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ABSTRACT

Decades of the development in document analysis and recognition techniques has

made it possible to convert large amount of documents into electronic formats and

store them into computers. In recent years, the achievement in information retrieval

has provided a powerful tool for prompt access to the information that lies in the

documents. Inspired by the success of applications in the above two areas, in this

thesis, we investigate methods that aim at improving the performance of retrieving

handwritten document images. Unlike the retrieval of machine-printed documents

from which we will anticipate very high OCR accuracy, the retrieval of handwritten

document images is more challenging due to document analysis and recognition errors.

In existing methods to retrieve handwritten document images, usually the index

is built on the text collected from top-n (n > 1) candidates returned by a word

recognizer. Different weights may apply to the candidates according to their ranks.

Effective as these primitive methods are, with the assumptions of flawless word seg-

mentation and isolated word recognition, these methods are vulnerable by word seg-

mentation errors and cannot take advantage of the language model which has be-

come a standard component in the state-of-the-art handwriting recognition systems.

However, incorporation of the word segmentation scores (probabilities) and language

model into any existing indexing techniques in general increases the complexity of the

problem. In our indexing method, we solved this challenging problem by separating

the term counts from standard IR models, estimating them on the word sequence

level, and plugging them back in the IR models. A fast algorithm using dynamic pro-

gramming was proposed to reduce the time complexity. In addition to the application
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in document retrieval, we also used the word segmentation information in keyword

retrieval.

In another major contribution of this paper, we applied the Markov random field

(MRF) modeling to the binarization problem. The MRF can precisely describe the

constraint of local smoothness in the image. We can also use the constraint of smooth-

ness to remove the grid from the form image, which is a very useful application in

form image preprocessing. This research work virtually addresses a general topic in

the preprocessing of degraded handwritten document images. Applications in both

handwriting recognition and handwritten document image retrieval can benefit from

our approach.
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CHAPTER 1

INTRODUCTION

1.1 Motivations

Decades of the development in optical character recognition (OCR) techniques

has made it possible to convert great volumes of documents into digital forms such

as plan text, PDF, XML and store them in the computer. In recent years, the

achievement in information retrieval has provided a powerful tool for indexing and

searching large scale on-line database of documents. Although information retrieval

has been successful on text edited in the computer, the IR performance on OCR’ed

text will be impaired by document analysis and recognition errors. Researchers have

shown that the performance of OCR text retrieval is badly affected when dealing

with short or low quality documents [3, 17]. Although OCR has been successful in

applications of machine-printed document recognition and handwriting recognition

(HR) with small lexicon, unconstrained handwriting with large lexicon in general

still has very low accuracy. According to the state of the art in word recognition

technologies, the word recognition accuracy is 60-70% on handwritten documents

of good quality which makes IR results acceptable, but only 20-30% on low-quality

historical manuscript and carbon forms, so conventional IR algorithms perform very

badly on these documents.

The objective of this thesis is to investigate approaches to improving the perfor-

mance of indexing and retrieval of low quality handwritten document images. There

are two popular applications in handwritten document retrieval: document retrieval

and keyword retrieval (word spotting). Document retrieval approaches search for

1



documents within a data-set that are relevant to the given query phrase. A docu-

ment retrieval system computes the doc-query similarity and ranks the documents

according to their similarities. Word spotting approaches search for query words

within a date-set. After preprocessing of document images and word segmentation,

feature vectors are extracted from word images and stored in a database. When a

user provides a query word, the similarity between the query and the word image in

the database is computed, and word images are returned in the decreasing order of

similarities.

1.2 Challenges

Several challenges lie in handwritten document retrieval. Firstly, the quality of

degraded document images is very bad. A typical category of the low quality image

is the carbon images shown in Figure 5.2. If we binarize the carbon images in our

data set with ordinary smoothing and binarization algorithms, the result can even be

very hard for human beings to read. In addition to carbon images, we also use clean

handwriting images with synthetic noise for the evaluation of binarization methods.

Secondly, the handwriting is loosely constrained in terms of writing style and words

chosen to use. Finally, the lack of an IR model appropriate for handwritten data that

has large amount of OCR errors is also a challenge.

There are three possible research focuses of handwriting retrieval: preprocess-

ing, handwriting recognition and information retrieval. Our research focuses on pre-

processing and information retrieval:

1. Before we send the image to the recognizer it has to be binarized and the form

grids have to be removed. If we could improve the quality of binarized images

it would be possible to get a more acceptable recognition rate.

2. We also develop specific IR models for handwritten data. This is new to the in-

formation retrieval field. We will be exploring a specific IR model for handwrit-

2



(a)

(b)

(c)

Figure 1.1. An example of PCR forms. (a) A entire PCR form. (b) A small local
region showing obscure text and background noise array. (c) Fields of interest in the
PCR form.

3



ten data based on tight interaction of handwriting recognition and information

retrieval techniques.

Handwriting recognition techniques have been developed and used for years and it’s

hard to improve. Thus we do not focus on this area.

1.3 Research Topics

One of our research advances is to investigate new IR models and techniques

for handwritten document images. Indexing of handwritten document images are

traditionally done on the OCR’ed text of handwritten document images using existing

IR techniques. Due to the high error rate of handwriting recognition, the index built

on the OCR’ed text loses lots of information of original documents and is far from ideal

for retrieval. Several approaches based indexing of ranked OCR results [49, 24, 37]

have been proposed. The purpose of using ranked OCR results is to improve recall

rate. Suppose we use the text composed of top-10 word recognition candidates for

retrieval, then the chance that the keyword we search for is within the text is larger

than the chance when we search the text composed of only top-1 candidates. There

are two directions to improve existing methods: On the one hand, we need to utilize

as many as possible word image hypotheses which may not be considered in OCR

tasks; on the other hand, we need to assign different weights to candidates at different

ranks to maximize the precision rate.

Another research advance made by this thesis is to improve the quality of bina-

rization result of low quality images. Although the binarization of document images

is a widely defined subject, our research is based on the Bayesian approach. Most

of the prior works for binarization are heuristic. Given the nature of binarization

problem (which is basically low-level image processing), heuristic constraints are not

always applicable and sufficient. By adopting Bayesian approaches, we will be able

to generate “trainable” constraints and develop scalable algorithms.

