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ABSTRACT

Decades of the development in document analysis and recognition techniques has
made it possible to convert large amount of documents into electronic formats and
store them into computers. In recent years, the achievement in information retrieval
has provided a powerful tool for prompt access to the information that lies in the
documents. Inspired by the success of applications in the above two areas, in this
thesis, we investigate methods that aim at improving the performance of retrieving
handwritten document images. Unlike the retrieval of machine-printed documents
from which we will anticipate very high OCR accuracy, the retrieval of handwritten
document images is more challenging due to document analysis and recognition errors.

In existing methods to retrieve handwritten document images, usually the index
is built on the text collected from top-n (n > 1) candidates returned by a word
recognizer. Different weights may apply to the candidates according to their ranks.
Effective as these primitive methods are, with the assumptions of flawless word seg-
mentation and isolated word recognition, these methods are vulnerable by word seg-
mentation errors and cannot take advantage of the language model which has be-
come a standard component in the state-of-the-art handwriting recognition systems.
However, incorporation of the word segmentation scores (probabilities) and language
model into any existing indexing techniques in general increases the complexity of the
problem. In our indexing method, we solved this challenging problem by separating
the term counts from standard IR models, estimating them on the word sequence
level, and plugging them back in the IR models. A fast algorithm using dynamic pro-

gramming was proposed to reduce the time complexity. In addition to the application
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in document retrieval, we also used the word segmentation information in keyword
retrieval.

In another major contribution of this paper, we applied the Markov random field
(MRF) modeling to the binarization problem. The MRF can precisely describe the
constraint of local smoothness in the image. We can also use the constraint of smooth-
ness to remove the grid from the form image, which is a very useful application in
form image preprocessing. This research work virtually addresses a general topic in
the preprocessing of degraded handwritten document images. Applications in both
handwriting recognition and handwritten document image retrieval can benefit from

our approach.
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CHAPTER 1
INTRODUCTION

1.1 Motivations

Decades of the development in optical character recognition (OCR) techniques
has made it possible to convert great volumes of documents into digital forms such
as plan text, PDF, XML and store them in the computer. In recent years, the
achievement in information retrieval has provided a powerful tool for indexing and
searching large scale on-line database of documents. Although information retrieval
has been successful on text edited in the computer, the IR performance on OCR’ed
text will be impaired by document analysis and recognition errors. Researchers have
shown that the performance of OCR text retrieval is badly affected when dealing
with short or low quality documents [3, 17]. Although OCR has been successful in
applications of machine-printed document recognition and handwriting recognition
(HR) with small lexicon, unconstrained handwriting with large lexicon in general
still has very low accuracy. According to the state of the art in word recognition
technologies, the word recognition accuracy is 60-70% on handwritten documents
of good quality which makes IR results acceptable, but only 20-30% on low-quality
historical manuscript and carbon forms, so conventional IR algorithms perform very
badly on these documents.

The objective of this thesis is to investigate approaches to improving the perfor-
mance of indexing and retrieval of low quality handwritten document images. There
are two popular applications in handwritten document retrieval: document retrieval

and keyword retrieval (word spotting). Document retrieval approaches search for



documents within a data-set that are relevant to the given query phrase. A docu-
ment retrieval system computes the doc-query similarity and ranks the documents
according to their similarities. Word spotting approaches search for query words
within a date-set. After preprocessing of document images and word segmentation,
feature vectors are extracted from word images and stored in a database. When a
user provides a query word, the similarity between the query and the word image in
the database is computed, and word images are returned in the decreasing order of

similarities.

1.2 Challenges

Several challenges lie in handwritten document retrieval. Firstly, the quality of
degraded document images is very bad. A typical category of the low quality image
is the carbon images shown in Figure 5.2. If we binarize the carbon images in our
data set with ordinary smoothing and binarization algorithms, the result can even be
very hard for human beings to read. In addition to carbon images, we also use clean
handwriting images with synthetic noise for the evaluation of binarization methods.
Secondly, the handwriting is loosely constrained in terms of writing style and words
chosen to use. Finally, the lack of an IR model appropriate for handwritten data that
has large amount of OCR errors is also a challenge.

There are three possible research focuses of handwriting retrieval: preprocess-
ing, handwriting recognition and information retrieval. Our research focuses on pre-

processing and information retrieval:

1. Before we send the image to the recognizer it has to be binarized and the form
grids have to be removed. If we could improve the quality of binarized images

it would be possible to get a more acceptable recognition rate.

2. We also develop specific IR models for handwritten data. This is new to the in-

formation retrieval field. We will be exploring a specific IR model for handwrit-



()

Figure 1.1. An example of PCR forms. (a) A entire PCR form. (b) A small local
region showing obscure text and background noise array. (c) Fields of interest in the
PCR form.



ten data based on tight interaction of handwriting recognition and information

retrieval techniques.

Handwriting recognition techniques have been developed and used for years and it’s

hard to improve. Thus we do not focus on this area.

1.3 Research Topics

One of our research advances is to investigate new IR models and techniques
for handwritten document images. Indexing of handwritten document images are
traditionally done on the OCR’ed text of handwritten document images using existing
IR techniques. Due to the high error rate of handwriting recognition, the index built
on the OCR’ed text loses lots of information of original documents and is far from ideal
for retrieval. Several approaches based indexing of ranked OCR results [49, 24, 37|
have been proposed. The purpose of using ranked OCR results is to improve recall
rate. Suppose we use the text composed of top-10 word recognition candidates for
retrieval, then the chance that the keyword we search for is within the text is larger
than the chance when we search the text composed of only top-1 candidates. There
are two directions to improve existing methods: On the one hand, we need to utilize
as many as possible word image hypotheses which may not be considered in OCR
tasks; on the other hand, we need to assign different weights to candidates at different
ranks to maximize the precision rate.

Another research advance made by this thesis is to improve the quality of bina-
rization result of low quality images. Although the binarization of document images
is a widely defined subject, our research is based on the Bayesian approach. Most
of the prior works for binarization are heuristic. Given the nature of binarization
problem (which is basically low-level image processing), heuristic constraints are not
always applicable and sufficient. By adopting Bayesian approaches, we will be able

to generate “trainable” constraints and develop scalable algorithms.



CHAPTER 2
BACKGROUND

2.1 State of the Art in Off-line Handwriting Recognition
2.1.1 Handwriting Recognizers

There are two approaches to implementing the handwriting recognizer: holistic
and analytic. The holistic approach treats a word word as a class and recognize a
word image as a whole. The analytic approach segments and recognize the individual
characters. The holistic approach has limited applications because of the difficulty to
get enough training data when the number of classes increases. Most successful word
recognition algorithms are based on analytic approach.

A typical analytic approach is based on character segmentation and searching
algorithm. Usually over-segmentation is adopted and distances of different combi-
nations of segments can be calculated. The best segmentation path with minimum
distance is obtained by dynamic programming or some A*-type algorithm. For a few
instances of this kind of word recognition algorithms see [6, 15, 33].

Another type of analytic algorithms is based on HMM. When the lexicon size is
very large, it is not feasible to build an HMM for each class because there is not
enough training data for each class. So the HMM for word recognition is usually a
concatenation of character based models. In the HMM for word recognition, features
are normally extracted from left to right using a sliding window, and the observation
distribution is assumed to be mixture of Gaussian. Because of the linear, left-to-right
direction of handwriting, a linear transition structure is often adopted (i.e. the state

transition probabilities are chosen in such a way that a linear left-to-right ordering of



the states is imposed). Although a word HMM can be made by concatenating several
character HMM’s, there is no need to provide the character boundaries along with the
transcription for training. Instead, in the training of the HMM, the character bound-
aries are automatically found by an EM algorithm (the Baum-Welch algorithm.) This
property makes it possible to reduce the time required to prepare the transcription of
large amount of training data. For a few instances of HMM based word recognition
algorithms see [7, 34, 59.

Word sequence recognition [40] is to recognize a whole line or concatenation of
several lines of words. Suppose f is a sequence of feature vectors, then word sequence

recognition is to find a sequence of words s that maximize the probability
§ = argmax Pr(s|f) = argmax Pr(f|s) - Pr(s) (2.1)

Pr(f|s) can be estimated by word recognition algorithm such as HMM, and Pr(s) can
be estimated by a language model (n-grams). Similar to analytic word recognition
that split a word into characters, word sequence recognition can be done by split-
ting a line into words and searching for the best path of line separation by dynamic
programming. The advantage of word sequence recognition over single word recogni-
tion is that the use of language model reduces recognition errors. But this technique
requires large amount of natural language text as training data.

The features used in word recognitions can be projection profiles, directional fea-
tures, structural features (holes, ascenders, descenders, ...), and so on.

Lexicon plays an important role in cursive Latin handwriting recognition. A small
lexicon reduces the difficulty of the problem greatly and this led to successful appli-
cations of automatic recognition of zip code, address, cheque, etc. Although off-line
cursive handwriting recognition with large lexicon (5,000-30,000) remains an unsolved

problem, the 60-80% accuracy rate on good quality, unconstrained handwriting has



been acceptable for commercial applications. However the accuracy on degraded

manuscripts such as historical documents and carbon forms is still as low as 20-40%.

2.1.2 Feature Selection and Extraction
Features play an very important role in a handwriting recognition system. Various

types of features can be computed from the handwritten document images:
1. the raw intensity of pixels,

2. statistics of local regions (mean, variance and other higher-order moments of

the intensity),

3. features describing the connectivity of strokes including directional features and

Gabor features.
4. concavity, run length and other structure features
5. numbers of ascenders and descenders,
6. intensity projection profile.

Most of the handwriting recognition systems use a combination of several types of
features.

Among all of the different features mentioned above, the most powerful features
are the directional features or directional element features. The directional element
features, based on the idea of non-linear matching of the directions of the patterns [56],
was originally proposed in [55], and has been applied in recognition systems of both
machine-printed documents and handwritten documents in several languages [32, 33,
64]. The basic steps for computing the directional features from a character image

are as follows:

1. Find the contour of the input image;



(a) Contour image and partition of bins.

ol B0

(b) Four types of connected neighboring pixels.

Figure 2.1. Directional features of a character images.

2. divide the input image into overlap or non-overlap bins;

3. For each bin, trace the contour and count the four types of neighboring pixels
shown in Figure 2.1 (horizontal, vertical, diagonal and back diagonal.) Hence,

four features are computed from each bin.

When the dimensionality of the input features is too high, the handwriting recog-
nition algorithm may either not be able to process the features or produce worse
results. Thus we need to reduce the dimensionality of the feature space. Our goal is
to keep relevant information for the recognition and eliminate the redundant informa-
tion. This step is called feature extraction. Several methods can be applied to reduce
the dimensionality, including the Principal Component Analysis (PCA) and Linear
Discriminant Analysis (LDA). PCA is a linear orthogonal transform. The transform
is a projection onto new coordinates so that new dimensions are not correlated and
the variances of all the new dimensions are sorted in decreasing order.

PCA provides the optimal compression of energy by minimizing the mean square
error of approximating the data but does not necessarily produce the best dimensions

for classification. For example, if we apply PCA to the images of letters “O” and “Q”



Figure 2.2. Letter “O” and “Q”. PCA may only extract common features of the
images of “O” and “Q”, but LDA may extract the difference between them

shown in Figure 2.2, the extracted features may only retain the shape information
that is common to both letters. This is because the overall shapes of the two letters
look very similar, and PCA only keeps a rough shape that has most portion of energy
but loses some detail such as the“tail” of letter “Q” that is useful for classification.
In this case, LDA may be better than PCA. LDA is another linear transform of
the feature space. Rather than finding optimal representation of the data, LDA is
to find the best projection direction of features to maximize the ratio between the
between-class variance and within-class variance. In this sense, LDA only selects the
dimensions that show the diffence between classes but are consistent for the features
of the same class. LDA is widely used in handwriting recognition systems, especially

in HMM-based systems.

2.1.3 Language Modeling

A language model is the probability distribution of word sequences from the text of
a corpus. The language model can be denoted by Pr(w;, ws, ...w,) where wy, wy, ...w,
are a sequence of n words. We usually assume that a language is an n-gram, i.e., a

(n — 1)-th order Markov chain. For example, bi-gram



Pr(wy,ws, ... w,) = Pr(wy) Pr(ws|wy) Pr(ws|ws)... Pr(w,|w,—1) (2.2)

and tri-gram

Pr(wy, we, ... w,) = Pr(wy) Pr(ws|w;) Pr(ws|ws, wq)... Pr(w,|w,_1, w,—2).  (2.3)

The quality of describing some given text by a language model can be measured

by perplexity

3=

P(w) = [Pr(wy, wy, ..w,)] "7, (2.4)

where w = (wy, w, ...w,) is the text composed of a sequence of words wy,ws, ...w,
and Pr(wy, ws,...w,) is the language model. Generally speaking, the smaller the
perplexity, the better the language model describes the text.

The language model can be obtained by counting the frequency of words from

text. For tri-gram,
Pr(wg|wy—1, wr—2) = count(wy_swi_1wy) /count(wg_owy_1) (2.5)

Or more generally, for any n-gram,

count(yz)  count(yz)

Priely) = Zcount(yw) ~ count(y)

(2.6)

When the number of occurrences of yz is zero, the estimated probability density
Pr(z|y) is also zero. This can lead to bad performance of the recognizer. We often
use smoothing techniques to make sure probability density of the language model is
non-zero throughout the term space of the n-gram. A simple but effective smoothing
method is called “Backing Off” [52]. The basic idea is to reduce (discount) the
amount of non-zero probabilities within the distribution of n-gram, and redistribute

the discounted probability mass to those zero probabilities.

10



Pr(zly)

N

(a) Estimated n-gram (no smoothing).

Pr(zly)

(b) Smoothed n-gram.

Figure 2.3. Smoothing the language model by redistribution of the probability mass
(backing off)
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2.2 IR Techniques

Information retrieval (IR) is the science of searching for information in docu-
ments, searching for documents themselves, searching for metadata which describe
documents, or searching relational or other databases. Document retrieval (searching
for relevant documents) is most related to our work. We will introduce document
retrieval techniques in this section.

Document retrieval is to search a collection of documents for those relevant to a
certain query phrase. Three classic document retrieval algorithms or IR models: the
Boolean model, the vector model, and the probabilistic model [1], although proposed
decades before, are still very effective means of document retrieval. In the Boolean
model, retrieval is based on whether or not the documents contain the query terms,
whereas in both vector model and probabilistic model the relevance of a document is
measured by a similarity between the document and the query and a rank is assigned
to each document according to the degree of relevance. The most important things
in all of the above classic IR models are the existence and number of occurrences of
each query term in the document. In recent years, new methods for measuring the

relevance of a document, such as the PageRank [36] were proposed.

2.3 Overview of Prior Works
2.3.1 Document Image Binarization

Recognition of low quality handwritten documents such as carbon forms is com-
monly considered as a very hard, or even impossible problem. This is largely due to
the extremely low image quality. Usually the quality of a document image is affected
by varying illumination and noise such as Gaussian noise, artifacts, smearing, and so

on.

12



By assuming that the background changes slowly, the problem of varying illumina-
tion has been solved by several adaptive binarization algorithms. The algorithms for
deciding either global or local thresholds ofr binarization were proposed in [47, 45, 53].

