations of simpler single-dimensional queries.
This fact also prevents us from decomposing large queries into views (virtual
relations defined by queries). An even more serious problem is that there is
no relational algebra defined over the universe of single-dimensional temporal
relations that is able to express all first-order temporal queries.

Similarly to relational algebra, a Temporal Relational Algebra is a (finite)
set of (first-order definable) operators of the form

��� �� ������� ���
�
���

defined on the universe of single-dimensional temporal relations
�

that con-
form to the data model of temporal databases.

Example 19.14 ([Tuzhilin and Clifford, 1990]) A temporal relational al-
gebra (TRA) is a set of algebraic operators � �

		� 
 	�
 		�
	 �
		��	�

over the universe
of single dimensional temporal relations defined by:

� �
� �  � � � 	 % � �

 ��� 	 % 	 � � � � 
� 
 � �  � � � 	 % � 
 � (�� ,  ��� 	 % 	 � � � � � � 

� 
�� � � � 	 % � 
 � (�� ,�� 
 � (���,  ��� 	 % 	 � � � � � � 

� ��� � � � 	 % � 
 � (�� ,�� 
 � (���,  ��� 	 % 	 � � � ��� � 


� �
� � � � 	 % � 
 � (�� ,�� 
 � (���,  ��� 	 % 	 � � � � � � � 
� � � 	�� �� � � 	 % � 
 � (�� ,�� 
 � (���,  ��� 	 % 	 � � � �  �
����� � 
 � � 	��  � � � 	 % � 
 � (�� ,�� 
 � (���,  ��� 	 % 	 � � � � ������� 	 � 


Additional TRA operators, � ,
�

, � , and � can be derived from the above oper-
ators similarly to Example 19.9.

The above definition allows us to translate (range restricted [Chomicki et al.,
2001]) formulas in

��
���	������� �������	�	�
to TRA.
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Example 19.15 The query find all rooms in which the last meeting was ‘DB
group’ is expressed in TRA as follows:

��� � � � ������� �����	�
� $�#����� DB group
�
Booking

  
� � ������� � Booking   	

� ������� �����	�
� $�#����� DB group
�
Booking

  

Note that to guarantee the range-restrictions of attributes, we had to rewrite
the original formula. Full account of such rewrites was developed by Chomicki
et al. [Chomicki et al., 2001].

However, this is also the reason why TRA with an arbitrary finite set of first-
order definable operators cannot express all first-order queries (an immediate
consequence of Theorems 19.3 and 19.4). This fact causes major problems when
implementing query processors for temporal query languages, as the common
(and efficient) implementations inherently depend on the equivalence of rela-
tional algebra and calculus to be able to execute all queries, [Abiteboul et al.,
1995; Ullman, 1989].

19.5.4 Multiple Temporal Dimensions

The difficulty with defining a complete temporal relational algebra closed over
a single-dimensional temporal data model is probably the most compelling rea-
son for considering temporal data models with multiple temporal dimensions.
The question we need to answer here is whether a fixed number of temporal
dimensions, e.g., two dimensions used in the bitemporal data model, can lead
to a closed algebra. We consider this problem in the following setting: we first
define multidimensional temporal query languages by essentially following the
development of Section 19.5.

It is easy to see that the language
� �

is inherently multi-dimensional: we
simply abandon the restriction on the number of free temporal variables in
queries. To define the multidimensional counterpart of

� �
we first define the

multidimensional temporal connectives.

Definition 19.11 (Multidimensional Temporal Connective) A k-ary � -
dimensional temporal connective is a formula in the first-order language of the
temporal domain

�
with exactly � free variables �

�� 	������ 	 � �� and
�

free predicate
variables � � 	������ 	 � 	 (we assume that �

�� 	������ 	 � �� are the only temporal variables
free in the formula substituted for � � ).
Similarly to Definition 19.5 we define � to be a finite set of temporal connec-
tives definitions: pairs of names � � � � 	������ 	 � 	  and definitions of temporal con-
nectives � � .
The language

�$� (�� ,
is a first-order logic extended with a finite set � � �  of � -

dimensional temporal connectives. The semantics of
��� (�� ,

queries is defined
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using the satisfaction relation
��� 	 % 	 � � 	������ 	 � � � � #

similarly to Definition 19.7: the only difference is that now we use � evalu-
ation points � � 	������ 	 � � instead of a single evaluation point � . This definition
can be used to define most of the common multi-dimensional temporal log-
ics, e.g., the temporal logic with the now operator [Kamp, 1971], the Vlach
and Åqvist system [Åqvist, 1979], and most of the interval logics [Allen, 1984;
van Benthem, 1983]. To compare the expressive power of temporal logics with
respect to the dimension of the temporal connectives we use the following ob-
servation. The

�$� (�� ,
language can be used over an

�
-dimensional temporal

database for
� � � by modifying the definition of the satisfaction relation as

follows:
��� 	 % 	 � � 	������ 	 � � � � � � � � 	������ 	 � � 	 �  � ' � � � 	������ 	 � � 	 % � �   ���

Similarly we can assume that all temporal formulas from
� � ( � ,

can be used
as subformulas in

�$� (�� ,
. Thus

�$� (�� , � �$� (���� � ,
over � -dimensional temporal

databases. It is also easy to see that a natural extension of the
����� %��

map to
� dimensions,

� ��� %�� � , gives us
�$� (�� , � � �

. The following theorem shows
that the inclusions are proper:

Theorem 19.5 ([Toman and Niwinski, 1996; Toman, 2003c]) � � (�� , �
� � (���� 	 ,

for � � �
and an arbitrary finite set of � -dimensional temporal con-

nectives � � �  where
�

is the maximal quantifier depth of any connective in � .

As a consequence
�$� (�� , � � �

for all � � �
. Thus

� �
is the only first-order com-

plete temporal query language (among the languages discussed in this chap-
ter). On the other hand, for any fixed query # � � �

we can find an � ���
such

that there is an equivalent query in
�$� (�� ,

. Thus, e.g., the query that was used
to separate FOTL from 2-FOL in Section 19.5 can be expressed in

� � ( 
 , .

19.5.5 N1NF Data and Queries

First-order nested query languages (without second-order quantifiers or the
power-set constructor) are expressively equivalent to standard first-order queries
in the 1NF model [Abiteboul et al., 1995]. Thus, save the possibility of avoiding
additional key attributes, the one-level nesting in the temporal dimension does
not add expressive capabilities to the more natural 1NF temporal models.

19.6 Space-efficient Encoding for Temporal Databases

In the second part we concentrate on concrete temporal databases: space ef-
ficient encodings of abstract temporal databases necessary from the practical
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point of view. First we explore in detail the most common encoding of time
based on intervals and the associated concrete query languages. We introduce
semantics-preserving translations of abstract temporal query languages into
their concrete counterparts. We also introduce a generalization of such en-
codings using constraints. We conclude the section with a brief discussion of
SQL-derived temporal query languages.

While abstract temporal databases provide a natural semantic domain for
interpreting temporal queries, they are not immediately suitable for he im-
plementation, as they are possibly infinite (e.g., when the database contains a
fact holding for all time instants). Even for finite abstract temporal databa-
ses a direct representation may be extremely space inefficient: tuples are often
associated with a large number of time instants (e.g., a validity interval). In
addition, changes in the granularity of time may affect the size of the stored
relations.