4



CHAPTER 2

BACKGROUND

2.1 State of the Art in Off-line Handwriting Recognition

2.1.1 Handwriting Recognizers

There are two approaches to implementing the handwriting recognizer: holistic

and analytic. The holistic approach treats a word word as a class and recognize a

word image as a whole. The analytic approach segments and recognize the individual

characters. The holistic approach has limited applications because of the difficulty to

get enough training data when the number of classes increases. Most successful word

recognition algorithms are based on analytic approach.

A typical analytic approach is based on character segmentation and searching

algorithm. Usually over-segmentation is adopted and distances of different combi-

nations of segments can be calculated. The best segmentation path with minimum

distance is obtained by dynamic programming or some A*-type algorithm. For a few

instances of this kind of word recognition algorithms see [6, 15, 33].

Another type of analytic algorithms is based on HMM. When the lexicon size is

very large, it is not feasible to build an HMM for each class because there is not

enough training data for each class. So the HMM for word recognition is usually a

concatenation of character based models. In the HMM for word recognition, features

are normally extracted from left to right using a sliding window, and the observation

distribution is assumed to be mixture of Gaussian. Because of the linear, left-to-right

direction of handwriting, a linear transition structure is often adopted (i.e. the state

transition probabilities are chosen in such a way that a linear left-to-right ordering of

5



the states is imposed). Although a word HMM can be made by concatenating several

character HMM’s, there is no need to provide the character boundaries along with the

transcription for training. Instead, in the training of the HMM, the character bound-

aries are automatically found by an EM algorithm (the Baum-Welch algorithm.) This

property makes it possible to reduce the time required to prepare the transcription of

large amount of training data. For a few instances of HMM based word recognition

algorithms see [7, 34, 59].

Word sequence recognition [40] is to recognize a whole line or concatenation of

several lines of words. Suppose f is a sequence of feature vectors, then word sequence

recognition is to find a sequence of words s that maximize the probability

ŝ = argmax
s

Pr(s|f) = argmax
s

Pr(f |s) · Pr(s) (2.1)

Pr(f |s) can be estimated by word recognition algorithm such as HMM, and Pr(s) can

be estimated by a language model (n-grams). Similar to analytic word recognition

that split a word into characters, word sequence recognition can be done by split-

ting a line into words and searching for the best path of line separation by dynamic

programming. The advantage of word sequence recognition over single word recogni-

tion is that the use of language model reduces recognition errors. But this technique

requires large amount of natural language text as training data.

The features used in word recognitions can be projection profiles, directional fea-

tures, structural features (holes, ascenders, descenders, ...), and so on.

Lexicon plays an important role in cursive Latin handwriting recognition. A small

lexicon reduces the difficulty of the problem greatly and this led to successful appli-

cations of automatic recognition of zip code, address, cheque, etc. Although off-line

cursive handwriting recognition with large lexicon (5,000-30,000) remains an unsolved

problem, the 60-80% accuracy rate on good quality, unconstrained handwriting has
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been acceptable for commercial applications. However the accuracy on degraded

manuscripts such as historical documents and carbon forms is still as low as 20-40%.

2.1.2 Feature Selection and Extraction

Features play an very important role in a handwriting recognition system. Various

types of features can be computed from the handwritten document images:

1. the raw intensity of pixels,

2. statistics of local regions (mean, variance and other higher-order moments of

the intensity),

3. features describing the connectivity of strokes including directional features and

Gabor features.

4. concavity, run length and other structure features

5. numbers of ascenders and descenders,

6. intensity projection profile.

Most of the handwriting recognition systems use a combination of several types of

features.

Among all of the different features mentioned above, the most powerful features

are the directional features or directional element features. The directional element

features, based on the idea of non-linear matching of the directions of the patterns [56],

was originally proposed in [55], and has been applied in recognition systems of both

machine-printed documents and handwritten documents in several languages [32, 33,

64]. The basic steps for computing the directional features from a character image

are as follows:

1. Find the contour of the input image;
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(a) Contour image and partition of bins.

(b) Four types of connected neighboring pixels.

Figure 2.1. Directional features of a character images.

2. divide the input image into overlap or non-overlap bins;

3. For each bin, trace the contour and count the four types of neighboring pixels

shown in Figure 2.1 (horizontal, vertical, diagonal and back diagonal.) Hence,

four features are computed from each bin.

When the dimensionality of the input features is too high, the handwriting recog-

nition algorithm may either not be able to process the features or produce worse

results. Thus we need to reduce the dimensionality of the feature space. Our goal is

to keep relevant information for the recognition and eliminate the redundant informa-

tion. This step is called feature extraction. Several methods can be applied to reduce

the dimensionality, including the Principal Component Analysis (PCA) and Linear

Discriminant Analysis (LDA). PCA is a linear orthogonal transform. The transform

is a projection onto new coordinates so that new dimensions are not correlated and

the variances of all the new dimensions are sorted in decreasing order.

PCA provides the optimal compression of energy by minimizing the mean square

error of approximating the data but does not necessarily produce the best dimensions

for classification. For example, if we apply PCA to the images of letters “O” and “Q”
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Figure 2.2. Letter “O” and “Q”. PCA may only extract common features of the
images of “O” and “Q”, but LDA may extract the difference between them

shown in Figure 2.2, the extracted features may only retain the shape information

that is common to both letters. This is because the overall shapes of the two letters

look very similar, and PCA only keeps a rough shape that has most portion of energy

but loses some detail such as the“tail” of letter “Q” that is useful for classification.

In this case, LDA may be better than PCA. LDA is another linear transform of

the feature space. Rather than finding optimal representation of the data, LDA is

to find the best projection direction of features to maximize the ratio between the

between-class variance and within-class variance. In this sense, LDA only selects the

dimensions that show the diffence between classes but are consistent for the features

of the same class. LDA is widely used in handwriting recognition systems, especially

in HMM-based systems.