Although noise can be depressed by smoothing, the resulting blurring will also
affect the OCR rate. Approaches based on heuristics, to name a few, Kamel/Zhao
[30], Yang/Yan [60], and Milewski [42], solve the problem to some extent by heuristic
search of stroke locations. The Kamel/Zhao algorithm is a local algorithm which finds
stroke locations and then removes the noise in the non-stroke area using an interpo-
lation and thresholding step. A parameter of stroke width is needed. The Yang/Yan
algorithm is a variant of the method by Kamel/Zhao which is meant to handle vary-
ing intensity, illumination, and smearing. The Milewski algorithm is also a heuristic
based method. It detects strokes from local statistics in different directions.

In recent years, inspired by the success of Markov Random Field (MRF) in the
area of image restoration [18, 19, 20], some attempts were made to apply MRF to
the preprocessing of textual region of degraded images [22, 23, 58]. The advantage
of the MRF model over heuristics is that it can describe the probabilistic dependency
of neighboring pixels or image patches, i.e., the prior probability, and learn it from
training data. In other words, the spatial constraints between neighboring pixels are
learned from training set of images instead of conceived heuristically.

In order to use MRF, one need to pick forms of prior and observation models.
Usually this is done in ad hoc way. The forms of MRF’s taken by all the existing
approaches dealing with textual image are not very appropriate for handwritten doc-
ument. The MRF based approach proposed by Wolf et al. [58] defined the prior
model on a 4 x 4 clique and is appropriate for textual images in low resolution video.
However, for 300 dpi high resolution handwritten document images, it is not feasible
to learn the prior probability or energy potentials if we simply define a much larger

neighborhood.

13



Gupta et al. [22, 23] proposed an algorithm for restoration and binarization of
blurred images of license plate digits. Different from Wolf et al. [58], the vertices in
statistical dependency graph of MRF represent image patches rather than pixels. The
advantage of the patch based approach is the clique size is reduced and is much faster.
They adopted the factorized form of MRF, ie., the product of compatibility functions
[18, 19, 20]. They defined compatibility functions as mixtures of multivariate normal
distributions calculated over samples of their training set, and incorporated recogni-
tion into the MRF to reduce the number of samples involved in the calculation of
compatibility functions. However this scheme can hardly be applied to unconstrained
handwriting image because of the larger number of classes and the low performance
of existing handwriting recognition algorithm.

Although MRF enlightened us to apply probabilistic neighborhood constraints to
binarization, the computation is the biggest issue in all of the existing works. None
of them solves the problem of high resolution handwritten document binarization. In
Chapter 3, we will propose an MRF based binarization algorithm for handwritten
document of resolution as high as 300dpi. In addition to binarization, with only a
little mend, we apply our algorithm to form grid removal, a very important step of

handwritten form analysis.

2.3.2 Handwritten Document Retrieval

Several works have been done to improve the IR performance of OCR’ed text.
Researchers [17, 3] have shown that the performance of OCR text retrieval is badly
affected when dealing with short or low quality documents. In [44, 46, 28] different
approaches modeling typical recognition errors were proposed. In [44] a probabilistic
model for misrecognition was proposed and this model was used to design the term-
weighting scheme of information retrieval. The approach that generates candidate

terms for each “true” search term and adds the retrieval results of candidate terms
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into the final result was studied in [46]. In [28], a language model that took common
recognition errors into account was built. This language model can then be used to
approximate an “uncorrupted” version of a particular document, and it can be used
for retrieval in a language modeling approach.

The problem of indexing and retrieving handwritten documents has recently been
addressed by researchers. Due to low recognition accuracies, It is difficult to use prob-
abilistic modeling of OCR’ed text for indexing and retrieving handwritten documents.
A new trend in this research area is to index every word image with word recognition
probabilities of all term candidates. Rath and Manmathal49] proposed an OCR-free
approach to historical manuscript retrieval that learned the joint probability of the
query word and features of the word image. Assuming the independency of all terms

in query ¢, the query-relevance probability

Pr(q|d;) ~ [ [ Pr(tild;), (2.7)

ti€q

where ¢ is the query, d; is a document, and ¢;’s are terms. Let the term frequency
tfi; be the term-dependence probability, i.e., Pr(t;|d;) = tfi;. The term frequency
is estimated by word recognition probabilities:

|d;]

1
tfi,j = m; Pr(ti|f1)0) (28)

where fv, runs over all feature vectors of word images in document d;, Pr(t;|fv,) is
the probability that the o-th word image is term ¢; and is estimated from a labelled
training set of word image features.

Two problems arise in the above probabilistic model. Firstly, probability estimate
cannot be accurate when the dimensionality of feature vector increases. Secondly, the
probabilistic model assumes that the term-relevance probability Pr(¢;|d;) equals the

terms frequency tf; ; which is not really accurate. Under this assumption, once any
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term from the query phase occurs rarely in a document, i.e., the term frequency is
very small, the probability Pr(¢|d;) in factorized form will be close to zero.

A few works have attempted to solve this problem of probability estimate using
OCR ranks [37, 24, 8]. Lee et al.[37] implemented retrieval on text composed of
top-k candidates of character recognition results of Hangul document images. Howe
et al used the same probabilistic model as in [49] except that the term-dependence
probability is assumed to be inversely proportional to the word recognition rank of

the term, namely,
Const

PT(ti|fUO) = W

(2.9)

In our previous work [8], we used the following formula to estimate the word recog-

nition probability

Pr(t;| fv,) = Top-R-Word_Recognition_Rate — Top_R-1_Word_Recognition_Rate,
(2.10)
where R = rank(t;). The above rank-based probability estimate algorithm are still

too simple to get the optimal results.

2.3.3 Keyword Spotting

Besides approaches to handwritten document retrieval, keyword retrieval, referred
to as keyword spotting, as an alternative approach of indexing and retrieving hand-
written documents has been proposed in [31, 38, 63]. The idea is to search the
document for a certain keyword by feature matching instead of recognition. All ex-
isting methods [31, 38, 63] perform matching on feature space and require manual

indexing of template images for query words.
e DTW based keyword spotting

In the Dynamic Time Warping (DTW) based method [31, 38], the following pre-

processing steps are commonly performed.
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1. Word segmentation is performed and the background of every word image is
cleaned by removing irrelevant connected components from other words that

reach into the word’s bounding box.
2. Inter-word variations such as skew and slant angle are detected and eliminated.

3. The bounding box of any word image is cropped so that it tightly encloses the

word.

4. The baseline of word images are normalized to a fixed position by padding extra

rows to the images.

A normalized word image is represented by a multivariate time series composed of
features from each column of the word image. These features include projection pro-

file, upper/lower word profile, and number of background-to-foreground transitions.

1. Projection Profile. The projection profile of a word image is composed of the

sums of foreground pixels in each columns.

2. Upper/Lower Profiles. The upper profile of a word image is made of the dis-

tances from the upper boundary to the nearest foreground pixels in each column.

3. Background-to-Foreground Transitions. The number of background pixels whose
right neighboring pixels are foreground pixels is taken as the number of background-

to-foreground transitions of the column.

Figure 2.4 shows the four feature series of a word image from the handwriting data

set of George Washington’s manuscripts (CIIR, University of Massachusetts [31]).
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(a) A word image from George Washington’s manuscripts.

(b) Projection profile.

(c) Lower profile.

(d) Upper profile.

(e) Background-to-foreground transitions.

Figure 2.4. The feature series used in DTW word spotting.
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Figure 2.5. Sakoe-Chiba band.

Suppose two word images w4 and wg are represented by {fa(1), fa(2), ..., fa(la)}
and {fg(1), fB(2),..., [B(I5)}, respectively, where f(i) is the feature vector of the
i-th column of image w4, fp(j) is the feature vector of the j-th column of image wg,
and [4 and lp are the lengths of w4, wp, respectively. Then the DTW matching of

w, and wpg is given by the recurrence equation

( )
DTW (i — 1, )
DTW (i,j) = min § DTW (i —1,j —1) ¢ +d(i,J) (2.11)
DTW (i,j —1)
\ Vs

where d(i, j) is the square of the Euclidean distance between f4(7) and fz(j).

The time complexity of the DTW algorithm is in O(l4 - Ig). In order to speed up
the computation, a global path constraint like the Sakoe-Chiba band (Figure 2.3.3
can be applied to force the paths to stay close to the diagonal of the DTW matrix.

Another advantage of the path constraint is to prevent pathological warping.
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Figure 2.6. A sample from George Washington’s manuscripts.

The matching error of f4(i) and fz(j) is given by %DTW(ZA, ) where [ is length
of the warping path recovered by DTW. The word images are ranked in the increasing
order of the matching errors to the template image.

The DTW based method has been tested on George Washington’s manuscripts
(Figure 2.3.3). The performance of keyword spotting was evaluated using the Mean

Average Precision measure [1]:

1. For each query, check the returned word images starting from rankl. Whenever
a relevant word image is found, record the precision of the word images from the
one with rank 1 to the current one. The average value of the recorded precisions

for the query is taken as the Average Precision of the query.

2. The mean value of the Average Precisions of all of the queries is the Mean

Average Precision of the test.

A Mean Average Precision of 40.98% on 2372 word images of good quality and
a Mean Average Precision of 16.50% on 3262 word images of poor quality were re-

ported [38].

e GSC feature based keyword spotting
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In the GSC feature based method [63], a word image is represented by GSC
features that consist of 512 bits corresponding to gradient (192 bits), structural (192
bits) and concavity (128 bits) features. A word image is divided into 32 regions (8 x 4)
and 16 binary GSC features are extracted from each region. The gradient features are
obtained by thresholding the results of Sobel edge detection in the 12 directions. The
structural features consist of the presence of corners, diagonal lines, and vertical and
horizontal lines in the gradient image, as determined by the 12 rules. The concavity
features include direction of bays, presence of holes, and large vertical and horizontal
strokes.

The similarity of two word images is measured by the bitwise matching of the
respective GSC feature vectors of the two images. The dissimilarity of two GSC
feature vectors X and Y is defined as

S11500 — 510501

1
DY) = 2 2\/(510 + 511) (So1 + So0) (S11 + So1) (Soo + S1o) (2.12)

where Spg, So1, S10, and S7; are the numbers of 0-to-0, 0-to-1, 1-to-0, and 1-to-1
matches from X to Y, respectively. For example, the numbers of 0-to-0, 0-to-1,
1-t0-0, and 1-to-1 matches between “0110110” and “0101001” are 1, 2, 3, and 1,
respectively.

The GSC method has been tested on 9312 word images of 4 words (“been”, “Co-
hen”, “Medical”, and “referred”) written by 776 individuals. Each word was written
three times by each individual. One of the three word images for every word written
by any person is taken as a query template, and the remaining are taken for test. The
performance of keyword spotting is evaluated by the recall and precision at different
number of top matches. When the number of top matches of a query equals the
number of relevant images, the recall value equals the precision value and is referred

to as R-Precision.
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The reults of both the GSC based method and the DTW based method are re-
ported in [63]. The R-precision values of the above four queries using the GSC based
method are 45.45%, 56.59%, 54.11%, and 62.04%, respectively. The R-precision val-
ues of the above four queries using the DTW based method are 35.53%, 38.65%,
44.39%, and 55.23%, respectively. Although the above results are obtained from a
data set of multiple writers, the size of the lexicon is very small (containing only 4
words) and therefore the data set is not truly unconstrained.

The keyword spotting algorithms mentioned have at least three problems:

1. Matching based algorithms take a template image as input so manual indexing

of a small portion of handwritings is required.
2. Features may vary a lot between writers even for the same word.

3. Existing keyword spotting algorithms assume no segmentation error. However

this is not the case in real applications.
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CHAPTER 3

HANDWRITTEN IMAGE BINARIZATION BASED ON
MARKOV RANDOM FIELDS

3.1 Introduction

The goal of this chapter is preprocessing of degraded handwritten document im-
ages, such as carbon forms, for subsequent recognition and retrieval. Carbon form
recognition is generally considered to be very hard, or even an impossible problem.
This is largely due to the extremely low image quality. Although the background
variation is not very intense, the handwriting is often occluded by extreme noise from
two sources: (i) the extra carbon powder imprinted on the form because of accidental
pressure and (ii) the inconsistent force of writing. For example, people tend to write
lightly at the turns of strokes. This is not a serious problem for writing on regu-
lar paper. However, when writing on carbon paper, the light writing causes notches
along the stroke. Furthermore, most carbon forms have a colored background which
results in very low contrast and signal-to-noise ratio. Thus, the image quality of
carbon copies is generally poorer than that of non-carbon copy degraded documents.
Therefore the task of binarizing the carbon copy documents with handwritten data
is very challenging.

Traditional document image binarization algorithms [47] [45] [53] [30][60] sep-
arate the foreground from the background by histogram thresholding and analysis
of the connectivity of strokes. These algorithms, although effective, rely on heuris-
tic rules of spatial constraints which are not scalable across applications. Recent

research [22] [23] [58] has applied Markov Random Field (MRF) based methods to
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document image binarization. Although these algorithms make various assumptions
applicable only to low resolution document images, we take advantage of the ability
of the MRF to model spatial constraints in the case of high resolution handwritten
documents.

We present a method that uses a collection of standard patches to represent each
patch of the binarized image from the test set. These representatives are obtained by
clustering patches of binarized images in the training set. The use of representatives
reduces the domain of the prior model to a manageable size. Since our objective
is not image restoration (from linear or non-linear degradation), we do not need an
image/scene pair for learning the observation model. We can learn the observation
model on-the-fly from the local histogram of the test image. Therefore our algorithm
achieves performance similar to adaptive thresholding algorithms [45, 53] even without
using the prior model. Of course the result improves with the inclusion of spatial
constraints added by the prior model. In addition to binarization, we also apply
our MRF based algorithm to the removal of form lines by modeling the way the
probabilistic density of the observation model is computed.

One significant improvement made in [10] since our prior works [11] is the use of
a more reliable method of estimating the observational model. It is based on math-
ematical morphological operations to obtain the background and Gaussian Mixture
Modeling to estimate the foreground and background probability densities. Another
improvement is the use of more efficient pruning methods to reduce the search space
of the MRF effectively by identifying the patches that are surrounded by background
patches. We present experimental results on the PCR (Pre-Hospital Care Report)
dataset of handwritten carbon forms [43] and provide quantitative comparison of word

recognition rates on forms binarized by our method versus other heuristic approaches.
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Figure 3.1. Stroke preserving line removal. (a) A word image with an underline
across the text. (b) Binarized image with the underline removed. (c) Binarized image
with the underline removed and fixed.

3.2 Related Work
3.2.1 Locally Adaptive Methods for Binarization

Usually the quality of a document image is affected by the varying illumination
and noise. By assuming that the background changes slowly, the problem of vary-
ing illumination is solved by adaptive binarization algorithms such as Niblack [45]
and Sauvola [53]. The idea is to determine the threshold locally, using histogram
analysis, statistical measures (mean, variance, etc.), or the lightness of the extracted
background. Although noise can be reduced by smoothing, the resulting blurring af-
fects the OCR rate. Approaches based on heuristic analysis of local connectivity, such
as Kamel/Zhao [30], Yang/Yan [60], and Milewski [43], solve the problem to some
extent by searching for stroke locations and targeting only the non-stroke area. The
Kamel/Zhao algorithm locates strokes using stroke width and then removes the noise
in the non-stroke area using an interpolation and thresholding step. The Yang/Yan

algorithm is just a variant of the same method. The Milewski algorithm examines
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neighboring blocks in orientations to search for non-stroke area. However, all these

approaches are heuristic whereas our objective is to develop a non-heuristic method.