Our goal in this section is to develop a compact encoding for a subclass
of abstract temporal databases that makes it possible to compactly represent
such databases in finite space.

19.6.1 Interval Encoding of Temporal Databases

The most common approach to such an encoding is to use intervals as codes for
convex 1-dimensional sets of time instants. The choice of this representation is
based on the following empirical observation: Sets of time instants describing
the validity of a particular fact in the real world can be often described by
an interval or a finite union of intervals. We briefly discuss other encodings
at the end of this section. For simplicity from now on we assume a discrete
integer-like structure of time. However, dense time can also be accommodated
by introducing open and half-open intervals. All the results in this section
carry over to the latter setting.

Definition 19.12 (Interval-based Domain �
� ) Let

��� � ���
	 ��
be a dis-

crete linearly ordered point-based temporal domain. We define the set

� � �� � � ��� 		�  �� � � 	�� � � � �
���


 	�� � �����
�

 


where
�

is the order over
� �

extended with
� �

���
	��  	 ��� 	

�
 	 �

���
	
�
  � � � 


(similarly for
�

). We denote the elements of
� ����

by
� � 	�� � (the usual notation

for intervals). We also define four relations on the elements of
� ����

:
� � � 	�� � � � � � � 	�		� 	 �  ��� � ��� 	 � � � 		� � � � � � � 	 	�� 	 �  ��� � � � 	
� � � 		� � � � � � � 	�		� 	 �  ��� � ��� 	 � � � 	�� � � � � � � 	 	�� 	 �  ��� � � � 	

for
� � 		� � 	 � � 	 	�� 	 � ��� � �� . The structure

� � � ��� � �� 	 � � � 	 �
�
� 	 � �

�
	��
� �


is the
Interval-based Temporal Domain (corresponding to

� �
).
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Abstract Temporal Databases

Images of Concrete Temporal Databases

Concrete Temporal Databases
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7 �
and

7 
 are concrete temporal databases that represent the
abstract temporal database

�
.

Fig. 19.3 Abstract and Concrete Timestamp Temporal Databases

A concrete (timestamp) temporal database is defined analogously to the ab-
stract (timestamp) temporal database. The only difference is that the temporal
attributes range over intervals

����� 
rather than over the individual time in-

stants
� ��� 

.

Definition 19.13 (Concrete Temporal Database) A concrete temporal da-
tabase is a finite first-order structure

� � � � � � � � ����� 	�� 	 

, where

� �
are the

concrete temporal relations which are finite instances of � � over
�

and
���

.

Clearly the values of the interval attributes can be encoded as pairs of their
endpoints which are elements of

� � �
���

	
�


. However, it is important to

understand that both
� �

and
���

model the same structure of time instants, a
single-dimensional linearly ordered timeline. This requirement is the crucial
difference between the use of intervals in temporal databases and in various
interval-based logics (cf. Section 19.5.4). The meaning of concrete temporal
databases is defined by a mapping to the class of abstract temporal databases.

Example 19.16 A concrete representation of the instance in Figure 19.1
based on the interval encoding is shown below:
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Booking

Meeting Room Time
DB group DC1331 [06-Jan-04.10:00,06-Jan-04.11:59]
Intro to Databases MC4042 [06-Jan-04.10:00,06-Jan-04.11:19]
Intro to Databases MC4042 [08-Jan-04.10:00,08-Jan-04.11:19]

Definition 19.14 (Semantic Mapping
� � � ) Let

� �
be an abstract temporal

database and
� 
 be a concrete temporal database over the same schema � . We

say that
� 
 encodes

� �
if

� � �� � � 	 �  ��� 
 � � ����� � �-1� � � 	 �  � � � �

for all
� �

in � , � � ��� , and �
� �  �"�#%$-&
(*)�+',

, where
� �� is the interpretation of the

relation symbol � � in the database
�

. This correspondence defines a map
� � �

from the class of the concrete temporal databases to the class of the abstract
temporal databases as an extension of the mapping of the relations in

� 
 to the
relations in

� �
.

Note that
� � �

is neither injective nor onto. Therefore there is no unique canon-
ical concrete temporal database that encodes a given abstract temporal data-
base. If only a single temporal dimension is allowed, however, we can define
a canonical form for concrete temporal relations using coalescing: A single-
dimensional temporal relation is coalesced if every fact is associated only with
maximal non-overlapping intervals. A concrete temporal database is coalesced
if all the user-defined relations are coalesced. Unfortunately, such a canonical
normal form does not generalize to higher dimensions and Theorems 19.3 and
19.4 show that we cannot restrict our attention to the single-dimensional case.

19.6.2 Concrete Temporal Query Languages

The simplest query language over concrete temporal databases is the two-
sorted first-order logic where variables and quantifiers of the temporal sort
range over the domain

���
rather than

� �
.

Definition 19.15 (Interval-based Language �
�
) Let � be a database schema

and
�   � � � � � 	 �  � � � � � � � � 
 � �	� � 
 � �	� � � � � � 
 � � �� � � �


where � � is the temporal extension of
� � � � and

� � � � � �
	 � � 

.

� �
uses

� �� � � �
 instead of the symbols
� � � 	��

�
� 	 � �

�
	 �
� � from the actual

structure of
� �

. However, it is easy to see that, e.g.,
�
� ��� �

can be expressed
as
� � � ���

, etc., and the new notation is thus merely syntactic sugar. We could
also equivalently use Allen’s algebra operators [Allen, 1983]. The resulting
language is equivalent to

� �
.
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We assume the usual Tarskian semantics for formulas in
� �

. Therefore
� �

is fairly easy to implement using standard relational techniques. However,
it is crucial to understand that this semantics of

� �
is not point-based—the

elements of
���

correspond to points in the two-dimensional plane (cf. Sec-
tion 19.5.4). Thus

� �
can not be immediately used as a query language over

interval-based encodings of point-based abstract temporal databases because,
among other things, it can easily express representation-dependent queries.
Consider the following example:

Example 19.17 Let
� � 	�� 
 be two concrete temporal databases over the

schema
�� � �  

defined by
� � � � � � � � 	�� � 	��  	 � � 	 	�� � 	��  
 and

� � 1 � � � � � 	�� � 	��  
 �
Then the formula 
 � 	 � � 
 � � � ��� 	 �  � � � � 	 �  � ���� � 

is true in
� �

but false in
� 
 .

This observation leads to the following definition:

Definition 19.16 (
� � � -generic Queries) Let

� � �
be the semantics mapping

and # � � �
. Then we say that # is

� � �
-generic if

� � � � � � � 
 � implies
� # �� �  � �

� # � � 
  � for all concrete temporal databases
� � 	 � 
 .

In other words, no well-behaved query should distinguish between two equiv-
alent, but differently represented temporal databases. Most interval-based
query languages (e.g., TQuel or SQL/Temporal; cf. Section 19.7) are directly
based on the language

� �
(or one of its variants). This choice inherently leads

to the possibility of expressing non
� � �

-generic queries.