2.1.3 Language Modeling

A language model is the probability distribution of word sequences from the text of

a corpus. The language model can be denoted by Pr(w1, w2, ...wn) where w1, w2, ...wn

are a sequence of n words. We usually assume that a language is an n-gram, i.e., a

(n− 1)-th order Markov chain. For example, bi-gram
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Pr(w1, w2, ...wn) = Pr(w1) Pr(w2|w1) Pr(w3|w2)...Pr(wn|wn−1) (2.2)

and tri-gram

Pr(w1, w2, ...wn) = Pr(w1) Pr(w2|w1) Pr(w3|w2, w1)...Pr(wn|wn−1, wn−2). (2.3)

The quality of describing some given text by a language model can be measured

by perplexity

P(w) = [Pr(w1, w2, ...wn)]−
1
n , (2.4)

where w = (w1, w2, ...wn) is the text composed of a sequence of words w1, w2, ...wn

and Pr(w1, w2, ...wn) is the language model. Generally speaking, the smaller the

perplexity, the better the language model describes the text.

The language model can be obtained by counting the frequency of words from

text. For tri-gram,

Pr(wk|wk−1, wk−2) = count(wk−2wk−1wk)/count(wk−2wk−1) (2.5)

Or more generally, for any n-gram,

Pr(z|y) =
count(yz)∑

w

count(yw)
=
count(yz)

count(y)
(2.6)

When the number of occurrences of yz is zero, the estimated probability density

Pr(z|y) is also zero. This can lead to bad performance of the recognizer. We often

use smoothing techniques to make sure probability density of the language model is

non-zero throughout the term space of the n-gram. A simple but effective smoothing

method is called “Backing Off” [52]. The basic idea is to reduce (discount) the

amount of non-zero probabilities within the distribution of n-gram, and redistribute

the discounted probability mass to those zero probabilities.
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(a) Estimated n-gram (no smoothing).

(b) Smoothed n-gram.

Figure 2.3. Smoothing the language model by redistribution of the probability mass
(backing off)
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2.2 IR Techniques

Information retrieval (IR) is the science of searching for information in docu-

ments, searching for documents themselves, searching for metadata which describe

documents, or searching relational or other databases. Document retrieval (searching

for relevant documents) is most related to our work. We will introduce document

retrieval techniques in this section.

Document retrieval is to search a collection of documents for those relevant to a

certain query phrase. Three classic document retrieval algorithms or IR models: the

Boolean model, the vector model, and the probabilistic model [1], although proposed

decades before, are still very effective means of document retrieval. In the Boolean

model, retrieval is based on whether or not the documents contain the query terms,

whereas in both vector model and probabilistic model the relevance of a document is

measured by a similarity between the document and the query and a rank is assigned

to each document according to the degree of relevance. The most important things

in all of the above classic IR models are the existence and number of occurrences of

each query term in the document. In recent years, new methods for measuring the

relevance of a document, such as the PageRank [36] were proposed.

2.3 Overview of Prior Works

2.3.1 Document Image Binarization

Recognition of low quality handwritten documents such as carbon forms is com-

monly considered as a very hard, or even impossible problem. This is largely due to

the extremely low image quality. Usually the quality of a document image is affected

by varying illumination and noise such as Gaussian noise, artifacts, smearing, and so

on.
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By assuming that the background changes slowly, the problem of varying illumina-

tion has been solved by several adaptive binarization algorithms. The algorithms for

deciding either global or local thresholds ofr binarization were proposed in [47, 45, 53].

Although noise can be depressed by smoothing, the resulting blurring will also

affect the OCR rate. Approaches based on heuristics, to name a few, Kamel/Zhao

[30], Yang/Yan [60], and Milewski [42], solve the problem to some extent by heuristic

search of stroke locations.The Kamel/Zhao algorithm is a local algorithm which finds

stroke locations and then removes the noise in the non-stroke area using an interpo-

lation and thresholding step. A parameter of stroke width is needed. The Yang/Yan

algorithm is a variant of the method by Kamel/Zhao which is meant to handle vary-

ing intensity, illumination, and smearing. The Milewski algorithm is also a heuristic

based method. It detects strokes from local statistics in different directions.

In recent years, inspired by the success of Markov Random Field (MRF) in the

area of image restoration [18, 19, 20], some attempts were made to apply MRF to

the preprocessing of textual region of degraded images [22, 23, 58]. The advantage

of the MRF model over heuristics is that it can describe the probabilistic dependency

of neighboring pixels or image patches, i.e., the prior probability, and learn it from

training data. In other words, the spatial constraints between neighboring pixels are

learned from training set of images instead of conceived heuristically.

In order to use MRF, one need to pick forms of prior and observation models.

Usually this is done in ad hoc way. The forms of MRF’s taken by all the existing

approaches dealing with textual image are not very appropriate for handwritten doc-

ument. The MRF based approach proposed by Wolf et al. [58] defined the prior

model on a 4× 4 clique and is appropriate for textual images in low resolution video.

However, for 300 dpi high resolution handwritten document images, it is not feasible

to learn the prior probability or energy potentials if we simply define a much larger

neighborhood.
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Gupta et al. [22, 23] proposed an algorithm for restoration and binarization of

blurred images of license plate digits. Different from Wolf et al. [58], the vertices in

statistical dependency graph of MRF represent image patches rather than pixels. The

advantage of the patch based approach is the clique size is reduced and is much faster.

They adopted the factorized form of MRF, ie., the product of compatibility functions

[18, 19, 20]. They defined compatibility functions as mixtures of multivariate normal

distributions calculated over samples of their training set, and incorporated recogni-

tion into the MRF to reduce the number of samples involved in the calculation of

compatibility functions. However this scheme can hardly be applied to unconstrained

handwriting image because of the larger number of classes and the low performance

of existing handwriting recognition algorithm.

Although MRF enlightened us to apply probabilistic neighborhood constraints to

binarization, the computation is the biggest issue in all of the existing works. None

of them solves the problem of high resolution handwritten document binarization. In

Chapter 3, we will propose an MRF based binarization algorithm for handwritten

document of resolution as high as 300dpi. In addition to binarization, with only a

little mend, we apply our algorithm to form grid removal, a very important step of

handwritten form analysis.

2.3.2 Handwritten Document Retrieval

Several works have been done to improve the IR performance of OCR’ed text.