3.2.2 Markov Random Field Based Approach to Binarization

In recent years, inspired by the success of the Markov Random Field (MRF) based
approach in the area of image restoration [18], [19], [20], attempts have been made
to apply MRF to preprocessing of degraded document images [22], [23], [58]. The
advantage of the MRF model over heuristic methods is that it allow us to describe the
dependency of neighboring pixels as the prior probability, and learn it from training
data. Wolf et al. [58] defined the prior model on a 4 x 4 clique which is appropriate
for textual images in low resolution video. However, for 300 dpi high resolution hand-
written document images, it is not computationally feasible to learn the potentials
if we simply define a much larger neighborhood. Gupta et al. [22], [23] studied
restoration and binarization of blurred images of license plate digits. They adopted
the factorized style of MRF using the product of compatibility functions [18], [19],
[20] which are defined as mixtures of multivariate normal distributions computed over
samples of the training set. They incorporated recognition into the MRF to reduce
the number of samples involved in the calculation of the compatibility functions.
However this scheme also can not be directly applied to unconstrained handwriting
because of the larger number of classes and the low performance of existing handwrit-
ing recognition algorithms. We will describe a MRF adapted for handling handwritten
documents that will overcome the challenges of computational complexity caused by

high resolution data and low accuracy rates of current handwriting recognizers.

3.2.3 Form Grid Removal
The process of removing pre-printed form grids while preserving the overlapping
textual matter is referred to as image in-painting (Figure 3.1) and is performed by

inferring the removed overlapping portion of images from spatial constraints. MRF is
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ideally suited for this task and has been used successfully on natural scene images ([5],
[61]). Our task on document images is similar but more difficult: both of them use
spatial constraints to paint in the missing pixels but the missing portions in document
images often contain strokes with high frequency components and details. Previously
reported work on line removal in document images are heuristic [2] [43] [62]. Bai et
al. [2] remove the underline in machine-printed documents by estimating its width.
It works on machine-printed documents because the number of possible situations
in which strokes and underlines intersect is limited. Milewski et al. [43] proposed to
restore the strokes of handwritten forms using a simple interpolation of neighboring
pixels. Yoo et al. [62] describe a sophisticated method which classifies the missing
parts of the strokes into different categories such as horizontal, vertical, and diagonal,
and connects them with runs (of black pixels) in the corresponding directions. It relies
on many heuristic rules and is not accurate when strokes are lightly (tangentially)

touching the grid.

3.3 Markov Random Field model for handwritting images
We use a MRF model (Figure 5.3) with the same topology as the one described
in [19]. A binarized image z is divided into non-overlapping square patches z1, xs, ..., Ty,
and the input image, or the observation y is also divided into patches yi, ¥, ..., yn S0
that x; corresponds to y; for any 1 <7 < N. Each binarized patch solely depends on
its four neighboring binarized patches in both horizontal and vertical directions, and

each observed patch solely depends on its corresponding binarized patch. Thus,

Pr(x;|zy, .o, Xim1, Tig1, oo TN, YL, - YN) = Pr(@i| oy iy T iy Trgis Ty i), 1 <0 < N,
(3.1)
where z,, ;-x,,; are the four neighboring vertices of z;, and

Pr(yi|zi, ...,on, 1, oo Yie1, Yig1s -, Yn) = Pr(yife;), 1 <i <N (3.2)
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(b) Markov Network.

Figure 3.2. The topology of the Markov network. (a) the input image y and the
Inferred Image x; (b) the Markov network generalized from (a). In (b) each node z;
in the field is connected to its four neighbors. Each observation node y; is connected
to node z;. An edge indicates the statistical dependency of two nodes.
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An edge in the graph represents the dependency of two vertices. The advantage
of such a patch based structure is that relatively large areas of the local image are

statistically dependent. Our objective is to estimate the binarized image x from the
Pr(z,y)
Pr(y)

need to estimate x from the joint probability Pr(x,y) = Pr(z1,...,xn, y1, ..., yn). This

posterior probability Pr(zly) = . Since Pr(y) is a constant over x, we only
can be done by either the MMSE or MAP approaches [18, 19]. In the MMSE approach,

the estimation of each x; is obtained by computing the marginal probability,

TiMMSE = Z%‘ X Z Pr(zi,....,o8, 915 -, UN) (3.3)
Tj T1.Lj-1%j41---TN
In the MAP approach, the estimation of each z; is obtained by taking the maximum

of the probability,

Tijpmap = argglaxxlmxj{rll%)ilmm Pr(zy,...;xn, Y1, -, YUN) (3.4)

Estimation of the hidden vertices {z,} using Equation (3.3) or (3.4) is referred to

as inference. It is impossible to compute either Equation (3.3) or (3.4) directly for
large graphs because the computation grows exponentially as the number of vertices
increases. We can use the belief propagation algorithm (BP) [48] to approximately
compute the MMSE or MAP estimation in linear time (in the number of vertices in

the graph).

3.4 Inference in the MRF Using Belief Propagation
3.4.1 Belief Propagation

In the Belief Propagation algorithm, the joint probability of the hidden image
x and the observed image y from a Markov Random Field is approximated by the

following factorized form [20, 19]
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Pr(z1, .., TN, Y1y -, YN) = Hw(mi, xj)H¢($k, Yk) (3.5)

where (i,j) are neighboring hidden nodes and v and ¢ are pairwise compatibility
functions between neighboring nodes, learned from the training data. The MMSE

and MAP objective functions can be rewritten as:

ijMMSE = Zl‘j Z H'@Z) L, Lj H xkvyk) (36)

T1-Tj—1T541-- TN (4,5) k

Tjpap = argmax max H¢ (i, x)) H &( Tk, Yr) (3.7)
z; L1 Lj—1Tj41- ffN A

The Belief propagation algorithm provides an approximate estimation of Z;aars5

or Z;pmap in Equations (3.6) and (3.7) by iterative steps. An iteration only involves

local computation between the neighboring vertices. In the BP algorithm for MMSE,

Equation (3.6) is approximately computed by two iterative equations:
ijMSE = Z$j¢($ja yj)l_[]\/—[;'C (3~8)
:Ej k

= > (g x)dlan yo) [ [ M (3.9)

I#j

In Equation (3.8), k runs over any of the four neighboring hidden vertices of z;. M f is
the message passed from j to k and is calculated from Equation (3.9). M ! is M} from
the previous iteration. The expression of M ]"‘ only involves the compatibility functions
related to vertices j and k£ so M Jk can be thought of as a message passed from vertex
7 to vertex k. Note that Mf is actually a function of x;. Initially Mf(x]) =1 for any

J and any value of z;.
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The formulas of the belief propagation algorithm for the MAP estimation are

similar to Equations (3.8) and (3.9) except that Z:cj and Z are replaced with

T Tk
argmax and max, respectively:
Zj Tk
Tjmap = argmaxo(x;, y])HMJk (3.10)
M; = maxy)(z;, 1) (. o) [ [ (3.11)
1]

In our experiments, we use MAP estimation. The form of pairwise compatibility
functions ¢ and ¢ is usually heuristically selected as functions with the distance
between two patches as the variable. We found that a simple form is not suitable for
binarized images because the distance can only take a few values. Another way to

select the form of ¢ and ¢ is to use pairwise joint probabilities [18, 19]:

(), 1) = % (3.12)
o(xr, yx) = Pr(zr, yx) (3.13)

Replacing the ¢ and ¢ functions in Equations (3.10) and (3.11) with the definitions

in Equations (3.12) and (3.13), we obtain

Z; map = argmax Pr(z;) Pr(yj|xj)HMf, (3.14)
and
M} = meax Pr(zy|z;) Pr(yk|xk)HM,i, (3.15)
I#j

In order to avoid overflow, we instead calculate the log values of the factors in Equa-

tions (3.14) and (3.15).

L? = max (10g Pr(zy|z;) + log Pr(yk|zy) + Zi;) : (3.16)
I#5
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Figure 3.3. An acyclic Markov network.

Figure 3.4. A cyclic Markov network.

I MAP = argmax (log Pr(x;) + log Pr(y;|z;) + ZL;“) , (3.17)
' k

Tj

where L? = log Mf, [22 = log ]\ZI}C, and the initial values of L’;’S are set to 0’s.

3.4.2 An Example showing the BP Inference in the MRF
For a better understanding of the BP algorithm in Equations (3.14) and (3.15),
let’s consider the inference in the toy model in Figure 3.3. Here, suppose we use the

MAP criteria. The MAP estimation of z; is given be the following equation:

T1 MAP = argmax max Pf(l‘h%, T3, Y1, Y2, y3) (3-18)
z1 2,23
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Figure 3.5. Shared patches in binary document image.

Using the Markov assumptions defined in the graph, we can get

1 map =argmax  Pr(zy) Pr(y;|z1) ir;ag Pr(zy|xy) Pr(zs|xs) Pr(ys|xs) Pr(ys|xs)

=argmax Pr(xl) Pr(y1|x1) maxPr(x2|x1) Pr(y2|x2) maxPr(x3|x2) Pr(y3|x3)
1 T2 T3

(3.19)

Similarly, we can also get the MAP estimation of x5 and x3:

T2 MAP =argmax EEH%LX Pl"(331>372,9537y1792,y3)
x2 1,23

=argmax Pr(z;) Pr(y2|x2) maxPr(x3|x2) Pr(x1|x2)Pr(y1|x1)Pr(y?,]xg)
o 1,23

=argmax Pr(zq) Pr(ys|re) maxPr(x;|zs) Pr(yi|z:) max Pr(zs|xs) Pr(ys|xs)
zo 1 s

(3.20)

and
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T3 MAp =argmax max Pr(ﬂilyl@, T3, Y1, Y2, 3/3)
T3 Z1,T2

=argmax Pr(zz) Pr(ys|zs) glle}cx Pr(z3|zs) Pr(z:i|z2) Pr(y: |x1) Pr(?/2|$2)

z3

=argmax Pr(zs) Pr(ys|zs) max Pr(xq|zs) Pr(ys|xs) max Pr(xy|za) Pr(y:|x1)
z3 T T

(3.21)

If we use Equations (3.14) and (3.15) for the inference, initially all the M}’s equal

to 1. After the 1st iteration,

Z1 map = argmax Pr(xy) Pr(y|x;)
1

To map = argmax Pr(xs) Pr(ys|xs)
2

T3 map = argmax Pr(xs) Pr(ys|xs)
z3
M? = max Pr(as|z1) Pr(ys|zs) (3.22)
Z2
M; = max Pr(x|z) Pr(y;|z;)
z1

My = max Pr(zs|ze) Pr(ys|zs)

M2 = rrie;x Pr(za|xs) Pr(ys|zs)

After the 2nd iteration,
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1 map = argmax Pr(xq) Pr(y1|x1)mzix Pr(zs|xy) Pr(ys|xs)
T1 B

Ty map = argmax Pr(xa) Pr(ys|zy)max Pr(xy|z2) Pr(y: |z, )max Pr(xs|zs) Pr(ys|zs)
z2 71 T3

T3 map = argmax Pr(xs) Pr(y3|x3)mzix Pr(zs|xs) Pr(ys|xs)
T3 B

M? = max Pr(zq|zy) Pr(y2|x2)1r£x Pr(zs|xs) Pr(ys|zs)
M) = max Pr(z|xe) Pr(y;|z;)
M3 = max Pr(zs|xs) Pr(ys|zs)
M2 = max Pr(zy|x3) Pr(y2|x2)rrizltx Pr(z|x2) Pr(y;|z;)

(3.23)

After the 3rd iteration,

21 map = argmax Pr(z;) Pr(ylfml)rrgx Pr(zy|xy) Pr(ygfycg)ngx Pr(zs|xs) Pr(ys|zs)

Ty map = argmax Pr(zy) Pr(ye|ze)max Pr(z:|22) Pr(y: |21 )max Pr(zs|zs) Pr(ys|as)
Zo T x3

T3 map = argmax Pr(x3) Pr(y;g]:zg)mzxx Pr(zy|xs) Pr(ygfxg)m?x Pr(z|x2) Pr(y;|xy))
T3 X X

M? = max Pr(zy|xy) Pr(y2|x2)rr£x Pr(z3|xs) Pr(ys|xs)
M; = max Pr(z|x2) Pr(y;|z:)
My = max Pr(zs|xs) Pr(ys|xs)
M2 = max Pr(zy|xs) Pr(yg\xg)rr;?x Pr(z|xe) Pr(y,|x;)

(3.24)

The BP algorithm converges after the 3rd iteration because the message obtained
at the end of the 3rd iteration is the same of that obtained at the end of the 2nd
iteration. The estimated values &7 yap-Z3 map in Equation (3.27) are exactly the

MAP estimation given by Equations (3.19)- (3.21).
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It can be proved that, for any Markov network in a tree-like structure, BP can
converge to the MAP (or MMSE) estimation in NNV iterations, where N is the number
of vertices in the MRF. However, the above assertion is not true for Markov networks
with loop(s). For example, we can verify the output of BP inference in three iterations
on the cyclic Markov network shown in Figure 3.4.2 is NOT the MAP estimation of
x1-z3 in the graph. If we use Equations (3.14) and (3.15) for the graph in Figure 3.4,

initially all the MJ’-“’S equal to 1. After the 1st iteration,

Z1 map = argmax Pr(zq) Pr(y;|z1)
Tl

To map = argmax Pr(xs) Pr(ys|xs)
T2

T3 map = argmax Pr(z3) Pr(ys|zs)
z3

M} = max Pr(zs|x1) Pr(ys|xs)
M, = max Pr(z|x2) Pr(y;|z;) (3.25)
M} = max Pr(zs|zy) Pr(ys|zs)
M; = max Pr(zy|xs) Pr(y:|z1)

M3 = max Pr(xs|zy) Pr(ys|zs)
73

M: = max Pr(zs|x3) Pr(ys|zs)

After the 2nd iteration,
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1 map = argmax Pr(xq) Pr(y1|x1)mzix Pr(zs|xy) Pr(yg\m)mz;x Pr(zs|xy) Pr(ys|xs)
1 x T

P9 map = argmax Pr(xz) Pr(ys|zs)max Pr(xy|z2) Pr(y: |z, )max Pr(xs|zs) Pr(ys|zs)
z2 71 T3

T3 MAP = arggglax Pr(zs) Pr(@/3|$3)H§gX Pr(zs|zs) Pr(?/ﬂ%)nﬁx Pr(z:|zs) Pr(y[z1)
M? = max Pr(zq|zy) Pr(y2|x2)1r£x Pr(zs|xs) Pr(ys|zs)
M) = max Pr(z|xs) Pr(y1|x1)rru}cegmx Pr(zs|zy) Pr(ys|zs)
M} = max Pr(zs3|xy) Pr(y3|x3)nie;x Pr(zy|x3) Pr(ys|xs)
M; = max Pr(z|x3) Pr(y1|x1)rr£x Pr(zs|xy) Pr(ys|zs)

]\/[23 = rrﬁx Pr(zs|xs) Pr(y;;]acg)rrie}x Pr(z|x3) Pr(y;|z;)

M2 = max Pr(xs|z3) Pr(ys|zs)max Pr(x |zs) Pr(y; |z;)
x2 xr1

(3.26)