19.6.2.1 Compilation of Abstract Query Languages

A desirable solution is to use one of the abstract query languages for querying
the encoded temporal databases. However, the semantics of these languages
is defined over the class of abstract temporal databases (and we cannot simply
apply the queries to the images of the concrete temporal databases under

� � �
,

as this would completely defy the purpose of using the concrete encodings and
we would have to face the possibility of handling infinite relations). Thus we
need to evaluate abstract queries directly over the concrete encodings. This
goal is achieved using compilation techniques that transform abstract queries
to formulas in

� �
while preserving meaning under

� � �
:

Theorem 19.6 ([Toman, 1996]) There is a (recursive) mapping
�  � � �

� �
such that # � � � �  � � � � #  � �  � for all # � � �

and all concrete temporal
databases

�
.

Moreover we can show that when using the interval-based encoding
� �

can
express all

� � �
-generic queries in

� �
:

Theorem 19.7 ([Toman, 1996]) For every
� � �

-generic # � � �
there is

� � � �
such that

� # � �  � � � � � � � 
for all concrete temporal databases

�
.
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Thus, considering
� � �

-generic queries, there is no advantage of basing a tempo-
ral query language on

� �
.

The mapping from Theorem 19.6 can be also used for
� �

by composing it
with the

� ��� %��
map from Definition 19.10. However, we may ask, is there is a

more direct way from
�$�

to
� �

? The following theorem gives a direct mapping
of

�$�
to ATSQL (which is essentially a SQL version of

� �
; cf. Section 19.7):

Theorem 19.8 ([Böhlen et al., 1996a; Chomicki et al., 2001]) There is
a (recursive) mapping

�  �$� � � �
such that # � � � �  � � � � #  ��  � for all # � �$�

and all coalesced concrete temporal databases
�

.

This mapping is considerably simpler than the indirect way through
� �

. How-
ever, we pay the price for simplicity by having to maintain coalesced temporal
relations, including all intermediate results during the bottom-up evaluation
of the query. Note that the use of coalescing is possible due to the inherent
single-dimensionality of

� �
.

The mappings defined in Theorems 19.6 and 19.8 bring up an interesting
point: what are the images of the temporal connectives themselves? It turns
out that the results of such translations can be considered to be the equiva-
lents of the original connectives that operate on concrete temporal relations, as
shown in the example below.

Example 19.18 Let ������� � ��� ���	� � �	��
 � ��� %�� �� ������� 	 �  and � and
�

two
queries in

�$�
. Then

� � � � � � 	 �  � � � �  � � � �
 � ��� %�� � �  ������� � ��
 ����� %�� � �   � �  �

for all concrete temporal databases
�

.

A similar trick can be used to define the remaining temporal connectives. For
coalesced databases we can use

�
in place of

��
 ����� %��
. This definition can be

used to define an algebra over concrete relations that preserves the
� � �

mapping
and is thus suitable for implementing

� �
.

19.6.3 Concrete Multi-dimensional Temporal Databases

Similarly to the single-dimensional case, storing the abstract multi-dimensional
temporal databases directly may induce enormous space requirements. Thus
we need to use encodings for multiple temporal dimensions. However, the in-
troduction of multiple dimensions brings new challenges. The choice of encod-
ing for sets of points in the multidimensional space is often much more involved
than taking products of the encoding designed for the single-dimensional case.
Assume that we attempt to represent the sets of points by hyper-rectangles—
the multi-dimensional counterparts of intervals. It is easy to see that we can
write first-order queries that do not preserve closure over this encoding:
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Example 19.19 Consider the query # � � ��	 ��
 �� � � � �  � � � ��
  � � � � ��
 . This
query evaluated over the database � � � � � 	 	 	�� �  
 returns a triangle-like region
where, for all the points in the region, the first coordinate is less then the
second coordinate.

There are several ways of dealing with this issue:
� We can choose a multi-dimensional temporal logic where all the intro-

duced connectives preserve closure over the chosen encoding.
� We can introduce closure restriction for formulas in

� �
, [Chomicki et al.,

1996; Toman, 1997; Chomicki et al., 2003a]. Such a restriction is de-
signed to guarantee attribute independence of the free variables in the
query and subsequently closure over an encoding obtained by taking an
appropriate number of Cartesian (self-)products of the single-dimensional
encoding.

� We can use a more general encoding using constraints in some suitable
constraint language [Kanellakis et al., 1995; Libkin et al., 2000].

Another problem with using a multi-dimensional view of time is that it is much
harder to define normal forms for temporal relations: in the single-dimensional
case the coalesced relations provide a unique normal form (for the interval
based encoding). However in two or more dimensions, such a normal form does
not exist anymore (even when we only use hyper-rectangles).

19.6.4 Other Encodings

While the interval-based encoding of temporal databases is the most common
in the literature, it is not the only possible approach. Another way to look at
this problem is as follows: consider having

� a finite relation (with one or more temporal attributes), and
� a view that defines another (abstract) temporal relation in terms of the

given relation.

Note that the instance of the relation defined by the view is not necessarily
finite. We can think of the given finite relation as the finite encoding of an
abstract temporal relation defined in terms of the view.

Example 19.20 (Interval Encoding Revisited) Consider a finite instance
of a relation � � � � 	 � 
 	 �  where the first two attributes are temporal attributes
and the last attribute is a data attribute. In addition consider the view

� � � 	 �   � � � � 	 �   
 � � 	 � 
 � � � � � 	 � 
 	 �  � � � � � � � 
 


It is easy to see that instances of � are essentially the concrete relations based
on the interval encodings corresponding to instances the abstract relation

�
.

The view provides an explicit version of the semantic mapping in Definition 19.14.
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This approach, however, allows us to define many different mappings between
abstract temporal relations and their concrete counterparts. Bettini et al. [Bet-
tini et al., 1998] use this approach to study temporal semantic assumptions in
temporal databases (in the setting of temporal granularities). Examples of
temporal assumptions considered are:

� values of certain attributes persist until the value is replaced by an-
other value later (with respect to the flow of time),

� values of a certain attribute are computed as an average, interpolation,
etc., of the closest values preceding and following w.r.t. the flow of time;

� values of a certain attribute are computed as the sum of last three val-
ues; etc.

Note that the views define abstract relations and thus their instances may be
infinite in general, even though it is defined on top of a finite relation. Thus
the queries that define these views do not have to be range-restricted.

Example 19.21 (Persistence) Consider a relation � � � 	 � 	 �  where the first
attribute is a temporal attribute and the last two attributes are data attributes.
Then the view

� � � 	 � 	 �   � � � � 	 � 	 �   
 � ��� � � � � 	 � 	 �  � � � � ���� � 
 	 � 
 � � � � 
 	 � 	 � 
  �� � � 
 � � � � � 
 � �  


defines an abstract temporal relation in which, for a given value
�
, the value

for � persists until changed.

The same approach can be applied to define an abstract temporal relation from
a log of insertions into and deletions from a temporal relation.

The association of abstract relations with their concrete encodings based on
views has been studied extensively in the data integration community under
the global-as-a-view (GAV) paradigm [Lenzerini, 2002]. Thus, query evaluation
is essentially based on view expansion followed by the approach outlined in
section 19.6.2. Note however, that to interpret the results of queries we need to
specify or derive the temporal assumptions associated with the (finite) answer.
One option here is to use the interval encoding as the default assumption.