Researchers [17, 3] have shown that the performance of OCR text retrieval is badly

affected when dealing with short or low quality documents. In [44, 46, 28] different

approaches modeling typical recognition errors were proposed. In [44] a probabilistic

model for misrecognition was proposed and this model was used to design the term-

weighting scheme of information retrieval. The approach that generates candidate

terms for each “true” search term and adds the retrieval results of candidate terms
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into the final result was studied in [46]. In [28], a language model that took common

recognition errors into account was built. This language model can then be used to

approximate an “uncorrupted” version of a particular document, and it can be used

for retrieval in a language modeling approach.

The problem of indexing and retrieving handwritten documents has recently been

addressed by researchers. Due to low recognition accuracies, It is difficult to use prob-

abilistic modeling of OCR’ed text for indexing and retrieving handwritten documents.

A new trend in this research area is to index every word image with word recognition

probabilities of all term candidates. Rath and Manmatha[49] proposed an OCR-free

approach to historical manuscript retrieval that learned the joint probability of the

query word and features of the word image. Assuming the independency of all terms

in query q, the query-relevance probability

Pr(q|dj) ∼
∏

ti∈q

Pr(ti|dj), (2.7)

where q is the query, dj is a document, and ti’s are terms. Let the term frequency

tfi,j be the term-dependence probability, i.e., Pr(ti|dj) = tfi,j. The term frequency

is estimated by word recognition probabilities:

tfi,j =
1

|dj|
|dj |∑

o=1

Pr(ti|fvo) (2.8)

where fvo runs over all feature vectors of word images in document dj, Pr(ti|fvo) is

the probability that the o-th word image is term ti and is estimated from a labelled

training set of word image features.

Two problems arise in the above probabilistic model. Firstly, probability estimate

cannot be accurate when the dimensionality of feature vector increases. Secondly, the

probabilistic model assumes that the term-relevance probability Pr(ti|dj) equals the

terms frequency tfi,j which is not really accurate. Under this assumption, once any
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term from the query phase occurs rarely in a document, i.e., the term frequency is

very small, the probability Pr(q|dj) in factorized form will be close to zero.

A few works have attempted to solve this problem of probability estimate using

OCR ranks [37, 24, 8]. Lee et al.[37] implemented retrieval on text composed of

top-k candidates of character recognition results of Hangul document images. Howe

et al used the same probabilistic model as in [49] except that the term-dependence

probability is assumed to be inversely proportional to the word recognition rank of

the term, namely,

Pr(ti|fvo) =
Const

rank(ti)
. (2.9)

In our previous work [8], we used the following formula to estimate the word recog-

nition probability

Pr(ti|fvo) = Top R Word Recognition Rate − Top R-1 Word Recognition Rate,

(2.10)

where R = rank(ti). The above rank-based probability estimate algorithm are still

too simple to get the optimal results.

2.3.3 Keyword Spotting

Besides approaches to handwritten document retrieval, keyword retrieval, referred

to as keyword spotting, as an alternative approach of indexing and retrieving hand-

written documents has been proposed in [31, 38, 63]. The idea is to search the

document for a certain keyword by feature matching instead of recognition. All ex-

isting methods [31, 38, 63] perform matching on feature space and require manual

indexing of template images for query words.

• DTW based keyword spotting

In the Dynamic Time Warping (DTW) based method [31, 38], the following pre-

processing steps are commonly performed.
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1. Word segmentation is performed and the background of every word image is

cleaned by removing irrelevant connected components from other words that

reach into the word’s bounding box.

2. Inter-word variations such as skew and slant angle are detected and eliminated.

3. The bounding box of any word image is cropped so that it tightly encloses the

word.

4. The baseline of word images are normalized to a fixed position by padding extra

rows to the images.

A normalized word image is represented by a multivariate time series composed of

features from each column of the word image. These features include projection pro-

file, upper/lower word profile, and number of background-to-foreground transitions.

1. Projection Profile. The projection profile of a word image is composed of the

sums of foreground pixels in each columns.

2. Upper/Lower Profiles. The upper profile of a word image is made of the dis-

tances from the upper boundary to the nearest foreground pixels in each column.

3. Background-to-Foreground Transitions. The number of background pixels whose

right neighboring pixels are foreground pixels is taken as the number of background-

to-foreground transitions of the column.

Figure 2.4 shows the four feature series of a word image from the handwriting data

set of George Washington’s manuscripts (CIIR, University of Massachusetts [31]).
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(a) A word image from George Washington’s manuscripts.

(b) Projection profile.

(c) Lower profile.

(d) Upper profile.

(e) Background-to-foreground transitions.

Figure 2.4. The feature series used in DTW word spotting.
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Figure 2.5. Sakoe-Chiba band.

Suppose two word images wA and wB are represented by {fA(1), fA(2), ..., fA(lA)}
and {fB(1), fB(2), ..., fB(lB)}, respectively, where fA(i) is the feature vector of the

i-th column of image wA, fB(j) is the feature vector of the j-th column of image wB,

and lA and lB are the lengths of wA, wB, respectively. Then the DTW matching of

wA and wB is given by the recurrence equation

DTW (i, j) = min

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

DTW (i− 1, j)

DTW (i− 1, j − 1)

DTW (i, j − 1)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

+ d(i, j) (2.11)

where d(i, j) is the square of the Euclidean distance between fA(i) and fB(j).

The time complexity of the DTW algorithm is in O(lA · lB). In order to speed up

the computation, a global path constraint like the Sakoe-Chiba band (Figure 2.3.3

can be applied to force the paths to stay close to the diagonal of the DTW matrix.

Another advantage of the path constraint is to prevent pathological warping.
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Figure 2.6. A sample from George Washington’s manuscripts.

The matching error of fA(i) and fB(j) is given by
1

l
DTW (lA, lB) where l is length

of the warping path recovered by DTW. The word images are ranked in the increasing

order of the matching errors to the template image.

The DTW based method has been tested on George Washington’s manuscripts

(Figure 2.3.3). The performance of keyword spotting was evaluated using the Mean

Average Precision measure [1]:

1. For each query, check the returned word images starting from rank1. Whenever

a relevant word image is found, record the precision of the word images from the

one with rank 1 to the current one. The average value of the recorded precisions

for the query is taken as the Average Precision of the query.

2. The mean value of the Average Precisions of all of the queries is the Mean

Average Precision of the test.