After the 3rd iteration,
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o1 map =argmax Pr(z) Pr(y,|z:) - [mgx Pr(zs|z) Pr(y2|x2)m%x Pr(xs|zy) Pr(ys|zs)]:
1 T T

[max Pr(xs|zq) Pr(ys|zs)max Pr(xs|2z3) Pr(ys|zs)]
xs3 xr2

Ty map =argmax Pr(xs) Pr(ys|zs) - [max Pr(zy|x2) Pr(y: o1 )max Pr(zs|z) Pr(ys|as))-
Zo T 3

[rrﬁx Pr(zs|xs) Pr(y3|w3)rri&1mx Pr(z|x3) Pr(y;|z)]

T3 map =argmax Pr(x3) Pr(ys|os) - [max Pr(zy|v3) Pr(y;|z:)max Pr(ze|z:) Pr(ys|x2)]-
T3 T )

[max Pr(zz|2s) Pr(yz|22)max Pr(z1]as) Pr(yi|z1)]
M} = max Pr(zs|xy) Pr(yﬂm)niix Pr(zs|xs) Pr(yg\xg)r%alux Pr(z|x3) Pr(y;|x:)
M, = max Pr(z|x2) Pr(yl\xl)nﬁx Pr(zs|x;) Pr(yg\xg)rrgx Pr(zs|xs) Pr(ys|xs)
M} = max Pr(zs|zy) Pr(y3|5173)rrﬁx Pr(zs|z3) Pr(yﬂa@)n&&;x Pr(zq|zo) Pr(ys|z1)
M; = max Pr(zq|z3) Pr(yﬂxﬂngx Pr(zq|zy) Pr(yﬂm)ngx Pr(zs|zs) Pr(ys|zs)
My = max Pr(zs3|xs) Pr(y3|x3)n¥fx Pr(z|x3) Pr(yﬂxﬁnﬁx Pr(zs|x1) Pr(ys|xs)
M: = max Pr(zs|x3) Pr(yﬂm)ngux Pr(z|x2) Pr(y1|x1)n§;§x Pr(zs|x1) Pr(ys|xs)

(3.27)

The BP algorithm does not converge because the updated message at the end of
the 2nd iteration is not equal to the one after the 3rd iteration. Even if we proceed
with a few more iterations, we can verify that the BP still does not converge. In order
to explain the inherent different between an acyclic graph (Figure 3.3) and a loopy
graph (Figure 3.4), we may consider the MAP estimation of 21 (see Equation (3.18)),
for example. For a tree-like topology in Figure 3.3, the joint distribution of the MRF

can be factorized using the Markov assumption as follows:
Pr(zy, xq, x3) = Pr(x;) Pr(zs|x) Pr(zs|z2) (3.28)

Thus, the MAP estimation can also be factorized (repeating Equation (3.19)):
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&1 map =argmax  Pr(xy) Pr(y:|z:) 123§Pr($2|$1)P1"(5U3\$2) Pr(ys|x2) Pr(ys|zs)
o1 x2,%

=argmax Pr(z1) Pr(yi|z:) maxPr(zs|zq) Pr(ys|z:) maxPr(xs|as) Pr(ys|zs)
1 x2 x3

(3.29)

Under the above factorization, max Pr(zs|zs) Pr(ys|zs) is a (single-variant!) func-
tion of x5, and max Pr(zs|x;) Pr(yglxg)rrﬁx Pr(zs3|x2) Pr(ys|zs) is also a single-variant
function, i.e., a function of x;. This ensures the time complexity of computing the
maximum does not increase when we proceed to an outer-level. The BP algorithm is
simply a faster algorithm of the above factorization that computes duplicated com-
ponents only once for all the vertices. As we know, BP € O(N) but the above
factorization € O(N?).

For a graph with loop(s), unfortunately, the above factorization does not exist
since the dependencies between vertices starting from a vertex can propagate back to
itself through the loop(s). Although we can run the same BP algorithm on the loopy
graph, it will not converge to the true MAP (or MMSE) estimation.

Although the BP algorithm is not exact on loopy Markov networks, in several
applications of image restoration, it has been proved empirically to produce excellent
estimations [18], [19]. We will use the sub-optimal results given by the BP algorithm,

and rely on the experimental results.

3.4.3 Learning the Prior Model Pr(z;) and Pr(z|z;)

To use Equations (3.14) and (3.15), the probabilities Pr(x;), Pr(xy|z;) (prior
model) and the observational probabilistic densities Pr(y;|z;), Pr(yg|zi) (observa-
tional model) have to be estimated. The prior probabilities Pr(z;) and Pr(zy|z;) are
learned from a training set of clean handwriting images. The training set contains
three high quality binarized handwriting images from different writers. We can ex-

tract about two million patch images from these samples. Some samples from the
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Figure 3.6. 114 representatives of shared patches obtained from clustering.
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training set are shown in Figure 3.7. For training we use clean samples because unlike
the observed image, the hidden image should have good quality.

Assuming the size of a patch is B x B, the number of states of a binarized patch
x; is 2B% 1If B=5, for example, there will be about 34 million states. This makes the
computation of searching for the maximum in Equation (3.15) intractable. In order
to solve this problem, we convert the original set of states to a much smaller set, and
then estimate the probabilities over the smaller set of states. Usually this can be
done by dimension reduction using transforms like PCA. But it is hard to apply such
a transform to binarized images. Therefore we use a number of standard patches to
represent all of the 28 states. This is similar to vector quantization (VQ) used in
data compression. The set of representatives is referred to as the codebook of VQ.
Our method is inspired by the idea that images of similar objects can be represented
by a very small number of the shared patches in the spatial domain. Recently, Jolic et
al. [29] explored this possibility of representing an image by shared patches. Similarly
the binarized document images with handwriting of fixed pen-width under the same
resolution can also be decomposed into patches that appear frequently (Figure 3.5).
The representatives are learned by clustering all the patches in our training set. We
use the following approach. After every iteration of k-means clustering, we round all
the dimensions of each cluster center to 0 or 1. Given a training set of B x B binary
patches, represented by {p;}, we run the k-means clustering with initial number of
clusters = 1024, and remove the duplicated clusters and clusters containing less than
1000 samples. The remaining cluster centers are taken as the representatives.

If the codebook is denoted by 5:{01, Cy, ...,Cy} where C1, ..., Cy are M repre-

sentatives, the error of vector quantization is given by the following equation

Z[d(pia C)]2
#{pi} - B*

€vg =

(3.30)
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where d(p;, C') denotes the Euclidian distance from p; to its nearest neighbor(s) in C|
and #{p;} denotes the number of elements in {p;}. €,, is the square error normalized
by the total number of pixels in the training set.

We can use the quantization error €,, to determine the parameter B. A larger
patch size provides stronger local dependency but it is non-trivial to represent very
large patches because of the variety of writing styles exhibited by different writers.
We tried different values of B ranging between 5 and 8 which coincide with the range
of stroke width in 300dpi handwriting images, and chose the largest value of B that
led to an €,, that is below 0.01. Thus, we determined the patch size B = 5. Then
the representation error €,, = 0.0079 and 114 representatives are generated (Figure
3.6). The size of the search space of a binarized patch is reduced from 25 (about 34
million) to 114.

Now we can estimate the prior probability Pr(x;) over codebook C.

iPr(xj =() =1 (3.31)

so that the prior probabilities Pr(x;) over the reduced search space must add up to
1. We estimate Pr(xz;) from the relative size of the cluster centered at C;. A patch p;
from the training set is a member of cluster C; (1 <1 < M) if C} is a nearest neighbor
of p; among all of C},...,Cyy, and is denoted by p; € C;. Note that a patch p; from
the training set may have multiple nearest neighbors among Cf, ..., Cj;. The number
of nearest neighbors of p; in C is denoted by ng(pi). Thus the probability Pr(z;) is

estimated by

Z;

. na(pi)
Pr(z; = C)) = 25

( J l) #{pz}
where #{p;} is the number of patches in {p;}. Pr(z; = ;) in Equation (3.32)

L 1=1,2,..,M (3.32)

is estimated by the size of cluster C} normalized by the total number of training

patches. It is easy to verify that the probabilities in Equation (3.32) add up to 1.
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Pr(x;,x)) are estimated in the horizontal and vertical directions, respectively.
Similar to Equation (3.32), Pr(z;, z) (z;, ) € C) in horizontal direction is estimated

by

Z 1

. B (Piy +Pig)+Piy ECly Piny €Cly né’(pll) ’ Tlé(pw)

PI‘I":C7I =C = >l :]-727'7M7
( ! fo Tk 12) #{(pil7pi2)} '
lh=1,2,... M
(3.33)

where (p;,, pi,) runs for all pairs of patches in the training set {p;} such that p;,
is the left neighbor of p;, and #{(pi,,pi,)} is the number of pairs of left-and-right
neighboring patches in {p;}.

Pr(x;, xy) (z), x5 € C) in vertical direction is estimated by an equation similar to

Equation (3.33) except that p;; is the top neighbor of p;s.

3.4.4 Learning the Observational Model Pr(y;|z;)

For the observational model of a single pixel we can use the histogram based
model generalized in [58]. For a patch based observational model, we need to map
the single-pixel version to the vector space of patches. The pixels of an observed
patch y; are denoted by y;*, 1 < r,s < 5. The pixels of a binarized patch x; are
denoted by x;’s, 1 <r,s <5 We assume that the pixels inside an observed patch
y; and the respective binarized patch x; obey similar dependence assumption as the
patches in the patch-based topology (Equation (3.2)), i.e.,

Pr(y;’s|y1»’1 g sty x]55) =Pr(y%27%), 1<rs<5 (3.34)

J gy 1) rrdjoo g oo J J

Thus it can be proved that
5

5
Pr(yjl-’l, . y?’5|x}’1, x?5) = HH Pr(y;”|z}”) (3.35)

r=1s=1
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(a) Raw Density by smoothing the Gray-scale Histogram of the image in Figure 3.9.
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(b) 2-Gaussian Mixture Density from Thresholding.
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(¢) 2-Gaussian Mixture Density from EM Algorithm.

Figure 3.8. The smoothed gray-scale histogram and estimated foreground and back-
ground p.d.f. using two methods. Thresholding based method did not perform well
at the intersection of two density functions, whereas EM algorithm based method

improved the result.
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Given the distribution of the lightness of foreground (strokes) ps(y;”) = Pr(y;"|2}” =

0) and the distribution of the lightness of background py(y;*) = Pr(y;’|z}" = 1),

according to Equation (3.35), the conditional p.d.f Pr(y;|z;) is calculated as

Priyle)) = I o) 1] »)) (3.36)

1ST,S§5,.’E;’S:0 1§'r,s§5,w;’szl

T
J

The expression 1 < r,s < 5,z7° = 0 means that the scope of the product is for any
r and s such that 1 < r,s <5 and x;’s = (0. The expression 1 < r,s < 5, x?s =11is
specified in the same way.

The probability densities p; and p, change over an image while the lightness of
the background is changing. However, it is not a problem as we can use background
regularization techniques such as the Background Surface Thresholding (BST) [54] to
obtain the background and normalize the images. The background mapping technique
is equivalent to adaptive thresholding algorithms such as the Niblack algorithm [45].

Learning the p.d.f. p; and p, is unsupervised. Assuming that p; and p;, are two
normal distributions, one way to compute py and p; is as follows. First we determine
a threshold T" by an adaptive thresholding method such as the Niblack algorithm.
Then we use all the pixels with gray-level < T to estimate the mean and variance
of ps, and use the remaining pixels to estimate the mean and variance of p,. This
method to estimate the observational probabilistic densities is affected by the sharp
truncation of “tails” in both normal distributions. Instead, we estimate the densities
by modeling them as a 2-Gausian Mixture Model (2-GMM) using the Expectation-
Maximization (EM) algorithm. The 2-GMM is not always reliable owing to the fact
that the signals are not strictly Gaussian and that the algorithm is unsupervised of the
categories (foreground and background). Our strategy is to get a reliable estimation

of the p.d.f. of the background by background extraction and fix it when fitting the

mixture model. Our algorithm is as follows:
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1. Background Extraction.
Estimate the mean, p and variance, o2 of the entire input image. Binarize the
image using threshold, thr = u — 20 and dilate the foreground with a 4 by
4 template. We mark the background pixels in the original image using the
binarized image and estimate the mean, u, and variance, oy, of density p;, from

the extracted background pixels.

2. EM Algorithm for Estimating the 2-GMM.
Suppose K samples of the gray-scale values of pixels from the image 21, zs, ..., 2x
are available and their distribution is AZ; + (1 — A)Zy where Z, Z, and A
are three random variables, Z; ~ N(uys,0%), Zy ~ N(m,03), A € {0,1} and
Pr(A = 1) = X. Denote the density of a normal distribution N(u,0?) by
Myo2 ()
Initial values: fif = iy, /2, fio = vy, 05 = 0 = 10.0, and A =0.5.

E-step: obtain the expectation of A\ for every sample

“ Aeny 52(2:)
= - i =12 .. K. (3.37)
)\ . nﬂfﬁ.? (Z’L) -+ (1 — )\) . nﬂb7&§ (Z,L)

M-step: update the foreground mean and variance:

7

K

iy == (3.38)

S

i=1

67 == (3.39)

and the prior

A= iﬁ\i/K (3.40)



Figure 3.9. A sample patch cropped from a carbon image in our test set. All pixels
we intend to paint in are marked in black.

Repeat the above E and M steps until the algorithm converges.

The comparison of the two methods for p.d.f. estimation is shown in Figure 3.8.
This p.d.f. estimation algorithm (based on 2-GMM and EM) has an advantage over
the thresholding based algorithms because it avoids the problem of truncation of
density functions and has a smoother estimation at the intersection of two Gaussian
distributions.

Note that we assume the image is bimodal. Our work focuses on document images
where the bimodal assumption generally holds. If it does not hold, we can extract
the region with different colors through page segmentation, and use local histogram

to binarize the image.

3.4.5 Form Grid Removal

First the form grids are located by template matching - this is relatively straight-
forward to implement because of the fixed form layout, and is true for most types of
forms in other applications as well. Therefore, we can define a boolean mask m such
that

m(j,r,s) = true <=
(3.41)

pixel y7* is within any of the lines in the grid.

We only need to make a minor modification to Equation (3.36) for the form grid

removal:
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Pr(yj|xj) =1x H pf(yj’t)x
1<rs< 5,:6;’8 =0,
and m(j,7,s) = false

11 po(y;")

1<rs< 5,1:;’5 =1,

(3.42)

and m(j,7,s) = false

The probability Pr(y;|z;) in Equation (3.42) is 1 if m(j,r,s) is always true for any
r and s in the j-th patch. Replace Equation (3.36) with Equation (3.42) for the

compound tasks of binarization and grid removal.

3.4.6 Pruning the Search Space of MRF Inference

So far the MRF based preprocessing algorithm has been presented as a self-
contained general algorithm. To make the MRF based algorithm tractable, we
adopted a patch based strategy and reduce the search space of each patch using vec-
tor quantization. Initially, the size of the search space of every patch x; in Equations

(4) and (5) is 2%. Thus, the domain of every variable x; is {00...0,00...01,...,11...1},
— ) N~ ~—
B 25 0's 24 0's 25 1/s

and we reduce the search space to C' = {C1, Cy, ..., C114} by vector quantization. Al-

though the computation is reduced by the above strategies, the MRF based algorithm
is still slower than traditional binarization algorithms. There are ways to make the
algorithm faster. Next, we will describe a technique to prune the search space of each
x;. After pruning, a number of elements are removed from C1, Cs, ..., C114 to make an
even smaller search space of ;.