19.7 SQL and Derived Temporal Query Languages

Up to this point we have only discussed temporal query languages based on
logic. In this section we focus on the proposals for temporal extensions of more
practical query languages, especially SQL [ISO, 1992]. When designing such
an extension several obstacles need to be overcome:

(1) The semantics of SQL and other practical languages are commonly
based on a bag (duplicate) semantics rather than on a set (Tarskian)
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semantics. Therefore we need to design our extension to be consistent
with the semantics of the language we started with. This also means
that we need to deal with various non first-order features of the origi-
nal language, e.g., with aggregation (the ability to count the number of
tuples in a relation or to compute the sum of values in an attribute of
the relation over all tuples).

(2) We need to design the extension in a way that consistently supports the
chosen model of time. This point is often not emphasized enough and
many of the proposals drift from the intended model of time in order
to accommodate extra features. However, such design decisions lead to
substantial problems in the long run, especially when a precise seman-
tics of the extension has to be spelled out (this is one of the reasons why
only informal semantics exist for many of these languages).

(3) To obtain a feasible solution we need to use a compact encoding of tem-
poral databases introduced in Section 19.6. Therefore we need an effi-
cient query evaluation procedure for the chosen class of concrete data-
bases.

We would like to point out that vast majority of practical temporal query lan-
guages assume a point-based model of time (i.e., the truth of facts is associated
with single time instants rather than with sets of time instants) [Chomicki,
1994]. Unfortunately (and also in most cases) the syntax is based on the syntax
of

� �
or some of its variants, e.g., languages that use Allen’s interval algebra

operators [Allen, 1983]. This discrepancy leads to a tension between the syn-
tactic constructs used in the language and the intended semantics of queries.
While we focus mostly on temporal extensions of SQL, our observations are
general enough to apply to temporal extensions of other query languages, e.g.,
TQuel [Snodgrass, 1987].

Example 19.22 We demonstrate the differences between the approaches
using the following query: List all meetings with a scheduled break . This
query can be easily formulated in temporal logic as follows:

� 
�� � booking � � 	 �  � ��
�� � booking � � 	 �  � � 
�� � booking � � 	 � ��

This query could be equivalently expressed using future (or past) temporal con-
nectives only.

The temporal extensions of SQL can be divided into two major groups, treated
below, based on the syntactic constructs added to support temporal queries.

19.7.1 Abstract Temporal Extensions of SQL

We first consider extensions of SQL based on abstract temporal query lan-
guages.
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19.7.1.1 Extensions based on on
� �

While query languages based on
� �

were often considered to be inherently
inefficient, recent results (especially Theorem 19.6, [Toman, 1996]) allow us to
define a point-based extension of SQL that can be efficiently evaluated over the
concrete interval-based temporal databases. The proposed language, SQL/TP,
is a clean temporal extension of SQL [Toman, 1997]:

� The syntax and semantics of SQL/TP are defined as a natural extension
of SQL with an additional data type based on the point-based temporal
domain

���
(i.e., a linearly ordered set of time instants).

� The use of Theorem 19.6 also avoids the problems outlined later in
the chapter in Example 19.25: the result of the

�
map is an ordinary

query in
� �

(or SQL). Therefore it can be efficiently evaluated over the
concrete temporal databases based on interval encoding of timestamps
(like any other SQL query).

The SQL/TP proposal also includes a definition of meaningful duplicate se-
mantics and aggregation operations that are compatible with standard SQL
[Toman, 1997]. The query from Example 19.22 can be formulated in SQL/TP
in the expected way:

select r1.Meeting
from Booking r1, Booking r2
where r1.Meeting = r2.Meeting
and r1.time < r2.time
and not exists ( select *

from Booking r3
where r3.Meeting = r1.Meeting

and r1.time < r3.time
and r3.time < r2.time )

It is easy to see that the above formulation is is very similar to the declarative
formulation of the query in the language

� �
or in temporal logic.

19.7.1.2 Languages based on
�$�

Another possible temporal extension of SQL can be based on the language
���

for some finite set of temporal connectives � . The temporal connectives can be
introduced in the language similarly to set operations, e.g., the union opera-
tion.

Example 19.23 (SQL/ �  � ���	� 	 � � � � 	 
 ) The extended language is defined as
follows. Every SQL query is also an SQL/

�  �
���	� 	 �������
	 
 query. Standard SQL
queries are evaluated point-wise at every time instant. In addition if Q1 and
Q2 are two queries (fullselects) then
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Q1 since Q2 Q1 until Q2

are also SQL/
�  � ���	� 	 � � � � 	 
 queries. The semantics of this language is based on

a natural extension of Definition 19.7.

This language is a natural temporal extension of ATSQL’s sequenced semantics
[Snodgrass et al., 1995]. We can use Theorem 19.8 to evaluate queries in this
language efficiently over coalesced interval-encoded concrete temporal databa-
ses, [Böhlen et al., 1996a; Chomicki et al., 2001]. Note that in this case all
temporal relations have only one temporal attribute and therefore we can use
coalescing.

Alternatively we can compose the mappings defined in Definition 19.10 with
Theorem 19.6 to obtain a query evaluation procedure for � � . This time we
do not have to enforce coalescing of the concrete temporal relations as The-
orem 19.6 allows evaluation of queries over all concrete temporal databases
based on interval encoding. Chen et al. [Chen and Zaniolo, 1999] used this ap-
proach to define a universal way of temporalizing other query languages, such
as QBE and Datalog.

19.7.2 Concrete Temporal Extensions of SQL

Next, we consider temporal extensions of SQL based on the concrete temporal
query languages.

19.7.2.1 Extensions of SQL based on
� �

This group contains the majority of the proposals, in particular SQL/Temporal
to the ANSI/ISO SQL standardization group [Snodgrass et al., 1996], and AT-
SQL [Snodgrass et al., 1995], the applied version of TSQL2 [Snodgrass, 1993],
and the recent temporal extension of Informix (TIP) [Yang et al., 2000]. All
these languages are directly based on

� �
with Allen’s algebra operators ex-

pressed in SQL syntax and using bag (duplicate) semantics.
Let us try to formulate the query from Example 19.22 in such a language,

e.g., TSQL2 or its successor, SQL/Temporal. The solution that most people
come up with is the query below (we use an intuitive and simplified syntax
to make our point; for full details on syntax of SQL/Temporal see [Snodgrass
et al., 1995; Snodgrass et al., 1996]):

Example 19.24 Query from Example 19.22 in SQL/Temporal:

select r1.Meeting
from Booking r1, Booking r2
where r1.Meeting = r2.Meeting
and r1.time before r2.time
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Note that the time attributes range over intervals and the before relation-
ship denotes the before relationship between two intervals. For a similar ex-
ample in TQuel see [Chomicki, 1994].

Strangely enough, this query accesses the relation Booking only twice while
the original query in Example 19.22 references the relation three times. This
is often considered to be a “feature” of the

� �
-based proposals and is attributed

to the use of interval-based temporal attributes. It is also appealing due to
savings in the query evaluation cost. However, closer scrutiny reveals that the
above SQL/Temporal query is incorrect. Indeed, it returns all meetings that
were held consecutively in three different rooms without a break. This result
is consistent with the two-dimensional interval-based semantics of

� �
. Simi-

larly we can show many innocent-looking queries to be non-generic (in sense
of Definition 19.16) and therefore necessarily incorrect with respect to their
intended meaning. On the other hand access to interval endpoints (the non-
sequenced semantics [Snodgrass et al., 1996]) is essential to write non-trivial
temporal queries in SQL/Temporal.

There are two principal approaches that try to avoid this incorrect and un-
expected behavior by modifying the semantics of the above languages.