A Mean Average Precision of 40.98% on 2372 word images of good quality and

a Mean Average Precision of 16.50% on 3262 word images of poor quality were re-

ported [38].

• GSC feature based keyword spotting
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In the GSC feature based method [63], a word image is represented by GSC

features that consist of 512 bits corresponding to gradient (192 bits), structural (192

bits) and concavity (128 bits) features. A word image is divided into 32 regions (8×4)

and 16 binary GSC features are extracted from each region. The gradient features are

obtained by thresholding the results of Sobel edge detection in the 12 directions. The

structural features consist of the presence of corners, diagonal lines, and vertical and

horizontal lines in the gradient image, as determined by the 12 rules. The concavity

features include direction of bays, presence of holes, and large vertical and horizontal

strokes.

The similarity of two word images is measured by the bitwise matching of the

respective GSC feature vectors of the two images. The dissimilarity of two GSC

feature vectors X and Y is defined as

D(X,Y ) =
1

2
− S11S00 − S10S01

2
√

(S10 + S11)(S01 + S00)(S11 + S01)(S00 + S10)
(2.12)

where S00, S01, S10, and S11 are the numbers of 0-to-0, 0-to-1, 1-to-0, and 1-to-1

matches from X to Y , respectively. For example, the numbers of 0-to-0, 0-to-1,

1-to-0, and 1-to-1 matches between “0110110” and “0101001” are 1, 2, 3, and 1,

respectively.

The GSC method has been tested on 9312 word images of 4 words (“been”, “Co-

hen”, “Medical”, and “referred”) written by 776 individuals. Each word was written

three times by each individual. One of the three word images for every word written

by any person is taken as a query template, and the remaining are taken for test. The

performance of keyword spotting is evaluated by the recall and precision at different

number of top matches. When the number of top matches of a query equals the

number of relevant images, the recall value equals the precision value and is referred

to as R-Precision.
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The reults of both the GSC based method and the DTW based method are re-

ported in [63]. The R-precision values of the above four queries using the GSC based

method are 45.45%, 56.59%, 54.11%, and 62.04%, respectively. The R-precision val-

ues of the above four queries using the DTW based method are 35.53%, 38.65%,

44.39%, and 55.23%, respectively. Although the above results are obtained from a

data set of multiple writers, the size of the lexicon is very small (containing only 4

words) and therefore the data set is not truly unconstrained.

The keyword spotting algorithms mentioned have at least three problems:

1. Matching based algorithms take a template image as input so manual indexing

of a small portion of handwritings is required.

2. Features may vary a lot between writers even for the same word.

3. Existing keyword spotting algorithms assume no segmentation error. However

this is not the case in real applications.
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CHAPTER 3

HANDWRITTEN IMAGE BINARIZATION BASED ON
MARKOV RANDOM FIELDS

3.1 Introduction

The goal of this chapter is preprocessing of degraded handwritten document im-

ages, such as carbon forms, for subsequent recognition and retrieval. Carbon form

recognition is generally considered to be very hard, or even an impossible problem.

This is largely due to the extremely low image quality. Although the background

variation is not very intense, the handwriting is often occluded by extreme noise from

two sources: (i) the extra carbon powder imprinted on the form because of accidental

pressure and (ii) the inconsistent force of writing. For example, people tend to write

lightly at the turns of strokes. This is not a serious problem for writing on regu-

lar paper. However, when writing on carbon paper, the light writing causes notches

along the stroke. Furthermore, most carbon forms have a colored background which

results in very low contrast and signal-to-noise ratio. Thus, the image quality of

carbon copies is generally poorer than that of non-carbon copy degraded documents.

Therefore the task of binarizing the carbon copy documents with handwritten data

is very challenging.

Traditional document image binarization algorithms [47] [45] [53] [30][60] sep-

arate the foreground from the background by histogram thresholding and analysis

of the connectivity of strokes. These algorithms, although effective, rely on heuris-

tic rules of spatial constraints which are not scalable across applications. Recent

research [22] [23] [58] has applied Markov Random Field (MRF) based methods to
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document image binarization. Although these algorithms make various assumptions

applicable only to low resolution document images, we take advantage of the ability

of the MRF to model spatial constraints in the case of high resolution handwritten

documents.

We present a method that uses a collection of standard patches to represent each

patch of the binarized image from the test set. These representatives are obtained by

clustering patches of binarized images in the training set. The use of representatives

reduces the domain of the prior model to a manageable size. Since our objective

is not image restoration (from linear or non-linear degradation), we do not need an

image/scene pair for learning the observation model. We can learn the observation

model on-the-fly from the local histogram of the test image. Therefore our algorithm

achieves performance similar to adaptive thresholding algorithms [45, 53] even without

using the prior model. Of course the result improves with the inclusion of spatial

constraints added by the prior model. In addition to binarization, we also apply

our MRF based algorithm to the removal of form lines by modeling the way the

probabilistic density of the observation model is computed.

One significant improvement made in [10] since our prior works [11] is the use of

a more reliable method of estimating the observational model. It is based on math-

ematical morphological operations to obtain the background and Gaussian Mixture

Modeling to estimate the foreground and background probability densities. Another

improvement is the use of more efficient pruning methods to reduce the search space

of the MRF effectively by identifying the patches that are surrounded by background

patches. We present experimental results on the PCR (Pre-Hospital Care Report)

dataset of handwritten carbon forms [43] and provide quantitative comparison of word

recognition rates on forms binarized by our method versus other heuristic approaches.
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(a)

(b)

(c)

Figure 3.1. Stroke preserving line removal. (a) A word image with an underline
across the text. (b) Binarized image with the underline removed. (c) Binarized image
with the underline removed and fixed.