The number of possible values per patch (114) can be reduced by pruning the
smaller posterior probabilities Pr(z; = Cjly) calculated using Equation (3.14) after

each iteration, i.e.,
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Pr(z; = C)) Pr(y;|z; = Cl)l;[Mf(Cz)

Pr(z; = Cily) = 0
Z (Pr(ajj = Cpn) Pr(y;lz; = C’m)HM]'-“(Cm)> (3.43)
(I=1,2,..,114),

where M f(Cl) is the message from z; to z;, when z; = C;. However this pruning is not
safe on patches containing pixel(s) to paint in. Due to lack of observations of these
pixels, it will take several iterations for them to converge to the right values which may
have very small posterior probabilities in the first one or two iterations. Therefore
the right values tend to be pruned incorrectly if we prune aggressively. In order to
reduce the search space of the inpainted patches, we use a heuristic method to identify
the patches surrounded by background and prune their search space. This method is
effective due to the higher prior probability of the background (white patches).
Based on the above analysis, we arrive at the following two-step strategy to ac-

celerate the algorithm.

1. Find a global threshold thrp,,. such that 90% of the pixels in the test image
are below thrpryne. thrprune is obtained by solving
)\ . n/lfvé'?c (thT’pmne)

. A = 90%. (3.44)
)\ . nﬂf’&? (thfr’pmne) + (1 — )\) . nﬂb’&g (th’rp',«une)

For any patch z;, define a pruning mask PRUNE;(l),(l = 0,1,...,114). If
PRUNE(1) is true, C; is pruned from the search space for solving z;. Given
a patch z; and observed patch y; centered at jy, the pruning mask of x; is ini-
tialized as PRUNE;(1) = false, PRUNE;(2) = ... = PRUNE;(114) = true if
every observed pixel within a 9 x 9 neighborhood of j, is either above thry,yne
or is marked for in-painting. Thus, all possible values of z; will be pruned

except the pure white patch. Otherwise, the pruning mask is initialized as
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PRUNE;(1) = PRUNE;(2) = ... = PRUNE;(114) = false.

2. In each iteration, skip any C} in the search spaces of z; or z in Equations (3.14)
and (3.15) if PRUNE;(l) or PRUNE(l) is true. Thus, Equation (3.14) be-

comes

T Map = argmax Pr(z;) Pr(yj|:vj)HMf. (3.45)
k

xzj, PRUNE;(z;) is false

Equation (3.15) becomes

MF(z;) = P )P M}, if PRUNE;(z;) is fal
i (@5) T, PRUNIE?();) is false r(welz;) r(yk|xk)g ko ! i(w;) is false
(3.46)
After each iteration, update the posterior probabilities
Pr(z; = Cily):
L
Pr(Clly) = —=— (1=1,2,...,114) (3.47)
> L
!
where )
Pr(z; = () Pr(y;|z; = CZ)HMJI»“(C'Z),
k
L= (3.48)

it PRUNE;(1) is true

\ 0, otherwise.
Switch any PRUNE;(l) (I = 1,2,...,114) to true if Pr(z; = Cily) < Prymn,
where Pr,,;,is a threshold of pruning. Larger Pr,,;, makes the algorithm faster

and less accurate.

We will show experimentally how different Pr,,;, affects the accuracy and the speed
of the proposed algorithm. In general, we should choose a small Pr,,;, so that the

algorithm does not depend on heuristic and is reliable.
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3.5 Experimental Results and Analysis
3.5.1 Test Datasets
Our test data includes the PCR carbon forms and handwriting images from the

IAM database 3.0 [41].

e PCR Forms

In New York State all patients who enter the Emergency Medical System (EMS)
are tracked through their pre-hospital care to the emergency room using the
Pre-hospital Care Reports (PCR). The PCR is used to gather vital patient in-
formation. The PCR forms are scanned as color images at 300dpi. Handwriting
recognition on this data set is quite challenging for several reasons: (i) hand-
written responses are very loosely constrained in terms of writing style due to
irrepressible emergency situations; (ii) images are scanned from noisy carbon
copies and color background leads to low contrast and low signal-to-noise ratio
(Figure 5.2); (iii) the (pre-printed) ruling lines often intersect text; (iv) medical
lexicons of words are large (more than 4,000 entries). Very low word recognition
rates (below 20%) have been reported on this dataset [43]. An example of the
handwritten text and pre-printed ruling lines in the PCR forms is shown in

Figure 5.2.

e IAM Database

The TAM database contains high-quality images of unconstrained handwritten
English text, which were scanned as grayscale images at 300dpi. Using rough

estimates the content of the database can be summarized as follows:

— 500 writers contributed samples of their handwriting

— 1,500 pages of scanned text
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Table 3.1. Comparison of the speed and accuracy of the proposed algorithm over
different values of Pr,,;, tested on the PCR carbon form image (2420 x 370) in

Figure 3.9.
Proin Number of Percentage of Time (sec)
Different Pixels | Different Pixels (%)

0 0 0 3249
1x107% 0 0 204
1x 1077 0 0 138
1x 1070 56 0.0063 96
1x107° 145 0.016 72
1x1074 308 0.034 57
1x 1073 1122 0.13 37

Table 3.2. Comparison of the speed and accuracy of the proposed algorithm over
different values of Pr,,;, tested on the IAM image (2124x369) in Figure 3.12.

Proin Number of Percentage of Time (sec)
Different Pixels | Different Pixels (%)

0 0 0 1694
1x107% 0 0 29
1x 1077 0 0 25
1x107° 0 0 24
1x107° 0 0 24
1x10~* 14 0.002 23
1x1073 107 0.014 23

— 10,000 isolated and labeled text lines

— 100,000 isolated and labeled words

3.5.2 Display of Preprocessing Results

First we applied our algorithm to the input image (Figure 3.9). This input image is
cropped from a PCR form. Lines and unwanted machine-printed blocks are identified
and marked in black. Our test images and images for training the prior model are from
different writers. It is clear that the writing style in Figure 3.9 is not like any of the

styles in Figure 3.7. The results after iterations 1, 2, 4, and 16 of belief propagation
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run on Figure 3.9 are shown in Figure 3.11. After the first iteration, the message has
not yet been passed between neighbors. The edges of strokes are jagged due to noisy
background and error in the vector quantization discussed in section 3.4.3. All of the
pre-printed lines are dropped. After 2 iterations, text edges are smoothed but most
lines are not fully restored. After 4 iterations, nearly all the strokes are restored, with

a few remaining glitches. After 16 iterations the glitches are mostly removed.

3.5.3 Results of Acceleration: Speed vs. Accuracy

We have tested the effect of different values of parameter Pr,,;, on the speed and
accuracy of our algorithm using the PCR carbon form image in Figure 3.9 and the
IAM handwriting image in Figure 3.12. In order to compare the results obtained
by our algorithm with different values of Pr,,;,, we have taken the output images of
Prpin = 0 (which indicates no acceleration) as reference images, and have counted the
pixels in the output images with various Pr,,;,’s that are different from the reference
images. The results are shown in Table 3.1. The running times are obtained on a PC
with an Intel 2.8G Hz CPU.

In Table 3.1, even with a very small Pr,,;n, €.g. 1078, the running time decreased
significantly. The error rate of the low-quality PCR image is below 0.01% when
Prin <1 x 1079 and is zero when Pr,,;,, <1 x 1077, In Table 3.2, the error rate of
the high-quality IAM image is below 0.01% when Pr,,;, < 1 x 107, and is zero when
Prpin < 1 x 107°. In the following experiments on comparing OCR results, we chose

Prmm = 10_7.

3.5.4 Comparison to Other Preprocessing Methods

Our approach has been compared (Figure 3.13) with the preprocessing algorithm
of Milewski et al. [43], Niblack algorithm [45], and Otsu algorithm [47]. Milewski
algorithm performs both binarization and line removal. Niblack and Otsu are for

binarization only. The text of the images shown in Figure 3.13 is “67 yo @ pt found
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mfg X Ray”. From the result of the MRF based algorithm, the text “67 yo @ pt
found” is clear and the “X ray” is obscured but is still legible. In the output of
the Milewski’s algorithm, the words “pt”, “mfg”, “X”, and “Ray” are not legible.
The output of Niblack is noisier although it retains some details of the foreground.
The result of Otsu is also very noisy and loses more foreground details than Niblack.
Figure 3.14 shows our line removal (Figure 3.14(c)) achieves a smoother restoration
of strokes which touch the form grid than the Milewski algorithm (Figure 3.14(b)).

In addition to the above qualitative comparison, we have also used the OCR test
to obtain a quantitative comparison. First we tested the four algorithms on 100 PCR
forms. All of the 3149 binarized word images extracted from the 100 form images
were recognized using the word recognition algorithm in [33] with a lexicon of 4580
English words. We split the 3149 word images into two sets: set #1 contains 1203
word images that are not affected by overlapping form lines, i.e., no intersection of
stroke and line; set #2 contains 1946 pairs that are affected by form lines. Thus, the
word recognition accuracy on set #1 measures the performance of binarization only
and can be used to compare all four algorithms.

We calculated the top-n (n > 1) recognition rates instead of only the top-1 rate for
comparison because top-n rates are of greater importance to the problem of indexing
text with very high error rate [25]. Moreover, recognition rates measured in terms of
multiple candidates provides a strong proof of the effectiveness of the preprocessing
techniques. Table 3.3 shows that the MRF based method results in higher overall
recognition rates and also performs more efficient line removal.

We have also run the MRF binarization algorithm on some images from TAM
DB3.0 [41]. We generated zero-mean Gaussian noise with deviation ¢=50, 70, and
100 in the IAM images to test the performance of binarization algorithms at different
noise levels. For the group of images of =100, a 3x3 mean filter was applied to all the

images before binarization. The top-1 word recognition rates of the original images
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Table 3.3. Comparison of word recognition rates of Milewski algorithm, MRF based
approach, Niblack and Otsu algorithms (set #1: sample word images not affected by
forms lines; set #2: sample word images affected by forms lines; overall: set #1 +

set #2).

’ Method \ Milewski \ MRF \ Niblack \ Otsu ‘

Top 1 rate 175% | 25.9% | 19.4% | 11.6%
Set #1  Top 2 rate 24.4% | 36.6% | 26.9% | 16.0%
Top 5 rate 33.4% | 44.9% | 35.9% | 23.3%
Top 10 rate | 39.6% 51.7% | 42.3% | 28.8%
Top 1 rate 19.5% 30.3% NA NA
Set #2  Top 2 rate 28.1% | 40.7% NA NA
Top 5 rate 37.6% | 52.7% NA NA
Top 10 rate | 45.0% | 60.0% NA NA
Top 1 rate 18.7% | 28.6% NA NA
Overall Top 2 rate 26.7% | 39.1% NA NA
Top 5 rate 36.0% | 49.7% NA NA
Top 10 rate | 42.9% 56.8% NA NA

Table 3.4. Comparison of word recognition rates (top-one accuracies in percentage)
of the MRF based method, Niblack algorithm and Otsu algorithm on images with
different noise levels.

Original | Gaussian Noise | Gaussian Noise Gaussian Noise
images (o0 =50) (o0 =70) (0 =100) and 3 x 3
Mean Filter
MRF | 83.0% 70.3% 43.7% 48.1%
Niblack | 83.0% 60.7% 31.1% 38.5%
Otsu 82.2% 65.2% 37.0% 37.8%

95



and the images with Gaussian noise binarized by the MRF based method, Niblack,
and Otsu are shown in Table 3.4. Each group has 135 word images. We use a lexicon
of 59 English words. The word recognition rates of the original images among all three
methods are very close. The MRF based method shows higher recognition rates on

the images with Gaussian noise.

3.6 Summary

In this chapter we have presented a novel method for binarizing degraded doc-
ument images of handwriting and removing pre-printed form lines. Our method
models binarized objective image as a Markov Random Field. Different from related
approaches, we reduce the large search space of the prior model to a class of 114 rep-
resentatives by vector quantization, and learn the observation model directly from the
input image. We also presented an effective method of pruning the search space of the
MRF. Our work is the first attempt at applying a stochastic method to preprocessing
of degraded high-resolution handwritten documents. Our model is targeted towards
document images, and therefore may not handle intense illumination variations, com-
plex backgrounds, and blurring that are common in tasks of video and scene text
processing. However it is possible to generalize our model to these applications as

well.
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Figure 3.10. An example of PCR forms. (a) A entire PCR form. (b) A small local
region showing obscure text and background noise array. (c¢) Fields of interest in the
PCR form.
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Figure 3.11. The binarization and line removal result of the sample shown in figure
3.9.
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(a) Input image.
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(b) Output of the Milewski algorithm.
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¢) Output of the MRF based algorithm.

(e) Output of the Otsu algorithm.

Figure 3.13. Comparison of binarization results of the MRF based algorithm versus
three other algorithms.
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(a) Input image.

Clheﬁf

b) Output of the Milewski algorithm.

Chest

¢) Output of the MRF based algorithm.

Figure 3.14. Comparison of line removal results of the Milewski algorithm and the
MRF based algorithm.
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CHAPTER 4
HANDWRITTEN DOCUMENT RETRIEVAL

4.1 Introduction

Our work is motivated by the lack of tools available to search handwritten docu-
ments. Although the development in optical character recognition (OCR) and infor-
mation retrieval (IR) techniques have provided ways to digitalize and search printed
of documents, a similar approach for handwritten documents is undermined by the
errors occurring in document analysis and recognition [17, 3]. The state of the art
word recognition accuracy is 60-70% on handwritten documents of good quality which
makes IR results acceptable, but only 20-30% on low-quality documents such as his-
torical manuscripts, carbon forms, etc. Therefore conventional IR algorithms perform
poorly on these documents.

Several researches have been proposed to improve the IR performance of OCR’ed
text to overcome this problem. Mittendorf et al. [44] adjust the term-weighting scheme
of IR using a model of OCR errors. Ohta et al. [46] generate candidate terms for each
“true” search term and add the retrieval results of candidate terms into the final result.
Jing [28] uses a language model that takes common recognition errors into account
to approximate an “uncorrupted” version of the document. These methods focus on
modeling and correcting OCR errors and are primarily applicable to machine-printed
documents.

There has been some work on handwritten document retrieval recently[8, 21, 49,
24, 37]. Lee et al.[37] run retrieval tests on text composed of top-k (k > 1) candidates

of character recognition results of Hangul document images as opposed to the OCR’ed
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text composed of top-1 candidates. The use of top-k (k > 1) candidates improves the
recall performance of the IR system. Rath et al. [49] use an IR model that takes the
product of frequencies of query terms in a document as the similarity between the
query and the document. They assign different frequencies to terms according to the
posterior probabilities of terms. Their method is to estimate probabilities directly
from the vector space of profile features of word images which can be improved by
using the probabilities produced by established probabilistic word recognition algo-
rithms such as HMM. Howe et al [24] use the same IR model as [49] but they simply
assume the word recognition probabilities to be inversely proportional to the recog-
nition rank which is more effective than the probabilities estimated from the training
set. In our prior work [13], we use the Vector IR Model [1] for retrieval and learn
the term probabilities from word recognition results on the training set. The Vector
Model takes weighted sum of term frequencies as the similarity measure and performs
better (in our approach) than the model in [24, 49] that uses multiplicative similarity.