19.7.2.2 Coalescing

The first (and historically oldest) approach is based on coalescing: an assump-
tion that the timestamps are represented by maximal non-overlapping inter-
vals (see Section 19.6). This is also the assumption commonly made when
queries like the one in Example 19.24 are formulated. The coalescing attempts
to produce a normal form of temporal relations over which the semantics of
queries could be (uniquely) defined. The formal justification of this approach
lies in realizing that the intended semantics of the language is point-based and
therefore we can evaluate queries over any of the

� � �
-equivalent temporal data-

bases (one of which is the coalesced one). For a detailed discussion of coalescing
in temporal databases see [Böhlen et al., 1996b].

The most prominent representatives of this approach are TQuel [Snodgrass,
1987; Snodgrass, 1993], and TSQL2 [Snodgrass, 1995; Snodgrass et al., 1994].
However:

� Coalescing does not solve the problem with the query in Example 19.24.
The query would only work if the Booking relation was coalesced after
projecting out the attribute Room. This is not done in the (informal)
semantics of TQuel nor TSQL2. It also means that the performance
gain attributed to the use of interval valued attributes does not exist as
we need to re-coalesce temporal relations on the fly.

� While coalescing preserves
� � �

-equivalence in the set-based semantics,
it is incompatible with the use of duplicate semantics as it inherently
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removes duplication. This is the main reason why the newer propos-
als, e.g., SQL/Temporal or ATSQL, do not use coalescing in order to
preserve compatibility with SQL’s duplicate semantics.

The most serious problem with coalescing-based approaches is exposed by The-
orems 19.3 and 19.4: the theorems show that we cannot evaluate all first-
order queries using only one temporal dimension. This result is fatal to the
coalescing-based approaches since a canonical representation of temporal re-
lations no longer exists and

� � �
-equivalent concrete relations can be distin-

guished using a first-order query in, for example, SQL/Temporal. We call such
queries representation dependent. Even very simple queries, e.g., counting the
number of regions along the axes, give different results depending on the par-
ticular representation.

19.7.2.3 Folding and Unfolding

The second approach is based on two additional operations: fold and unfold
[Lorentzos, 1993; Lorentzos and Mitsopoulos, 1997]. These two operations al-
low us to convert a concrete temporal relation with interval-based timestamps
to a temporal relation with point-based timestamps explicitly. An appropriate
use of these two operations in in queries, e.g., defining

� p-diff
�  �

fold
�
unfold

� �  � unfold
� �   	

and then using the p-diff operator in place of set difference, would make the
above query work, as the semantics is now defined essentially on the unfolded
temporal relations and therefore is equivalent to the point-based semantics of� �

. However, a direct use of these operations, which is generally allowed in
such languages as unfold is part of the syntax, is prohibitively expensive as
shown in the following example.

Example 19.25 Consider a temporal relation � containing a single tuple��� 	 �
�
�
� 	�� � �  for some

� ���
. Clearly, this relation can be stored in

� � � � � � bits.
However, unfolding this relation gives us

� ��� 		�  
�
�
� � � � �

� 

. This relation

needs space
�
�
� � � � which is exponential in the size of the original relation � .

Such a cost would clearly disqualify approaches employing these operators as
a basis for a practical temporal query language. Note also that while the un-
folding can be represented by a first-order query

unfold
� �  � � � � 	��   
 � � � ��� 	 �  � � � � 
 	

there cannot be an equivalent range-restricted query (i.e., a query in which
variables range only over values present in the concrete database) that defines
this operator: the variable � is not range-restricted in the definition.
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IXSQL [Lorentzos and Mitsopoulos, 1997] tries to combat the use of the un-
fold operation by defining a normal form of temporal relations and introducing
an additional efficient normalization operator [Lorentzos et al., 1995] into the
query language. This operator essentially converts IXSQL’s temporal relations
to
� � �

-equivalent normal forms and reinforces the fact that the meaning of the
temporal relations is indeed point-based while intervals serve as a represen-
tational tool. The normalization operator is similar to the one used by Toman
[Toman, 1996] to prove Theorem 19.6 and later extended to handle duplicates
and aggregation in translations of SQL/TP queries to SQL/92 [Toman, 1997].

Similarly to SQL/TP (and unlike the TSQL2 family of languages) IXSQL
treats temporal values simply as an additional data type and allows varying
numbers of temporal attributes to be used by a relational schema. Date, while
using a syntactic variant of IXSQL [Date et al., 2003], considers this approach
superior based on the principle of least departure from the relational founda-
tions as defined by Codd [Codd, 1972]. However, the true necessity of multiple
temporal dimensions (and thus the need for an arbitrary number of temporal
attributes) originates from Theorems 19.3, 19.4, and 19.5 and is necessary to
guarantee relational completeness.

19.8 Updating Temporal Databases

In addition to storing and retrieving information, most applications of informa-
tion systems also require the ability to modify the stored data. Temporal da-
tabases are no different. Here we again take advantage of the representation-
independent nature of abstract temporal databases to define database updates.
Indeed, from the conceptual point of view, updating an abstract temporal da-
tabase is no different from updating a standard relational database. Thus the
standard SQL-style statements for inserting, deleting, and modifying contents
of relation instances can be used. There is, however, one small difference: in
general, the instances of abstract temporal relations may be infinite and thus
cannot be populated by inserting single tuples (this is always sufficient in the
case of standard relational databases).

Example 19.26 Continuing with our running example, making a new book-
ing of a room for a meeting can be achieved as follows:

INSERT into Booking (
SELECT ’DBgroup’, ’DC1331’, t
FROM unit
WHERE ’23-Jan-04.14.00’ <= t <= ’23-Jan-04.16.00’ )

where unit is an auxiliary table that contains a single tuple
�

. The inner query
�
As SQL does not allow SELECT blocks without a FROM clause.
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produces a set
� �

DB group
	
DC1331

	 �   23-Jan-04.14.00
� � � 23-Jan-04.16.00




that is added to the instance of Booking as representing another scheduled
meeting. Deletion, e.g., creating a 20 minute break in the middle of the above
meeting, is achieved analogously by the following statement:

DELETE from Booking
WHERE Meeting = ’DBgroup’
AND Room = ’DC1331’
AND ’23-Jan-04.14.50’ <= t <= ’23-Jan-04.15.10’

In this case the set
� �

DB group
	
DC1331

	 �   23-Jan-04.14.50
� � � 23-Jan-04.15.10




is removed from the abstract instance of the Booking relation.

Similar examples can be shown for SQL’s UPDATE statement.

19.8.1 Updates and Concrete Temporal Databases

In addition to being able to express the update requests on the abstract level,
and similarly to queries, the effects of the updates must be mapped faithfully
into the concrete representation. This is reasonably easy when interval encod-
ing is used for concrete databases:

� to make insertions, simply add the appropriate set of concrete tuples to
the concrete relation;

� deletions and updates are more complex: we first use techniques simi-
lar to those used for mapping

� �
queries to the

� �
language to identify

and remove the affected concrete tuples. However, since a single con-
crete tuple may represent multiple abstract ones and the deletion may
only affect a subset of those tuples, a new tuple(s) may have to be rein-
serted into the concrete relation to compensate for this situation.