3.2 Related Work

3.2.1 Locally Adaptive Methods for Binarization

Usually the quality of a document image is affected by the varying illumination

and noise. By assuming that the background changes slowly, the problem of vary-

ing illumination is solved by adaptive binarization algorithms such as Niblack [45]

and Sauvola [53]. The idea is to determine the threshold locally, using histogram

analysis, statistical measures (mean, variance, etc.), or the lightness of the extracted

background. Although noise can be reduced by smoothing, the resulting blurring af-

fects the OCR rate. Approaches based on heuristic analysis of local connectivity, such

as Kamel/Zhao [30], Yang/Yan [60], and Milewski [43], solve the problem to some

extent by searching for stroke locations and targeting only the non-stroke area. The

Kamel/Zhao algorithm locates strokes using stroke width and then removes the noise

in the non-stroke area using an interpolation and thresholding step. The Yang/Yan

algorithm is just a variant of the same method. The Milewski algorithm examines
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neighboring blocks in orientations to search for non-stroke area. However, all these

approaches are heuristic whereas our objective is to develop a non-heuristic method.

3.2.2 Markov Random Field Based Approach to Binarization

In recent years, inspired by the success of the Markov Random Field (MRF) based

approach in the area of image restoration [18], [19], [20], attempts have been made

to apply MRF to preprocessing of degraded document images [22], [23], [58]. The

advantage of the MRF model over heuristic methods is that it allow us to describe the

dependency of neighboring pixels as the prior probability, and learn it from training

data. Wolf et al. [58] defined the prior model on a 4× 4 clique which is appropriate

for textual images in low resolution video. However, for 300 dpi high resolution hand-

written document images, it is not computationally feasible to learn the potentials

if we simply define a much larger neighborhood. Gupta et al. [22], [23] studied

restoration and binarization of blurred images of license plate digits. They adopted

the factorized style of MRF using the product of compatibility functions [18], [19],

[20] which are defined as mixtures of multivariate normal distributions computed over

samples of the training set. They incorporated recognition into the MRF to reduce

the number of samples involved in the calculation of the compatibility functions.

However this scheme also can not be directly applied to unconstrained handwriting

because of the larger number of classes and the low performance of existing handwrit-

ing recognition algorithms. We will describe a MRF adapted for handling handwritten

documents that will overcome the challenges of computational complexity caused by

high resolution data and low accuracy rates of current handwriting recognizers.

3.2.3 Form Grid Removal

The process of removing pre-printed form grids while preserving the overlapping

textual matter is referred to as image in-painting (Figure 3.1) and is performed by

inferring the removed overlapping portion of images from spatial constraints. MRF is
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ideally suited for this task and has been used successfully on natural scene images ([5],

[61]). Our task on document images is similar but more difficult: both of them use

spatial constraints to paint in the missing pixels but the missing portions in document

images often contain strokes with high frequency components and details. Previously

reported work on line removal in document images are heuristic [2] [43] [62]. Bai et

al. [2] remove the underline in machine-printed documents by estimating its width.

It works on machine-printed documents because the number of possible situations

in which strokes and underlines intersect is limited. Milewski et al. [43] proposed to

restore the strokes of handwritten forms using a simple interpolation of neighboring

pixels. Yoo et al. [62] describe a sophisticated method which classifies the missing

parts of the strokes into different categories such as horizontal, vertical, and diagonal,

and connects them with runs (of black pixels) in the corresponding directions. It relies

on many heuristic rules and is not accurate when strokes are lightly (tangentially)

touching the grid.

3.3 Markov Random Field model for handwritting images

We use a MRF model (Figure 5.3) with the same topology as the one described

in [19]. A binarized image x is divided into non-overlapping square patches x1, x2, ..., xN ,

and the input image, or the observation y is also divided into patches y1, y2, ..., yN so

that xi corresponds to yi for any 1 ≤ i ≤ N . Each binarized patch solely depends on

its four neighboring binarized patches in both horizontal and vertical directions, and

each observed patch solely depends on its corresponding binarized patch. Thus,

Pr(xi|x1, ..., xi−1, xi+1, ..., xN , y1, ...yN ) = Pr(xi|xn1,i, xn2,i, xn3,i, xn4,i), 1 ≤ i ≤ N,

(3.1)

where xn1,i-xn4,i are the four neighboring vertices of xi, and

Pr(yi|x1, ..., xN , y1, ..., yi−1, yi+1, ..., yN ) = Pr(yi|xi), 1 ≤ i ≤ N (3.2)
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(a) The Input Image y and the Inferred Image x.

(b) Markov Network.

Figure 3.2. The topology of the Markov network. (a) the input image y and the
Inferred Image x; (b) the Markov network generalized from (a). In (b) each node xi

in the field is connected to its four neighbors. Each observation node yi is connected
to node xi. An edge indicates the statistical dependency of two nodes.
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An edge in the graph represents the dependency of two vertices. The advantage

of such a patch based structure is that relatively large areas of the local image are

statistically dependent. Our objective is to estimate the binarized image x from the

posterior probability Pr(x|y) =
Pr(x, y)

Pr(y)
. Since Pr(y) is a constant over x, we only

need to estimate x from the joint probability Pr(x, y) = Pr(x1, ..., xN , y1, ..., yN ). This

can be done by either the MMSE or MAP approaches [18, 19]. In the MMSE approach,

the estimation of each xj is obtained by computing the marginal probability,

x̂jMMSE =
∑

xj

xj ×
∑

x1..xj−1xj+1...xN

Pr(x1, ..., xN , y1, ..., yN ) (3.3)

In the MAP approach, the estimation of each xj is obtained by taking the maximum

of the probability,

x̂jMAP = argmax
xj

max
x1...xj−1xj+1...xN

Pr(x1, ..., xN , y1, ..., yN ) (3.4)

Estimation of the hidden vertices {xj} using Equation (3.3) or (3.4) is referred to

as inference. It is impossible to compute either Equation (3.3) or (3.4) directly for

large graphs because the computation grows exponentially as the number of vertices

increases. We can use the belief propagation algorithm (BP) [48] to approximately

compute the MMSE or MAP estimation in linear time (in the number of vertices in

the graph).