We present an approach to relevant retrieval of handwritten documents in this
chapter. Our retrieval method is based on the modified Vector IR, Model presented in
our previous works [8, 21]. Different from text retrieval, the raw term frequency (the
number of occurrences of a term in a document) required by the Vector Model is not
immediately available. We estimate the raw term frequency from word segmentation
and recognition results using a probabilistic method [14, 9]. By assuming perfect word
segmentation, the existing methods [24, 49, 13] estimate the raw term frequency as
the sum of word recognition probabilities. We improve upon the above methods
by taking word segmentation errors and language model into account (Table 4.1).
The solution to the term-weighting scheme that unifies segmentation probabilities,
recognition probabilities and the language model (n-gram) is non-trivial due to large
amount of search branches, as opposed to the scheme that only uses word recognition

probabilities. We solve this problem using dynamic programming.
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Table 4.1. Approaches to handwritten document retrieval.

Existing Approach I | Existing Approach II Proposed Approach
Index is created using | Index is created using word | Index is created using word
OCR’ed text [37] recognition probabilities recognition probabilities,
8, 21, 49, 24] word segmentation
probabilities and language
model (n-gram, n > 1)

4.2 Vector IR Model for Handwritten Documents
4.2.1 Classic Vector Model

In the classic Vector Model [1], the documents are represented by the vector space
of terms. A term is a word from the vocabulary of all of the documents. Given the

vocabulary {t;},1 < i < N, the term frequency of document d; is defined by formula

tf = % i=1,.,N (4.1)

J

where freg;; is the number of occurrences of term ¢; in document d; (raw term
frequency) and L, is the total number of occurrences of all terms in document
d;, i.e., the length of d;. For example, in a document d; of 1000 words, if the
term t;="“diseases” occurs 3 times, then the raw term frequency freg;; = 3 and
term frequency tf;; = 0.003. Thus document d; can be represented by the vector
[Ef15:tf25, st ).
The inverse document frequency (IDF) of a term is defined by the formula
#{d;}

df; = 1 C i=1,..N 4.2
i =18 o freq, > 07 (4.2)

where #{-} denotes the number of elements in set {-}. The IDF of a term shows the
importance of the term based on the observation that a term that appears in most

documents is less important than a term that appears in only a few documents.
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A query is also represented by the vector of terms. The query term frequency

(QTF) of query q is defined as

1, if term ¢; is in ¢
tfiqg = i=1,..,N (4.3)
0, otherwise

and the query is represented by vector [tf1 4, tf2q, .., tfnql-

The similarity between document d; and query ¢ is defined as

sim(d thz o idf; - tfig (4.4)

Now let’s show an example of the Vector Model. Support we have the following
two documents:

d1="“pt has a trauma”, and

do="pt has breath difficulty”,
where “pt” is the abbreviation for “patient”.
Then there are 6 terms:

t1=“pt”, to="has”, t3="“a”, t,="“trauma’”, ts="breath”, and tg=“difficulty”.

The term frequency matrix is

0.25 0.25 0.25 025 O 0
(tfig) = (4.5)
0.25 025 O 0 0.25 0.25

The vector of IDF’s is

2

(idf;) = log log log log log log1

(4.6)
= [0,0,log 2,log 2,log 2, log 2]
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Suppose a query is ¢: “breath difficulty”, then the vector of QTF’s is

(qtfiq) = [0,0,0,0,1,1] (4.7)

The similarity between document d; and query ¢ is
simg, 4 = 0.

The similarity between document dy and query ¢ is
simg, 4 = 0.5log 2.

This shows that document ds is more relevant to the query than document d;.

4.2.2 Modified Vector Model
The raw frequency freg;; is not immediately available from the document im-
age and need to be estimated. Thus we modify the definitions of TF and IDF in

Equations (4.1) and (4.2): the modified T'F is
. E{freq}

tfz,] - L. )

J

(4.8)

and the modified IDF

#{d;}
max {1, #{d;|E{freq; ;} > 0.5}}

idf] = log (4.9)

where E{freq;;} is an estimation of freg;;. Note that here we use E{fregq;} >
0.5 which is equivalent to a rounding function of the expected value of freg; ;, i.e.,

round(E{freg;;}) > 1.
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The text length in Equation (4.8) is estimated by

N
L= E{freq;} (4.10)
i=1

The similarity between document image d; and the query ¢ is given by

sim(d Zt fly - idf] - tfig. (4.11)

We estimate E{ freg; ; } using the MMSE method as follows. Suppose document d;
is composed of an observational sequence of image features denoted by 0 = 010s...0x,
and W = wyws...wy, is any segmentation of sequence © where wy, ..., w;, are word

images. The MMSE estimation of freg; ; is given by

E{freqi;} = > Pr(w|7) ZPr W) - #,(7) (4.12)

— . — =
where 7 = 7...71, is a sequence of terms. Pr(w|o

) is the probability that w is a
valid segmentation. Pr(7|w) is the word sequence recognition probability. #;(7)
is the number of term t; occurring in sequence 7 .

Equation (4.12) can be simplified in some special situations. w is unique and

Pr(w|o) = 1 if we assume the correct segmentation w is known. Thus Equa-

tion (4.12) is equivalent to

E{freq. } = ZPr W) - #,.(7) (4.13)

In addition to the assumption of knowing the correct segmentation, assuming the

independence of terms 7y, 7o, ..., 7, i.€.,

7|W) = [ [ Prirelws), (4.14)
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then Equation (4.13) is equivalent to

E{freq;;} = Z Pr (7 |wg) (4.15)

Equation (4.15) is used in [49, 24] for retrieval. It is a solution to Equation (4.12)
based on the assumptions of perfect word segmentation and independence of terms.
In the general case, given the probability of every single segmentation point and a

language model (n-gram), we can solve Equation (4.12) by dynamic programming.

4.2.3 Estimating Raw Term Frequency freg; ;

The observational sequence of a document image can be represented by a sequence
of connected components sorted in the reading order. Since the following discussion
focuses on a single document, we can omit the subscript j of d; from notations like
freg;; without ambiguity.

Given N consecutive connected components ¢y, ...c,, and the set of terms tq, ...t ,
we use a dynamic programming based algorithm to solve the raw term frequency. We
assume a word image is composed of at most C' connected components. The raw term
frequency of ¢; in sequence ¢y, ..., c; (0 < k < n) is denoted by freqF. The probability
that the last word of sequence cy, ..., ¢, is term t; is denoted by A¥. The probability
that the gap after the connected component ¢, is a true word gap is denoted by oy.
When we define freg and o), on a sequence cy, ..., ¢, we assume og = oy = 1.

When k£ = 0, the sequence is empty, and thus
E(freq)) =0 (4.16)

When k = 1, the only possible segmentation is that c¢; is a word image, and thus

pi - Pr(cit;)

N
> pi, - Pr(calts,)

i9=1

E(freq}) =

(4.17)
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When k = 2, the last word image can be either ¢y or c;co. The probability of co

being t; equals

N
ir—i - P t;
> AL Np1 r(calti) , (4.18)
n=t Zpil—n'g ° Pr(02|ti2)
ig=1

where p;,_,;, represents the transition probability from term ¢; to term ¢,, and
Pr(cylt;) is the probability density of observation ¢y in class ¢;. The probability of

c1¢o being t; equals
Di - Pr(clcg|ti)

N
> pix - Pricicolti,)

io=1

(4.19)

Thus

Pir—i - Pr(calt;) pi - Pr(cicalt;)

N
E(freql-?):ay(freqil—i-Z)\%l- ~ J+(l—01) —
e Zpil—n'z - Pr(calti,) sz‘z -Pr(cies|ty,)

i2=1 i2=1

(4.20)

For an arbitrary k£ > 0, we can prove that
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E(freq;) =

iak_c -( H (1—-0,))- freq

k—c<q<k

pi - Pr(c

Z)\k c .

11=1

+( [T 0 =o)) (5
O<a<k Zpiz : PI‘(

io=1
if £ <
E(freq) =
C
Sore ( J] =00 (fredt
c=1 k—c<q<k
if k> C.

Similarly, we can prove that

...Ck_10k|ti) )

C1...C—1Ck |t22)

Z)\k c .

11=1
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pzlﬁi - Pr(cp—ct1..-ch—1ck|ts)

Zpu —ig

10=1

Ck c+1++-Cl— lck|t12)

pzlﬁi - Pr(cp—ct1...ch—1ck|ts)

szl —ig

10=1

Ck c+1-+-Cl— 1Ck|t12)

(4.21)
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k—1
11— " P —c4+1:--Cl— tl
M=o ( J] 1-0,) }:A : p1 P(Chct1 %1%|)>
c=1

k—c<q<k i1=1
E p11—>22 : Ck c+1---Cl— 1ck’t7,2)

i0=1

pz . PI‘(Cl iCL—1Ck ’tl)

+(J] G=o))- (5 )

0<g<k me . PI‘(Cl...CkflckHiQ)
ia=1
if 1 <k<C;
c N p Pr(c cr-1Ck|t:)
—c i1 —i k—ct1---Ck—1Ck|Y
=Y o (T (=a) (oae 2 )
c=1 k—c<q<k =t Zpu—nz ’ Ck 1 Ch— 1ck|t22)
io=1
if k> C.

(4.22)

The raw term frequencies freq? (i = 1,2, ..., N) are obtained by calculating freq¥’s

and \F’s recursively for k from 0 to n using Equations (4.16) - (4.22).

4.2.4 Estimating Word Segmentation Probability

Word segmentation is defined as the process of segmenting a line into words. In
handwritten lines, the space between words is uneven. Moreover, the same amount
of space may be present between words, and between characters within a word. Such
cases arise due to differences in writing styles, and space constraints.

In our word segmentation method, for the gap between any two consecutive con-
nected components, the probability of the gap being a valid word gap is estimated.

A gap between two connected components is represented by three features:
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1. Euclidean Distance. This feature is defined as the horizontal distance be-
tween the bounding boxes of the two consecutive connected components of the

line image (Figure 4.1(a)).

2. Minimum Run Length. This feature represents the minimum horizontal
white run length distance between the two adjacent connected components of

the line image.

3. Convex Hull Distance. We compute the convex hulls of two consecutive
connected components and draw a line connecting the mass centers of the two
convex hulls. The Euclidean distance between points at which this line crosses
the two convex hulls is defined as the Convex Hull distance of the two adjacent

components.

To eliminate the effect of different text sizes, we compute the average height of all the
components and normalize the extracted features by dividing them by the average
height of all components in the same line.

The segmentation probability of a gap ¢ is given by the Bayes’ Rule

_ _ Pr(g)p(fl,guf2,97f3,g|g)
70 = PO Foa 1o0) = By g, o) + Pr@p(Frg o Frols) )

where Pr(g) and Pr(g) are the prior probabilities of valid gaps and non-valid gaps,
respectively. fi 4, fo, and fs, are three features of g. p(fi4, fog, f3,4/9) is the proba-
bility density of the features of valid gaps. p(fi 4, fo.4, f3.,4/9) is the probability density
of the features of non-valid gaps.

Given a set of gap features with the annotation of “valid” and “non-valid”, we

can estimate Pr(g), Pr(g), p(f1.g: fog: frgl9) and p(fig, fag, foglg) as follows. Pr(g)
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xLE

(a) Euclidean distance.

BokL -

(b) Run length distance.

(c) Convex hull distance.

Figure 4.1. Three feature representing a gap between two consecutive connected
components.
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and Pr(g) are estimated from the ratio of the numbers of valid and non-valid gaps in

the training set.

#{valid gaps}

P pu—
1(9) #{valid gaps} + #{non-valid gaps}

(4.24)

Pr(g) =1 — Pr(g) (4.25)

P(f1.g: forgs [3.419) and p(f1 4, fo.g, f3,4|7) are estimated non-parametrically using Parzen

window technique with a Gaussian kernel function.

4.2.5 Estimating Word Recognition Likelihood

We use a lexicon-driven word recognition algorithm [33] based on character seg-
mentation and dynamic programming to find the best matching path. First a word
image is segmented into candidate character images. Then the directional features
are extracted from the contours of character images and matched to every word in
the lexicon by searching all possible segmentations for the minimum sum of Euclid-
ean distances from the features of the test image and the character templates in the
training set. The minimum Euclidean distance indicates the similarity between the
word image and the term in the lexicon. The square of the distance associated with
a pair of a word image w and a term ¢; is denoted by s(w, t;).

The word recognition likelihood is estimated from the recognition score using a
Universal Background Model (UBM) [50]. In a Background Model, the posterior

probability of the word recognition is given by Bayes’ rule:

Pr(w = t;)py, (s(w, t;)|w = t;)
Pr(w = t;)py, (s(w, t;)|w = t;) + Pr(w # t;)py, (s(w, ;) |w # t;)
(4.26)

Pr(w = ti|s(w,t;)) =

where py. (s(w,t;)|w = t;) is the likelihood of the genuine matching score of ¢;,

P, (s(w, t;)|w # t;) is the likelihood of the imposter matching score of ¢;, and Pr(w =
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t;), Pr(w # t;) are the prior probabilities of genuine and imposter matches of t;,
respectively.

We need a term specific training set for every term to learn the background model.
This is a drawback in applications using large number of terms. The Universal Back-
ground Model is an alternative approach that solves this problem. In the UBM, we
use a single Background Model for all of the terms. The genuine matching probability

is given by

Pr(Genuine)p(s|Genuine)
Pr(Genuine)p(s|Genuine) + Pr(Imposter)p(s|Imposter)
(4.27)

UBM/(s) = Pr(Genuine|s) =

where s is a matching score, Pr(Genuine), Pr(Imposter) are the prior probabilities
of genuine match and imposter match, respectively, and p(s|Genuine), p(s|Imposter)
are the likelihoods of the score of genuine match and imposter match, respectively.
Pr(Genuine), Pr(Imposter), p(s|Genuine), and p(s|Imposter) are estimated from
the scores of all of the terms.

We model p(s|Genuine) and p(s|Imposter) as Gamma distributions. Actually,
the matching score s is a squared sum of distances between character-level feature

vectors and the centers of clusters in the training features. In other words,

L
s=>» D} (4.28)
=1

where D; is a character matching distance. If we assume all the clusters of the training
feature vector space are independent normal distributions, then the squared sum of
the distances can be modeled as a gamma distribution. The probability density

function of the gamma distribution can be represented by

—s/6

fs(s;k,0) = Pl ¢

0 and k,0 >0 4.29
9’“F(l{;)’s> and k,60 > (4.29)
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where I'(k) is the gamma function:
I'(k) = / 2* e d. (4.30)
0

If k is a positive integer, then I'(k) = (k — 1)!. There is no closed-form solution for
the maximum likelihood estimation of k£ and 6 [16]. However we can use a simple
way to estimate the Gamma distribution. First we can prove that the mean and
variance of the Gamma distribution are k - 6 and k - 62, respectively. Then, given N

genuine matching scores s1, sg, ...sy, we can compute the ML estimation of mean and

variance:
( 1 N
p :N;Si
X N (4.31)
0'2 :N : (Si - ﬂ)z
\ i=1

(4.32)

A Genuine probability /score curve estimated from 5461 genuine matching scores
and 1,226,022 imposter matching scores is shown in Figure 4.2.