Example 19.27 The insertion in Example 19.26, assuming an underlying
concrete representation based on interval encoding, is realized by adding a
concrete tuple,

�
DB group

	
DC1331

	 �
23-Jan-04.14.00

	
23-Jan-04.16.00� 

to the instance of the concrete representation of the relation Booking. While
the insertion (save enforcement of integrity constraints) is relatively straight-
forward, a deletion (and update/modification) is slightly more complex due to
the use of the concrete encoding. The deletion in Example 19.26 is performed
in two steps:
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(1) Tuples Booking
�
DB group

	
DC1331

	 � 
, for

� � � ����
are removed,

(2) Tuples Booking
�
DB group

	
DC1331

	 � 	 
for
� 	 � � �

�
� 

are reinserted � ,

where
� � �

23-Jan-04.14.50
	
23-Jan-04.15.10� . The two steps can be commuted

to avoid the need for auxiliary relations. In our example, this leads to the
deletion of the tuple

�
DB group

	
DC1331

	 �
23-Jan-04.14.00

	
23-Jan-04.16.00� 

and to the insertion of the tuples
�
DB group

	
DC1331

	 �
23-Jan-04.14.00

	
23-Jan-04.14.49� �

DB group
	
DC1331

	 �
23-Jan-04.15.11

	
23-Jan-04.16.00� ��

Also, the situation becomes more complex if the mapping between the abstract
and concrete representations is specified by a view. In this case, we are facing
the view update problem and, depending on the complexity of the view defini-
tion, some of the updates may not be allowed.

19.8.2 Append-only Databases and Data Expiration

The situation in the case of append-only (or transaction-time) temporal databa-
ses is slightly different: here the updates are (at least conceptually) realized by
adding a new state to an already existing (finite) history, yielding an extended
history which is still finite. Such a history represents an abstract temporal da-
tabase under the persistence assumption (cf. Section 19.6.4). However, in this
scenario data accumulates over time and there is no apriori mechanism that
allows us to remove/delete no longer needed parts of the history. To combat
this problem various data expiration techniques have been developed. There
are two main approaches to expiring data.

Administrative Approaches. These approaches identify data based on policies
[Jensen, 1995; Skyt et al., 2003] which can be considered view specifi-
cations over the original history: all data not in the view extent are ex-
pired. Query answering then reduces to answering queries (formulated
over the original history) using data in these views only. This problem
has been extensively studied in the information integration area and is
often referred to as answering queries over views [Levy et al., 1995] or
the LAV (local as a view) approach [Lenzerini, 2002].

Query-driven Approaches. These approaches base their decisions of what data
to expire on identifying parts of database histories that can be safely
removed without affecting answers to a given set of queries [Chomicki,
1995; Toman, 2001; Toman, 2003a; Toman, 2003b].

�
Note that subtracting an interval from another interval may yield a set of intervals, as in our
example.
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Data expiration techniques can be compared by measuring the size of the resid-
ual data (the amount of data retained after the expiration operation completes
on a history) in terms of the length of the original history, the size of the active
data domain, the queries, etc. Chomicki [Chomicki, 1995] and Toman [Toman,
2001; Toman, 2003b] show that for the past fragment of FOTL and the 2-FOL
queries, respectively, the size of the residual data can be made independent of
the length of the history, while preserving answers to a fixed set of queries.
On the other hand Toman [Toman, 2003b] shows that such techniques cannot
exist, e.g., for the future fragment of the fixpoint TL and for various duplicate-
preserving temporal query languages.

19.9 Complex Structure of Time

So far we have only considered the simplest temporal domains possible: lin-
early ordered sets of time instants. In this section we consider relaxing this
restriction.

19.9.1 Complex Temporal Domains

Often, a temporal domain has also a distinguished element
�

(the beginning of
time). The standard temporal domains are: natural numbers � � ��� 		� 	 ��

, in-
tegers � � ����	�� 	���

, rationals � � ��� 		� 	 ��
, and reals

� � � � 		� 	 �� . However,
additional structure can be added to the temporal domain; among the more
common extensions considered are the

� Durations and Temporal Distances, and
� Periodic Sets.

The first extension can be achieved by introducing a fragment of linear arith-
metic into the signature of the temporal domain. Similarly, the later extension
adds the modulo

�
predicates to the signature.

19.9.2 Impact on Integrity Constraints and Database Design

The additional structure of the temporal domain yields new classes of integrity
constraints available to users. Indeed, the linear order of time has already
enabled the use of order dependencies (see Section 19.4.2). Following that ap-
proach, the new interpreted predicates in the signature of the complex tempo-
ral domain lead to more complex constraint dependencies.

The additional structure is also essential for specifying calendars and time
granularities [Bettini et al., 2000], for example an hour can be defined as

hour
� � 	 � 	  � �	��
 � � � � � � 	 � � �� � 	
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where hour
� � 	 � 	  holds whenever � is the first minute of the hour (which is

used to identify hours) and � 	 is a time instant within the hour � . This also
leads to the definition of functional dependencies that take granularity of time
into account. Such dependencies constrain attribute values (

�
) to depend on

another values ( � ) within a particular time granule, e.g., an hour (denoted
�  � �

hour
�

) and can be captured by a formula in the extended signature as
follows:
� �� 	 �� � 	 �� 
 	 � � 	 � 
 � 
 � � � � �� 	 �� � 	 � �  � hour

� � 	 � �  � � � �� 	 �� � 	 � 
  � hour
� � 	 � 
  � � �� � � �� 
 

Such dependencies, in turn, lead to the definition of temporal normal forms,
e.g., TBCNF, and the development of decision procedures for logical implication
[Wang et al., 1997; Wijsen, 1999].

19.9.3 Impact on Query Languages

The impact of such extensions on the abstract query languages is minimal: the
new predicate symbols in the signature of the temporal domain are used in
exactly the same way as the linear order symbol

�
has been used so far. This,

in the case of temporal logics, leads to the ability to define additional temporal
connectives. For example, in temporal domains with constants it is natural to
consider bounded versions of such connectives, e.g., � � 	 � � 	 1���� , meaning that �
is true in the future between time

� �
and time

� 
 , [Alur and Henzinger, 1992;
Koymans, 1989]. Bounded temporal connectives can be defined like the un-
bounded ones using first-order formulas (Definition 19.5). In fact, for discrete
time they can even be directly simulated using the unbounded connectives to-
gether with � and � . However, bounded connectives are quite useful and have
been applied to the specification of real-time integrity constraints [Chomicki,
1995], and real-time logic programs [Brzoska, 1993; Brzoska, 1995]. Their ad-
vantage is that they are also meaningful in a slightly different semantic model
of histories, in which the value of the clock in a state does not have to coincide
with the index of the state in a history.

19.9.4 Impact on Concrete Temporal Databases

In order to introduce the additional structure of the temporal domain into the
concrete temporal query languages, we need to consider how the added pred-
icates affect the concrete temporal databases first. A careful analysis of Def-
inition 19.12 reveals that the intervals are essentially quantifier-free formu-
las in the language of linear order with exactly one free variable. This idea
can be generalized to more general structures [Kanellakis et al., 1995]: Let���
	 � 

be a point-based temporal domain with the signature
�

. Then we can
define the set of formulas ��� � � � � �   � � � � � �
	 � �  � � � 
 
 where

� � is
the set of finite conjunctions of atomic formulas in the language of

�
. This set
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can serve as the basis of the temporal domain for the class of concrete tem-
poral databases, similar to intervals in Definition 19.12. An example of an
alternative encoding is the use of periodic constraints [Kabanza et al., 1995;
Toman and Chomicki, 1998], or linear arithmetic constraints [Kanellakis et al.,
1995]. Concrete queries over such complex encodings are increasingly hard to
write (cf. the problems we encountered in the case of linear order only). Thus
the need for using abstract query languages in this setting is even more crucial.