3.4 Inference in the MRF Using Belief Propagation

3.4.1 Belief Propagation

In the Belief Propagation algorithm, the joint probability of the hidden image

x and the observed image y from a Markov Random Field is approximated by the

following factorized form [20, 19]
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Pr(x1, ..., xN , y1, ..., yN ) =
∏

(i,j)

ψ(xi, xj)
∏

k

φ(xk, yk) (3.5)

where (i,j) are neighboring hidden nodes and ψ and φ are pairwise compatibility

functions between neighboring nodes, learned from the training data. The MMSE

and MAP objective functions can be rewritten as:

x̂jMMSE =
∑

xj

xj ×
∑

x1..xj−1xj+1...xN

∏

(i,j)

ψ(xi, xj)
∏

k

φ(xk, yk) (3.6)

x̂jMAP = argmax
xj

max
x1...xj−1xj+1...xN

∏

(i,j)

ψ(xi, xj)
∏

k

φ(xk, yk) (3.7)

The Belief propagation algorithm provides an approximate estimation of x̂jMMSE

or x̂jMAP in Equations (3.6) and (3.7) by iterative steps. An iteration only involves

local computation between the neighboring vertices. In the BP algorithm for MMSE,

Equation (3.6) is approximately computed by two iterative equations:

x̂jMMSE =
∑

xj

xjφ(xj, yj)
∏

k

Mk
j (3.8)

Mk
j =

∑

xk

ψ(xj, xk)φ(xk, yk)
∏

l �=j

M̃ l
k (3.9)

In Equation (3.8), k runs over any of the four neighboring hidden vertices of xj. M
k
j is

the message passed from j to k and is calculated from Equation (3.9). M̃ l
k is M l

k from

the previous iteration. The expression of Mk
j only involves the compatibility functions

related to vertices j and k so Mk
j can be thought of as a message passed from vertex

j to vertex k. Note that Mk
j is actually a function of xj. Initially Mk

j (xj) = 1 for any

j and any value of xj.
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The formulas of the belief propagation algorithm for the MAP estimation are

similar to Equations (3.8) and (3.9) except that
∑

xj

xj and
∑

xk

are replaced with

argmax
xj

and max
xk

, respectively:

x̂jMAP = argmax
xj

φ(xj, yj)
∏

k

Mk
j (3.10)

Mk
j = max

xk

ψ(xj, xk)φ(xk, yk)
∏

l �=j

M̃ l
k (3.11)

In our experiments, we use MAP estimation. The form of pairwise compatibility

functions ψ and φ is usually heuristically selected as functions with the distance

between two patches as the variable. We found that a simple form is not suitable for

binarized images because the distance can only take a few values. Another way to

select the form of ψ and φ is to use pairwise joint probabilities [18, 19]:

ψ(xj, xk) =
Pr(xj, xk)

Pr(xj) Pr(xk)
(3.12)

φ(xk, yk) = Pr(xk, yk) (3.13)

Replacing the ψ and φ functions in Equations (3.10) and (3.11) with the definitions

in Equations (3.12) and (3.13), we obtain

x̂j MAP = argmax
xj

Pr(xj) Pr(yj|xj)
∏

k

Mk
j , (3.14)

and

Mk
j = max

xk

Pr(xk|xj) Pr(yk|xk)
∏

l �=j

M̃ l
k, (3.15)

In order to avoid overflow, we instead calculate the log values of the factors in Equa-

tions (3.14) and (3.15).

Lk
j = max

xk

(
log Pr(xk|xj) + log Pr(yk|xk) +

∑

l �=j

L̃l
k

)
, (3.16)
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Figure 3.3. An acyclic Markov network.

Figure 3.4. A cyclic Markov network.

x̂j MAP = argmax
xj

(
log Pr(xj) + log Pr(yj|xj) +

∑

k

Lk
j

)
, (3.17)

where Lk
j = logMk

j , L̃l
k = log M̃ l

k, and the initial values of L̃k
j ’s are set to 0’s.

3.4.2 An Example showing the BP Inference in the MRF

For a better understanding of the BP algorithm in Equations (3.14) and (3.15),

let’s consider the inference in the toy model in Figure 3.3. Here, suppose we use the

MAP criteria. The MAP estimation of x1 is given be the following equation:

x̂1 MAP = argmax
x1

max
x2,x3

Pr(x1, x2, x3, y1, y2, y3) (3.18)
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Figure 3.5. Shared patches in binary document image.

Using the Markov assumptions defined in the graph, we can get

x̂1 MAP =argmax
x1

Pr(x1) Pr(y1|x1) max
x2,x3

Pr(x2|x1) Pr(x3|x2) Pr(y2|x2) Pr(y3|x3)

=argmax
x1

Pr(x1) Pr(y1|x1) max
x2

Pr(x2|x1) Pr(y2|x2) max
x3

Pr(x3|x2) Pr(y3|x3)

(3.19)

Similarly, we can also get the MAP estimation of x2 and x3:

x̂2 MAP =argmax
x2

max
x1,x3

Pr(x1, x2, x3, y1, y2, y3)

=argmax
x2

Pr(x2) Pr(y2|x2) max
x1,x3

Pr(x3|x2) Pr(x1|x2) Pr(y1|x1) Pr(y3|x3)

=argmax
x2

Pr(x2) Pr(y2|x2) max
x1

Pr(x1|x2) Pr(y1|x1) max
x3

Pr(x3|x2) Pr(y3|x3)

(3.20)

and
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x̂3 MAP =argmax
x3

max
x1,x2

Pr(x1, x2, x3, y1, y2, y3)

=argmax
x3

Pr(x3) Pr(y3|x3) max
x1,x2

Pr(x2|x3) Pr(x1|x2) Pr(y1|x1) Pr(y2|x2)

=argmax
x3

Pr(x3) Pr(y3|x3) max
x2

Pr(x2|x3) Pr(y2|x2) max
x1

Pr(x1|x2) Pr(y1|x1)

(3.21)

If we use Equations (3.14) and (3.15) for the inference, initially all the Mk
j ’s equal

to 1. After the 1st iteration,

x̂1 MAP = argmax
x1

Pr(x1) Pr(y1|x1)

x̂2 MAP = argmax
x2

Pr(x2) Pr(y2|x2)

x̂3 MAP = argmax
x3

Pr(x3) Pr(y3|x3)

M2
1 = max

x2

Pr(x2|x1) Pr(y2|x2)

M1
2 = max

x1

Pr(x1|x2) Pr(y1|x1)

M3
2 = max

x3

Pr(x3|x2) Pr(y3|x3)

M2
3 = max

x2

Pr(x2|x3) Pr(y2|x2)

(3.22)

After the 2nd iteration,
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x̂1 MAP = argmax
x1