We estimate the posterior probabilities by amending Equation (5.6):

Pr(t;)UBM (s(w, t;))

Z Pl"(tj)UBM(S(w7 tj))

J=1

Pr(t;|w) = i=1,2,...N (4.33)

By Bayes’ rule, the likelihood
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Figure 4.2. Genuine matching probability/score curve estimated from training set.

Z Pr(t;) Pr(wlt;)
Pr(w|t;) = 2 ) - Pr(t;|w)
S Pr(ty) Pr(ult;) (4.34)
= UBM (s(w,t;)) - ———

ZPr )UBM (s(w,t;))
Z Pr(t;) Pr(wlt;)

J

where is an invariant of ¢; and can be reduced from the

ZPr YUBM (s(w, t;))

fractions in Equations (4.16) - (4.22). Thus we can use
p(wlt;) < UBM (s(w,t;)) (4.35)

to estimate the likelihoods in Equations (4.16) - (4.22).

4.2.6 Search Engine Based on Modified Vector Model
A search engine for handwritten document is built using the modified Vector

Model and raw term frequency estimation method discussed in the previous sections.
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Figure 4.3. Flowchart of the search engine.

The flowchart of the search engine (Figure 4.3) shows three phases of the system:
preprocessing, indexing, and document retrieval.

In the preprocessing phase, image enhancement such as noise filtering and bina-
rization are performed, and text lines are identified by page segmentation.

Indexing includes word segmentation and recognition with the estimation of prob-
abilities. We use these probabilities to estimate the term frequency (TF) and inverse
document frequency (IDF) and store the estimated TF and IDF values for retrieval.

When searching the database for relevant documents, the user input query is
converted to a query vector and the similarity of the Vector Model is calculated for
each document. Documents are ranked in the decreasing order of similarity and top

documents are returned.

4.2.7 Computational Issues
Only the non-zero values of the TF matrix are needed to be stored in the index

and thus the space to store the index and time complexity of retrieval are both linear
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(a) The TF matrix from a text IR application
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(b) The TF matrix from a document image IR application

Figure 4.4. TF matrices from text IR and document image IR. The TF matrix for
document image IR can be approximated by a sparse matrix if we turn the shadowed
elements that are below a threshold to 0.

in the number of non-zero values in the TF matrix. The TF matrix for text retrieval
is usually sparse so the size of index file and the retrieval speed are not issues. But the
TF matrix are no longer sparse when indexing document images (using the proposed
method). Practically, we can convert the TF matrix into a sparse one without affect
performance much: we can choose a threshold T'H R;pq,5c, and turn those elements
from the TF matrix that are less or equal to T'H Rgparse (see shadowed elements in

Figure 4.4 (b)). We set T'H Rgparse to 0.002 in our experiments.

4.3 Experimental Results and Discussions
4.3.1 Test Corpus

Our test corpus is the New York State Pre-hospital Care Reports (PCR forms).
In New York State all patients who enter the Emergency Medical System (EMS)

are tracked through their pre-hospital care to the emergency room using the PCR.
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The PCR is used to gather vital patient information. Retrieval on this data set
is quite challenging for several reasons: (i) handwritten responses are very loosely
constrained in terms of writing style, format of response, and choice of text due to
irrepressible emergency situations, (ii) images are scanned from noisy carbon copies
and color background leads to low contrast and low signal-to-noise ratio (Figure 5.2),
(iii) medical lexicons of words are very large ( more than 4,000 entries). This leads
to difficulties in the automatic transcription of forms. The word recognition rate
of the forms using Word Model Recognizer (WMR) [33] is below 30%. Each PCR
contains only about 100 handwritten words on average so the content is very short

and ordinary IR methods perform badly since some of the terms are often absent

from the OCR result.

4.3.2 Preprocessing and Recognition of PCR Form Images

First we detect and remove the skew of every PCR form image as follows.

1. We manually de-skew a form and take it as a template. Two special regions are

taken from the template as anchors.

2. The positions of two anchoring regions in any test image are found by cross-

correlation.

3. The skew angle of the test image is obtained by the relative skewing between
the test image and the template. We de-skew the image by rotating to the

opposite direction.

By aligning the test image to the template image, we can also obtain the position
of each form cell containing a line of text. The template-matching based de-skewing
and page segmentation work well on the PCR form images since they have a fixed
layout and are scanned at the same resolution. Our approach is applicable to other

types of forms as well.
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Figure 4.5. An example of PCR forms. (a) A entire PCR form. (b) A small local
region showing obscure text and background noise array. (c) Fields of interest in the
PCR form.
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(b) The bnarized image. Grid lines are removed and broken strokes are fixed.

Figure 4.6. An example of the binarization and line removal result.

Recall-Precision Curve for Word Gap Classification
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Figure 4.7. The performance of word segmentation (recall-precision curve).

We use the MRF based document image preprocessing algorithm [11] to binarize
the form image and remove the grid lines from the image. Assuming the binarized
objective image is x and the grayscale image is y, we solve the maximum a posteriori
(MAP) estimation & = argmax Pr(z|y) using the Markov Random Fields (MRF).
An example of binarizationxand line removal result is shown in Figure 5.3. The
MRF based preprocessing method improves the word recognition accuracy from 18.7%
(obtained by the PCR form preprocessing algorithm in [42]) to 28.6%.

We use 1099 valid word gaps and 5138 non-valid word gaps to train the word gap
classifier using the method presented in Section 5.2.2. The classifier is evaluated on a

test deck of 791 valid word gaps and 4369 non valid word gaps. If we take probability
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Pinr as a threshold to determine the validity of a gap, we can compute the recall
and precision values obtained from the given test deck. Thus a precision-recall curve
(Figure 4.7) is obtained by taking various values of threshold, p,..

The WMR handwritten word recognizer is trained using 21054 character images
extracted from images of the US Postal Service database. A lexicon of 4670 English
words is generated from the ground truth of 783 PCR forms. We also learn the prior
probabilities and bi-gram model from these 783 forms. A word recognition rate of

28.6% is obtained on the PCR forms.

4.3.3 Evaluation Metrics of IR Test
The IR tests are evaluated in terms of Mean Average Precision (MAP) and R-

Precision [1]. The Mean Average Precision is obtained in the following way:

1. For each query, check the returned documents starting from rank 1. Whenever
a relevant document is found, record the precision of the documents from the
one with rank 1 to the current one. The average value of the recorded precisions

for the query is the Average Precision of the query.

2. The mean value of the Average Precisions of all the queries is the Mean Average

Precision of the test.

R-Precision of a query is the mean value of precisions computed for each query
when R documents are retrieved, where R is the number of relevant documents. The
mean value of the R-Precisions of all queries is the R-Precision of all of the queries.
For example, suppose 100 documents are relevant to query ¢, and 30 of the top
100 retrieved documents are relevant to the query, then the R-Precision of query ¢
is 30/100 = 30%. Suppose the R-Precision of another query ¢s is 20%, then the

R-Precision of ¢; and ¢ is (30% + 20%)/2 = 25%.
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Table 4.2. 28 query phrases used in our IR tests.

“head pain” “emesis” “breath difficulty short”
“trachea” “lung” “chest pain”
“fracture” “rib fracture” “head fracture”

“ankle fracture” “cancer” “trauma”
“glucose” “diabetes” “foot”

“tender” “hurts” “ambulate”
“cardiac” “dizzy dizzyness dizziness” “cardiac monitor”
“wrist” “arthritis” “shoulder pain”
“syncope” “mri” “blind”

“dementia”

In addition to the Mean Average Precision and R-Precision, the performance of the
IR system can also be visualized using a 11-point precision. First, the 11 interpolated
precisions at recalls 0, 0.1, ..., 1 are calculated for each query. Then the average
precision of all of the queries at each of the 11 recalls is calculated. Finally we get 11

precisions.

4.3.4 IR Tests
The document images involved in our IR tests are 342 PCR forms with manually
transcribed ground truth and coordinates of each word. We have 28 queries, and
manual annotation of relevance of the 342 forms to these queries. An example of an
entire PCR form and handwritten regions of interest in the PCR form are shown in
Figure 5.2(c). The queries used in our IR tests are shown in Table 4.2
We compare the performances of the following 7 IR tests:
Tests 1-4: IR tests on OCR’ed text
We apply the classic Vector Model on OCR’ed text. First we apply word
segmentation to the 342 form images as follows. For any m (m < 16) consecu-
tive connected components ¢,Cqy1...Cq4m, SUPPOSE Og_1, 0y, -.., and Ty, are gap

validity probabilities obtained by the gap classification algorithm presented in
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Section 5.2.2, then the probability of the concatenation c,cqy1...C44m being a
word image is 0,1 - (1 —0y) - .. - (1 — Ogrm—1) - Tgim-

We recognize all the word images with the word segmentation probability
above 0.3. The OCR’ed text is composed of the top-S word recognition candi-
dates of every word image. The parameter S = 1, 3, 7, and 15 in four separate
tests. IR tests based on the Classic VM are performed on the OCR’ed text of
342 form images.

Test 5: Vector IR Model + HR Estimation

We apply the Modified Vector Model to 342 form images for document re-
trieval. The raw term frequencies are estimated from handwriting recognition
(HR) results using Equation (4.13) by assuming perfect word segmentation and

identical independent distribution (i.i.d.) of terms, i.e.,

E{freqi;} = Pr(riwy) (4.36)

We use the same word segmentation method in Test 1-4.
Test 6: Probabilistic IR Model + Isolated Word Estimation
We apply the probabilistic IR model [49, 24] to 342 form images for document

retrieval. In this model, the doc-query similarity is defined as

sim(djq) = [ tfis (4.37)

1<i<N, tfi =1
and the raw frequency is estimated by Equation (4.36). We use the same word
segmentation method in Test 1-4. The difference between [49, 24] and our im-
plementation is the way word recognition probabilities Pr(7;|wy) are estimated.

Test 7: Vector IR Model + Word Sequence Estimation
We apply the Modified Vector Model to 342 form images for document re-

trieval. The raw term frequencies are obtained by the word sequence based
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estimation using Equations (4.16) - (4.22).

The MAP and R-Precision values of the above IR tests are compared in Figure 4.8-
(a). A trivial average precision of 4.76% is obtained by generating random retrieval
results for the 28 queries. We amend the metrics by subtracting the trivial AP
from the MAP and R-Precision values. The amended metrics show the incremental
improvement from the trivial result. The amended MAP and R-Precision values of the
above IR tests are compared in Figure 4.8-(b). Tests 1-4 show that the improvement
of using more word recognition candidates (S=3, 7, and 15) compared to the result of
IR test on top-1 word recognition text is very slight. Even a naive estimation of the
raw term frequencies (Equation (4.36)) improves the IR performance compared to the
tests based on OCR’ed text. But the use of the word segmentation probabilities and
the language model (Test 7) resulted in better IR performance than the estimation
method that only uses isolated word recognition results.

The interpolated 11-point precision curves of tests 1 (OCR’ed text, S = 1), 5
(VM + isolated word estimation) and 7 (VM + word sequence estimation) are shown
in Figure 4.9 (a). The IR performance of building the index on the ground truth is
also shown in Figure 4.9 (a). Tests 5 and 7 produce similar precisions at low recall
(around 0) but Test 7 produces significantly higher precisions at higher recalls.

For better comparison, the above 11-point precision curves can also be amended
this way: we first get two addition precisions at each recall level: trivial precision and
ground-truth precision, and then normalize the recall-precision coordinates so that
the trivial precision is always 0 and the ground-truth precision is always 1. The trivial
precision is defined as the precision obtained by ranking all the documents randomly:

average number of relevant documents per query
Prectrivial =

(4.38)

number of documents
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Figure 4.8. The MAP and R-Precision values of 7 IR tests.
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Table 4.3. Approaches to handwritten document retrieval.

Test 1 Test 5 Test 7
Size of Indexing file | 17.0 MB 22.5 MB 74.4 MB
Retrieval Speed 119 queries/sec | 83 queries/sec | 47 queries/sec

The ground-truth precision Prec;.., at a recall level is the precision obtained by IR
test performed on the index built on ground-truth text. The amended precision of
an original precision p is defined as

PreCamended = % x 100% (4.39)

The amended 11-point precision curves in Figure 4.9 (b) shows that the proposed
method obtained improvement at almost all recall levels but especially improved the
precisions at high recall rates (;50%). The two existing methods perform very poorly
at high recall levels by giving nearly zero precisions. But the proposed method still
obtained about 10% precision at the recall level of 100%.

The sizes of the indexing files and retrieval speeds of the above three tests are
compared in Table 4.3. From Test 1 to Test 7, as we used more recognition and
segmentation hypothesis, the increased requirements of space and running time of
retrieval are still acceptable in practice: the space required to store the index increased

about 4 times and the running time increased about 2 times.

4.4 Summary

This chapter presents a vector model based method for indexing and retrieval of
handwritten document images. Instead of finding the best transcription (which is the
objective of handwriting recognition), tracking and weighting all possible transcrip-
tions is more important to the indexing and retrieval of handwritten documents. We

improve the term-weighting scheme of existing IR techniques by estimating the raw
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Figure 4.9. The 11-point average precision curves of tests 1, 5 and 7.
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term frequencies using the MMSE criteria. The MMSE estimation of raw term fre-
quencies integrates word segmentation, word segmentation and language model into
a statistical approach. Our work is validated by the improvement of IR performance

compared with other term-weighting schemes.
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CHAPTER 5
HANDWRITTEN KEYWORD RETRIEVAL

5.1 Introduction

Keyword retrieval in document image is generally referred to as word spotting.
There can be two approaches to keyword retrieval in the handwritten document im-
ages. In the first approach, we can first perform a handwriting recognition followed
by the indexing step to keep track of the transcription and other useful informa-
tion (positions and recognition scores of word images) [12, 49, 24]. Retrieval can be
performed by some measurements of similarity between the keyword and the word
image.

In the second approach [31, 63, 38, 26, 35, 57, 39, 27], the index of word images
can be built from images features. During retrieval, each keyword is converted into a
word image. This can be done by annotating a small set of word images designated for
generating query images. The generated query image is compared to the word images
in the database. The similarity between them is measured using a certain distance
between the feature vectors of the word images. When a user provides a query word,
the similarity between the query and the word image in the database is computed,
and word images are returned in the decreasing order of similarities. In [31, 38],
the similarity between the feature vectors of two word images is achieved by Dynamic
Time Warping (DTW) matching of profile features computed using various definitions
of distances [31, 4, 51, 38] in the feature space. Similarity [63] is based on bitwise
matching of the GSC features of two word images. The second approach is referred

to as "word spotting”. As we know a handwriting system is not easy to implement.
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The word spotting methods can be an alternative at very low cost of implement when
a handwriting recognition system is not available.

However, word spotting requires on-line matching which is time-consuming. Trade-
off between accuracy and speed has to made in order to be scalable to large database.
Thus Image feature based indexing approaches are limited in feature selection and the
complexity of matching and training methods and are only applicable to constrained
handwriting such as when dealing with a single writer or small lexicons. In contrast,
OCR score based indexing approaches [12, 49, 24] conquered the speed problem. In
these methods, the indices are built from OCR scores such posterior probabilities
or feature vector observational likelihoods (probability density) converted from dis-
tances returned by word recognizer. In general, The first approach provides much
more accuracy than the second approach.