19.10 Beyond First-order Logic

We survey here a number of temporal query languages whose expressive power
goes beyond that of first-order logic. Most of these languages have only re-
cently been proposed and thus their relative expressive power is not completely
known and implementation techniques (in particular compilation to concrete
query languages) have yet to be developed. In all likelihood such an implemen-
tation will require the development of more powerful concrete query languages,
as currently available languages like TQuel or TSQL2 are not sufficiently ex-
pressive to serve as targets of the compilation.

19.10.1 Second-order Temporal Connectives

Definition 19.5 of temporal connectives can be extended with monadic second-
order quantification over the temporal domain (quantification over subsets of
the domain). This gives extra expressive power. For example, the modality
“any time at an even distance from now” can be defined as

�
�

 � � �� 
 � ��� � � � 
 � � � � � � � � � � � � ���������	� � � 

� � � 	 ��� � � � � 	 � ���������	� � � 	� � ��
 � 	 

where ���������	� � �  �� � � � � � � � � � � � � �  � � � � � � � � � � �  �
If N is the

temporal domain, the above extension is identical in expressive power to ETL,
an extension of temporal logic where temporal connectives are defined using
regular languages. ETL was first proposed in [Wolper, 1983], in the proposi-
tional case and generalized to the first-order case in [Abiteboul et al., 1996].
The latter paper shows that the expressive power of ETL is incomparable to
that of

� �
. For other temporal domains, the expressive power of temporal logic

with monadic second-order connectives has not yet been studied.

19.10.2 Fixpoints

A number of temporal fixpoint query languages have recently been proposed
by [Abiteboul et al., 1999]:
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� TS-FIXPOINT: the extension of
� �

with inflationary fixpoints,
� T-FIXPOINT: the extension of temporal logic with inflationary fixpoints

and some additional constructs, such as moves back and forth in time,
and local and non-inflationary variables (for details, see [Abiteboul et al.,
1999]),

Corresponding non-inflationary versions of those languages have also been pro-
posed. It was shown in [Abiteboul et al., 1999], that TS-FIXPOINT is at least
as expressive as T-FIXPOINT and that the relationship in the other direction
depends on unresolved questions in complexity theory. On the other hand, T-
FIXPOINT is more expressive than

� �
. These languages appear to be mainly

of theoretical interest. Fixpoint temporal logic � � � [Vardi, 1988], has been ex-
tensively used in program verification, although only in the propositional case.

19.11 Beyond the Closed World Assumption

So far we only considered semantics for temporal queries based on the closed
world assumption (CWA). Under this assumption, temporal databases hold
complete information about truth. An alternative that is more commonly con-
sidered by AI approaches is to treat the relational structures representing tem-
poral databases as incomplete specifications and use the open world assump-
tion (OWA) to answer queries. However, even for closed formulas in any of
the abstract query languages we have considered so far, query processing es-
sentially reduces to the satisfiability problem for formulas in these languages
which, in all the cases, is highly undecidable.

19.11.1 Infinite Database Histories and Potential Answers

Even restricting the scope of the OWA to append-only temporal databases does
not alleviate the decidability problems. Consider finite histories introduced in
Definition 19.4 to be finite prefixes of infinite (or complete) histories. Queries,
then, are evaluated with respect to the infinite histories (using the same se-
mantic definitions as in Section 19.5, the only difference is in allowing an infi-
nite temporal domain for the history). However, as only a finite portion (a pre-
fix) of the history is available at a particular (finite) point in time, we need to
define answers to queries with respect to possible completions of the prefix to a
complete history.

Definition 19.17 Let
�

be a finite history,
�

a query (in an appropriate
query language), and % a substitution. We say that

� % is a potential answer for
�

with respect to
�

if there is an infinite
completion

� 	
of
�

such that
� 	 	 % � � �

.
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� % is a certain answer for
�

with respect to
�

if for all infinite completions� 	
of
�

we have
� 	 	 % � � �

.

The notion of potential answer is a direct generalization of the notion of poten-
tial constraint satisfaction [Chomicki, 1995].

Unfortunately, the above definition leads to undecidable satisfiability prob-
lems even for closed formulas in the temporal query languages introduced in
Section 19.5. Indeed, potential/certain satisfaction is closer to the general sat-
isfiability/validity problems that to satisfaction in a fixed model. Therefore
potential/certain satisfaction is not useful as a basis for query evaluation. The
negative results are as follows:

Proposition 19.1 ([Gabbay et al., 1994]) The satisfaction problem for two
dimensional propositional temporal logic over the natural numbers-based time
domain is not decidable.

This proposition rules out the temporal relational calculus. For weaker query
languages based on single-dimensional temporal logic, or its Past and Future
fragments, the results are as follows:

Proposition 19.2 ([Chomicki, 1995]) For past formulas potential constraint
satisfaction is undecidable.

Proposition 19.3 ([Chomicki and Niwinski, 1995]) For future temporal
logic formulas (with a single quantifier in the scope of temporal connectives),
potential constraint satisfaction is undecidable.

19.11.2 Decidable Fragments

To regain ability to effectively evaluate queries under the OWA, the only op-
tion is to restrict the query languages themselves. Decidable fragments of first-
order logic (i.e., languages in which the satisfiability problem is decidable) have
been extensively studied. In the temporal setting, Hodkinson et. al. [Hodkinson
et al., 2000] have introduced the monodic temporal extensions of several decid-
able fragments of first-order logic. The monodicity restriction stipulates that
temporal subformulas of formulas in

� �
, i.e., subformulas rooted by a tempo-

ral connective, may contain at most one free variable over the data domain (in
addition to the requirement that the first-order portion of the formula belongs
to an appropriate decidable fragment). Their technique has been successfully
applied to a variety of logics, e.g., to the

�����
and

� � �
description logics [Ar-

tale and Franconi, 2001], to the guarded, packed, and two variable fragments
[Hodkinson, 2002]. In addition, the complexity of the decision procedures for
these fragments has been studied [Hodkinson et al., 2003]. Decidability and
complexity of fixpoint variants of these results have been studied by Franconi
and Toman [Franconi and Toman, 2003].
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19.11.3 Temporal Logic Programming

Another way to escape the limitations of temporal logic is to keep its syntax but
use different semantics for its Horn subset. This is analogous to the move from
first-order logic to logic programming. Indeed, several proposals have been
made by [Abadi and Manna, 1989; Baudinet, 1992; Baudinet, 1995; Brzoska,
1991; Brzoska, 1993; Brzoska, 1995], to extend the language of Horn clauses
with temporal connectives in such a way that there is still some notion of least
model and resolution-based operational semantics. Not surprisingly, those lan-
guages can usually be translated to the standard logic programming languages.
For instance, the temporal connectives in Templog, [Abadi and Manna, 1989;
Baudinet, 1992; Baudinet, 1995], can be simulated in Prolog using an ad-
ditional predicate argument that can contain the successor function symbol
[Baudinet et al., 1993; Chomicki and Imieliński, 1988]. In this way, there
is an exact correspondence between function-free Templog and Datalog

� � , an
extension of Datalog with the successor function symbol in one predicate ar-
gument. More sophisticated temporal connectives involving numeric bounds
on time, [Brzoska, 1991; Brzoska, 1993; Brzoska, 1995], can be simulated us-
ing arithmetic constraints [Jaffar and Lassez, 1987]. One can also study the
extensions of the above Horn clause languages with stratified negation [Apt
et al., 1988]. Temporal logic programming languages are directly amenable
to efficient implementation using the existing logic programming technology.
Recently, Datalog

� � with negation has been used to define the operational se-
mantics of active database systems [Lausen et al., 1998]. As far as the expres-
sive power is concerned, it is not difficult to see that Datalog

� � is subsumed by
T-FIXPOINT and is incomparable to ETL. Datalog

� � with stratified negation
strictly subsumes ETL.