Another question is whether to adopt a word-lexicon. The index for fast retrieval
can be built on the results of word level recognition in lexicon-driven mode [49, 24]. In
the lexicon driven mode, any word that is not in the lexicon can’t be retrieved. Thus
one need to select the set of keywords to meet the requirement of the application.
[12] performs word recognition on character level and search for optimal matches in
the series of character recognition scores. However searching in character recognition
scores requires additional time and is time-consuming for large-scale data. We adopt
a word-lexicon-driven method in this thesis for maximum accuracy and efficiency but
sacrifice some loss due to the OOV problem.

We improve the OCR score based indexing method by integrating word segmen-
tation probabilities into the ranking scheme of word images. Word spotting methods
mentioned above assume perfect word segmentation: word images are given by word
segmentation algorithm, and the ranks of word images are obtained by ordering the
word recognition scores. However it is difficult to get a nearly perfect word segmenta-

tion in unconstrained handwriting due to irregular variation of the word gaps. Thus,
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Figure 5.1. Diagram of the keyword spotting system.
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the performance of word spotting can be improved by modeling word segmentation
probabilities. In this chapter, we describe a probabilistic model of word spotting that
integrates word segmentation probabilities and word recognition probabilities. The
word segmentation probabilities are obtained by modeling the conditional distribu-
tion of multivariate distance features of word gaps. The word recognition results are
also represented by a probabilistic model so that they are compatible with the prob-
abilistic word spotting model. The modeling of the word recognition probabilities is

obtained from the distances returned by the word recognizer.

5.2 Model Definition
5.2.1 Word Spotting Model

Given a series of consecutive connected components cq,¢s, ..., ¢, and a possible
word image w represented by ¢;, ¢iy1,...¢c; (1 <1i,5 < n), then the similarity between

w and a query word g can be represented by

sim(w, q) =
(5.1)
i1 (1—0y) .- (1 —0j-1) - 05 - Pr(qlw)
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where oy, (1 < k < n — 1) is the probability of the gap between ¢;_; and ¢ being a
valid word gap, o9 = 0, = 1, and Pr(g|w) is the word recognition probability. Here
we assume the gaps are independent and thus the word segmentation probability is
i1 (l—0y) .- (1 —04-1) - 05
The size required to store the index can be reduced by applying constraints on
the number of connected components within a word image and minimum similarity:
Given a series of consecutive connected components cy, co, ..., Cy,
For i from 1 to n
For j from i to min(i + Cyee — 1, 1)
If the similarity sim(c;...cj, ) > simy,
Then store the document number, coordinates of the word image and the sim-
ilarity into index.
Cnaz 18 the maximum number of connected components within a word image. sim,;,
is the minimum similarity that can be stored into the index. We assume C,,,, = 16

and sim,,;, = 0.1% in our experiment.

5.2.2 Estimating Word Segmentation Probability

Word segmentation is defined as the process of segmenting a line into words. In
handwritten lines, the space between words is uneven. Moreover, the same amount
of space may be present between words, and between characters within a word. Such
cases arise due to differences in writing styles, and space constraints.

In our word segmentation method [9], the probability of the gap between any two
consecutive connected components being a valid word gap is estimated from feature
space of distance measures. A gap between two connected components is represented

by three distance features:
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1. Euclidean Distance. This feature is defined as the horizontal distance be-
tween the bounding boxes of the two consecutive connected components of the

line image (Figure 4.1(a)).

2. Minimum Run Length. This feature represents the minimum horizontal
white run length distance between the two adjacent connected components of

the line image.

3. Convex Hull Distance. We compute the convex hulls of two consecutive
connected components and draw a line connecting the mass centers of the two
convex hulls. The Euclidean distance between points at which this line crosses
the two convex hulls is defined as the Convex Hull distance of the two adjacent

components.

To eliminate the effect of different text sizes, we compute the average height of all the
components and normalize the extracted features by dividing them by the average
height of all components in the same line.

The segmentation probability of a gap ¢ is given by the Bayes’ Rule

Og = Pr(g’fl,g7f2,ga f3,g> =

Pr(g)p(fl,gaflg)f&glg) (52)
Pr(9)p(fig, fogs [3.419) + Pr(3)p(frg, fog, f2.410)

where Pr(g) and Pr(g) are the prior probabilities of valid gaps and non-valid gaps,
respectively. fi 4, fo, and fs, are three features of g. p(fi4, fog, f34/9) is the proba-
bility density of the features of valid gaps. p(fi,4, f2,4, f3,4/g) is the probability density
of the features of non-valid gaps.

Given a set of gap features with the annotation of “valid” and “non-valid”, we

can estimate Pr(g), Pr(g), p(fig, fog: f3.419) and p(fi4, fog. f3.4]G) as follows. Pr(g)
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and Pr(g) are estimated from the ratio of the numbers of valid and non-valid gaps in

the training set.

B #{valid gaps}
~ #{valid gaps} + #{non-valid gaps}

Pr(g) (5.3)

Pr(g) = 1—"Pr(g) (5.4)

P(f1.g: forgs [3.419) and p(f1 4, fo.g, f3,47) are estimated non-parametrically using Parzen

window technique with a Gaussian kernel function.

5.2.3 Estimating Word Recognition Probability

We use a lexicon-driven word recognition algorithm [33] that performs character
segmentation and finds the best matching path using dynamic programming. First
a word image is segmented into candidate character images. Then the directional
features are extracted from the contours of character images and matched to every
word in the lexicon by searching all possible segmentations for the minimum sum of
Euclidean distances from the features of the test image and the character templates
in the training set. The minimum Euclidean distance indicates the similarity between
the word image and the term in the lexicon. The square of the distance associated
with a pair of a word image w and a term ¢; is denoted by s(w, t;).

The word recognition probability is estimated from the recognition score using a
Universal Background Model (UBM) [50, 9]. In a Background Model, the posterior

probability of the word recognition is given by Bayes’ rule:

Pr(w = t;)py, (s(w, ti)|w = t;) (5.5)
Pr(w = ti)pe, (s(w, t:)|w = t;) + Pr(w # ti)pe, (s(w, t:)|w # ;)

where py, (s(w, t;)|w = t;) is the likelihood of the genuine matching score when the

word is t;, py,(s(w, t;)|w # t;) is the likelihood of the imposter matching score when
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the word is ¢;, and Pr(w = t;), Pr(w # t;) are the prior probabilities of genuine and
imposter matches of ¢;, respectively.

We need a term specific training set for every term to learn the background model.
This is a drawback in applications using large number of terms. The Universal Back-
ground Model is an alternative approach that solves this problem. In the UBM, we
use a single Background Model for all of the terms. The genuine matching probability

is given by

Pr(Genuine|s) =
Pr(Genuine)p(s|Genuine) (5.6)
Pr(Genuine)p(s|Genuine) + Pr(Imposter)p(s|Imposter)

where s is a matching score, and Pr(Genuine) and Pr(Imposter) are the prior
probabilities of genuine match and imposter match, respectively, and p(s|Genuine),
p(s|Imposter) are the likelihoods of the score of genuine match and imposter match,
respectively. Pr(Genuine), Pr(Imposter), p(s|Genuine), and p(s|Imposter) are esti-
mated from the scores of all of the terms. We model p(s|Genuine) and p(s|Imposter)

as Gamma distributions.

5.3 Experimental Results
5.3.1 Data Collection

Our keyword retrieval algorithm has been tested on the New York State Pre-
hospital Care Reports (PCR forms). The task is quite challenging for several reasons:
(i) handwritten responses were very loosely constrained in terms of writing style,
format of response, and choice of text due to irrepressible emergency situations, (ii)
images are scanned from carbon copies and are very noisy (Figure 5.2), (iii) medical
lexicons of words are very large ( more than 4,000 entries). This leads to difficulties
in the automatic transcription of forms. The word recognition rate of the forms using

word recognizer [33] is about 20-30%.
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Figure 5.2. The text in a PCR form.

5.3.2 Preprocessing

First we detect and remove the skew of every PCR form image as follows.

1. We manually de-skew a form and take it as a template. Two special regions are

taken from the template as anchors.

2. The positions of two anchoring regions in any test image are found by cross-

correlation.

3. The skew angle of the test image is obtained by the relative skewing between
the test image and the template. We de-skew the image by rotating to the

opposite direction.

By aligning the test image to the template image, we can also obtain the position
of each form cell containing a line of text. The de-skewing and page segmentation
method using template-matching works well on the PCR form images since they have
a fixed layout and are scanned at the same resolution. Our approach is applicable to
other types of forms as well.

We use the MRF based document image preprocessing algorithm [11] to binarize
the form image and remove the grid lines from the image. Assuming the binarized
objective image is x and the grayscale image is y, we solve the maximum a posteriori

(MAP) estimation = argmaxPr(z|y) using the Markov Random Fields (MRF).
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(a) The original grayscale image.
.
PO DWW PRaER 7 enl ymve
Bk PasNa (o Hre 27 OaKeeG Wean O ugaow

(b) The bnarized image. Grid lines are removed and broken strokes are fixed.

Figure 5.3. An example of the binarization and line removal result.
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Figure 5.4. 11-point average precision curves of Tests 1-2.

An example of binarization and line removal result is shown in Figure 5.3. The
MRF based preprocessing method improves the word recognition accuracy from 18.7%

(obtained by the PCR form preprocessing algorithm in [42]) to 28.6%.

5.3.3 Evaluation Metrics

The performance of word spotting can be evaluated using the precisions at stan-
dard recall levels (0,0.1,...,1). We may also use single value measures such as the
Mean Average Precision (MAP) [1] to evaluate the word spotting performance. The

Mean Average Precision is computed as follows:

1. For each query, check the returned word images starting from rankl. Whenever
a relevant word image is found, record the precision of the word images from

the one with rank 1 to the current one. The Average Precision (AP) of a given
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query ¢ is weighted sum of the recorded precisions:

Z Prec(r)
1<r<Ng,Rel(r) is true
q

where N, is the number of word images returned, R, is the number of relevant
documents, Prec(r) is the precision of top-r returned word images, and Rel(r)

is a Boolean function of the relevance of rank r.

2. The Mean Average Precision (MAP) of all the queries is:

> "R, x AP(q)
MAP = 2 (5.8)

2R,

q

5.3.4 Keyword Retrieval Results
We performed two word spotting tests to show the improvement due to the use

of word segmentation probability.

Test 1: Word spotting with segmentation probability
We searched 342 PCR forms for 33 keywords using the similarity function in

Equation (5.1) and the estimation methods described in Section 5.2.

Test 2: Word spotting without segmentation probability
In this test we evaluate the performance of word spotting using connected com-
ponent clustering based word segmentation method without probability annota-
tion. This test is based on the same idea used by [24] but we implemented different
word segmentation and recognition method. We performed word spotting test on
the same PCR forms and keywords that we performed on in Test 1. The word

images in test 2 were obtained by grouping adjacent connected components with
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gap segmentation probability o, < Cyqp. The cutoff threshold Cgy,, = 0.297 in
our test. The recall rate of the gap classification reached maximum (0.394) when
Cyap = 0.297. We used the same word recognition method that we used in Test
1. The word recognition probability returned by the Universal Background Model

(UBM) is taken as the similarity between the word image and the query.

The 11-point average precision curves of Tests 1-2 are shown in Figure. The Mean
Average Precision (MAP) scores of Test 1 and Test 2 are 4.7% and 2.8%, respectively.
The test results show the improvement obtained by using word segmentation proba-

bilities.

5.4 Summary

This chapter describes a method to search handwritten document images for key-
words. The image/text similarity of the proposed method is defined as the product
of word segmentation probability and word recognition probability. Test results show
the improvement of integrating the probabilistic annotation of word segmentation on

handwritten document images with word segmentation errors.
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CHAPTER 6
CONCLUSION

6.1 Contributions of the Thesis
This thesis described the methodologies and outcomes we have obtained on the
research of degraded handwritten document preprocessing and retrieval. We proposed

and validated a series of methods to solve problems in the following respects:

1. In Chapter 3, we described a method for extracting binarized text from low-
quality carbon form handwritten input. It also incorporated pre-printed ruling-
line removal and inpainting. We tested our method on two data-sets: PCR (real
degraded images which are the main data-set for our purpose of testing the
preprocessing and retrieval) and IAM DB (handwritten document images with
artificially added Gaussian noise.) For the PCR data, our preprocessing method
obtained remarkable gain of word recognition accuracy from below 20% to 28.6%
comparing to existing methods (Otsu, Niblack, and Milewski). Improvement of
word recognition accuracy is also obtained on the TAM data with synthetic

noise.

2. In Chapter 4 and 5, we explored methods of improving IR performance on
handwritten documents. The IR tasks include document retrieval and key-
word retrieval. In Chapter 4, we described a method to improve the estimation
of the term frequency from document images for better retrieval performance.
Different from text retrieval, the term frequency of a document image is not
immediately available without document analysis and recognition. The tradi-

tional way of indexing and retrieving document images is to build index on the
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OCR’ed text returned by OCR software which is treated as a black-box. In our
method, we use the word segmentation and recognition scores to the maximal
extent. First the word segmentation /recognition scores are converted into prob-
abilistic representations. Then the term frequency is estimated from the word
segmentation and recognition probabilities and a language model (n-gram.) The
estimated term frequency is incorporated with standard IR techniques such as

vector model for retrieval of the PCR data-set.

In Chapter 5, we applied the probability modeling of word segmentation directly
to the scheme of computing keyword retrieval similarity and obtained improved
performance comparing with the traditional method that neglects the evaluation

of word segmentation outcomes.

The contributions of this thesis can be summarized as follows:

e The first work to apply MRF to the binarization of high-resolution

document images.

e Use of speeding-up strategies which are proper in the MRF configu-

ration designed for the banirazation problem:

— Belief Propagation (BP)
— Vector quantization of the states of image patch

— Pruning of the search space of BP

e Ruling-line removal using the MRF.

e A modified vector IR model designated for handwritten document

retrieval

e Probabilistic modeling of word segmentation and recognition scores

which is incorporated with MMSE estimation of raw term frequency
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e Use of word segmentation probabilities for high keyword retrieval

performance

6.2 Future Works

Our MRF preprocessing method can only work the the model learned from images
of the same or similar resolution. Use of the trained model on re-sampled images will
lead to inaccurate results. Practically, we can learn the MRF models at multiple
image resolutions and automatically select the model that fits the input image during
preprocessing. For example, we may want to use down-sampled scanned image to
train the MRF and apply it to video text. We will investigate the method of estimating
the resolution and selecting the model in the future work.

In our thesis, we improved the IR performance by using all possible information
provided by the handwriting recognition systems (Top-n word recognition choices,
multiple segmentation points). In addition to handwritten document retrieval, there
may be other applications such as Document Categorization and Machine Translation
(MT) that are also dependent on the handwriting recognition result.

Document categorization is to assign a document to one or more categories based
on the content of the document. The document categorization techniques are similar
to document retrieval in terms of the way to index the keywords in the documents.
The TF-IDF representation can also be used. It will be an interesting topic to apply
the techniques proposed in this thesis to the document categorization problem.

Machine translation is to use the computer to translate speech or text from one
natural language to another. In the automatic transcription of handwriting, we will
be struggling with the recognition errors and the translation will be unreliable. Simi-
lar idea of using multiple word recognition and segmentation choices may also be able
to apply to machine translation. However this is not very straightforward to imple-

ment because, unlike the document retrieval and categorization problems, machine
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translation is modeled differently and the estimation of term frequencies is not the
kernel problem as it is in the other two applications. We will be investigating these

new methods in the future works.
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