19.12 Conclusion

The chapter has provided mathematical foundations of temporal data manage-
ment in a uniform framework. This framework allows us to formally compare
and evaluate various data models and query languages proposed for managing
temporal data. We believe that further work in this area, in addition to solving
the remaining open problems, should focus on bridging the gap between logic
and practical database systems by developing the necessary software tools and
interfaces.

19.12.1 Issues not Covered in the Chapter

The chapter, however, does not cover all issues related to management of tem-
poral data. Below we briefly discuss the main topics not covered by the chapter.
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Conceptual Modeling of Temporal Data

In Section 19.4 we discuss temporal integrity constraints and the connected
issues relating to temporal normal forms. However, the chapter does not cover
conceptual design for temporal databases, in particular, various Temporal ER
models; for a survey see [Gregersen and Jensen, 1999]. A formal treatment of
these issues is presented elsewhere in this volume [Artale and Franconi, 2004].
Also, we do not discuss data models not derived from the relational model, such
as the object oriented (OO) data model, and their temporal variants in this
chapter.

Physical Design for Temporal Databases

Another set of issues not covered by this chapter are issues related to data
structures and algorithms (query operators) supporting efficient processing of
temporal queries and updates. However, we have shown that most of the ap-
proaches to querying temporal data essentially end up with first-order queries
over concrete temporal databases—queries that depend heavily on the use of
ordering of time instants. Note that, for example, the translation of temporal
equijoin in an abstract query language yields an order-based join on the con-
crete encoding. A similar situation occurs naturally when using a variant of� �

in which the WHERE condition is explicit, e.g., in the form of an interval in-
tersection operator, or when temporal queries are formulated directly in SQL
[Snodgrass, 1999]. To facilitate these operations, special-purpose physical ac-
cess methods (for a survey see [Salzberg and Tsotras, 1999]) and relational
operators. For example, [Zhang et al., 2002] consider join methods tailored to
processing ordered data.

However, many of these techniques are often limited to single or two-dimen-
sional temporal data model. This is not sufficient for processing of general
temporal queries as a consequence of Theorems 19.3, 19.4, and 19.5, and more
general techniques such as those proposed by Lorentzos et al. [Lorentzos et al.,
1995] are necessary.

Time Series and Temporal Data Mining

Considerable attention has been focused on discovering interesting patterns in
time series—sequences of values generated over time, such as stock prices.
Sequences and time series can be easily modeled as database histories. How-
ever, temporal query languages considered in this chapter are not adequate for
discovering patterns, correlation, and other statistically interesting phenom-
ena in such histories. Giannotti et al. [Giannotti et al., 2003] consider logic
based languages for specifying such queries, albeit in a non-temporal setting.
A thorough discussion of issues related to temporal data mining and its appli-
cations to time series, however, is beyond the scope of this chapter. For a recent



30th January 2004 16:9 WorldScientific/ws-b9-75x6-50 book-timeai

Conclusion 45

overview see [Last et al., 2004].

19.12.2 Extensions, Related Topics, and Future Directions

In the remainder of this section we discuss several research directions that are
closely related to temporal data management. In particular, we discuss how
ideas and results developed for management of temporal data can be applied
in those areas.

Spatio-temporal Databases

A very natural extension of the research presented here is to combine time
and space in spatiotemporal databases. It has already been mentioned here
that spatial databases can be treated similarly to multidimensional temporal
databases. Spatiotemporal databases also fit in this framework [Geerts et al.,
2001]. In principle, one could use both the snapshot and the timestamp models,
as well as hybrid models (for example, snapshot databases where the snapshots
are spatial timestamp databases). In a pure timestamp model (temporal and
spatial timestamps), [Mokhtar et al., 2002] proposed a linear-constraint-based
query language for databases of moving objects and [Vazirgiannis and Wolfson,
2001] described an SQL extension with abstract data types that model the
trajectories of objects moving on road networks. In an earlier seminal paper
in this area [Sistla et al., 1997] presented a a hybrid model query language
based on a combination of temporal logic and spatial relationships.

In spatiotemporal databases, it is common to query not only the past states
but also the (predicted) future states of the database. It seems fair to say that
the design of spatiotemporal query languages is currently at an early stage
of development, and the understanding of their formal properties has not yet
reached the level of maturity of understanding of the properties of temporal
query languages.

Streaming Data Management

The management of streaming data [Babcock et al., 2002], that is, query pro-
cessing over sequences of data items arriving over time (data streams), has
been the focus of recent research. Several groups are pursuing implementation
of streaming data management systems (DSMS) [The STREAM Group, 2003;
Chen et al., 2000; Madden et al., 2002]. The issues faced in this area have much
incommon with those encountered in temporal databases, in particular when
focusing on append-only database histories. For example, the issues related to
limiting the space needed to store portions of the stream—called synopses in
the streaming literature—which are necessary for contiguous query processing
[Arasu et al., 2002] are essentially the same as those addressed by data expi-
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ration techniques for database histories (see Section 19.8.2 or [Toman, 2003b]).
The correspondence between temporal data management and data manage-

ment for streaming data allows transfer of technology and results: temporal
query languages, as surveyed in this chapter, offer mature and well-understood
theoretical and practical foundations for the development of query languages
for data streams.

Time in Document Management and XML

In contrast to the management of temporal data based on the relational model,
handling time in document management systems or in XML repositories is not
concerned with representing time-related information external to the database
but rather with the evolution of a document or of a set of documents over time
[Chien et al., 2001; Chien et al., 2002]. Thus the approaches are closer to
version control systems used, for example, for managing source code of software
systems. The design of temporal extensions of XML itself and of the associated
query languages is in its infancy and the understanding of the issues involved
is limited.

Model Checking

Model checking techniques were developed to verify temporal properties of (ex-
ecutions of) finite-state concurrent systems. Similarly to temporal databases,
the input to a model checker is a finite encoding of all possible executions of the
system (often in a form of a finite state-transition system) and a query, usually
formulated in a dialect of propositional temporal logic. The techniques for ver-
ifying whether the formula is satisfied by the system are commonly based on
the correspondence between propositional temporal logics and automata the-
ory. Clarke et al. [Clarke, Jr. et al., 1999] provide an indepth introduction to
the field. The main difference between these two approaches is that temporal
databases commonly assume a fixed structure of time while model checking
approaches tend to represent time explicitly using a transition system. The
full understanding of the correspondence between these two fields is, however,
remains to be studied.
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