Pr(x1) Pr(y1|x1)max
x2

Pr(x2|x1) Pr(y2|x2)

x̂2 MAP = argmax
x2

Pr(x2) Pr(y2|x2)max
x1

Pr(x1|x2) Pr(y1|x1)max
x3

Pr(x3|x2) Pr(y3|x3)

x̂3 MAP = argmax
x3

Pr(x3) Pr(y3|x3)max
x2

Pr(x2|x3) Pr(y2|x2)

M2
1 = max

x2

Pr(x2|x1) Pr(y2|x2)max
x3

Pr(x3|x2) Pr(y3|x3)

M1
2 = max

x1

Pr(x1|x2) Pr(y1|x1)

M3
2 = max

x3

Pr(x3|x2) Pr(y3|x3)

M2
3 = max

x2

Pr(x2|x3) Pr(y2|x2)max
x1

Pr(x1|x2) Pr(y1|x1)

(3.23)

After the 3rd iteration,

x̂1 MAP = argmax
x1

Pr(x1) Pr(y1|x1)max
x2

Pr(x2|x1) Pr(y2|x2)max
x3

Pr(x3|x2) Pr(y3|x3)

x̂2 MAP = argmax
x2

Pr(x2) Pr(y2|x2)max
x1

Pr(x1|x2) Pr(y1|x1)max
x3

Pr(x3|x2) Pr(y3|x3)

x̂3 MAP = argmax
x3

Pr(x3) Pr(y3|x3)max
x2

Pr(x2|x3) Pr(y2|x2)max
x1

Pr(x1|x2) Pr(y1|x1))

M2
1 = max

x2

Pr(x2|x1) Pr(y2|x2)max
x3

Pr(x3|x2) Pr(y3|x3)

M1
2 = max

x1

Pr(x1|x2) Pr(y1|x1)

M3
2 = max

x3

Pr(x3|x2) Pr(y3|x3)

M2
3 = max

x2

Pr(x2|x3) Pr(y2|x2)max
x1

Pr(x1|x2) Pr(y1|x1)

(3.24)

The BP algorithm converges after the 3rd iteration because the message obtained

at the end of the 3rd iteration is the same of that obtained at the end of the 2nd

iteration. The estimated values x̂1 MAP-x̂3 MAP in Equation (3.27) are exactly the

MAP estimation given by Equations (3.19)- (3.21).
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It can be proved that, for any Markov network in a tree-like structure, BP can

converge to the MAP (or MMSE) estimation in N iterations, where N is the number

of vertices in the MRF. However, the above assertion is not true for Markov networks

with loop(s). For example, we can verify the output of BP inference in three iterations

on the cyclic Markov network shown in Figure 3.4.2 is NOT the MAP estimation of

x1-x3 in the graph. If we use Equations (3.14) and (3.15) for the graph in Figure 3.4,

initially all the Mk
j ’s equal to 1. After the 1st iteration,

x̂1 MAP = argmax
x1

Pr(x1) Pr(y1|x1)

x̂2 MAP = argmax
x2

Pr(x2) Pr(y2|x2)

x̂3 MAP = argmax
x3

Pr(x3) Pr(y3|x3)

M2
1 = max

x2

Pr(x2|x1) Pr(y2|x2)

M1
2 = max

x1

Pr(x1|x2) Pr(y1|x1)

M3
1 = max

x3

Pr(x3|x1) Pr(y3|x3)

M1
3 = max

x1

Pr(x1|x3) Pr(y1|x1)

M3
2 = max

x3

Pr(x3|x2) Pr(y3|x3)

M2
3 = max

x2

Pr(x2|x3) Pr(y2|x2)

(3.25)

After the 2nd iteration,
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x̂1 MAP = argmax
x1

Pr(x1) Pr(y1|x1)max
x2

Pr(x2|x1) Pr(y2|x2)max
x3

Pr(x3|x1) Pr(y3|x3)

x̂2 MAP = argmax
x2

Pr(x2) Pr(y2|x2)max
x1

Pr(x1|x2) Pr(y1|x1)max
x3

Pr(x3|x2) Pr(y3|x3)

x̂3 MAP = argmax
x3

Pr(x3) Pr(y3|x3)max
x2

Pr(x2|x3) Pr(y2|x2)max
x1

Pr(x1|x3) Pr(y1|x1)

M2
1 = max

x2

Pr(x2|x1) Pr(y2|x2)max
x3

Pr(x3|x2) Pr(y3|x3)

M1
2 = max

x1

Pr(x1|x2) Pr(y1|x1)max
x3

Pr(x3|x1) Pr(y3|x3)

M3
1 = max

x3

Pr(x3|x1) Pr(y3|x3)max
x2

Pr(x2|x3) Pr(y2|x2)

M1
3 = max

x1

Pr(x1|x3) Pr(y1|x1)max
x2

Pr(x2|x1) Pr(y2|x2)

M3
2 = max

x3

Pr(x3|x2) Pr(y3|x3)max
x1

Pr(x1|x3) Pr(y1|x1)

M2
3 = max

x2

Pr(x2|x3) Pr(y2|x2)max
x1

Pr(x1|x2) Pr(y1|x1)

(3.26)

After the 3rd iteration,
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x̂1 MAP =argmax
x1

Pr(x1) Pr(y1|x1) · [max
x2

Pr(x2|x1) Pr(y2|x2)max
x3

Pr(x3|x2) Pr(y3|x3)]·

[max
x3

Pr(x3|x1) Pr(y3|x3)max
x2

Pr(x2|x3) Pr(y2|x2)]

x̂2 MAP =argmax
x2

Pr(x2) Pr(y2|x2) · [max
x1

Pr(x1|x2) Pr(y1|x1)max
x3

Pr(x3|x1) Pr(y3|x3)]·

[max
x3

Pr(x3|x2) Pr(y3|x3)max
x1

Pr(x1|x3) Pr(y1|x1)]

x̂3 MAP =argmax
x3

Pr(x3) Pr(y3|x3) · [max
x1

Pr(x1|x3) Pr(y1|x1)max
x2

Pr(x2|x1) Pr(y2|x2)]·

[max
x2

Pr(x2|x3) Pr(y2|x2)max
x1

Pr(x1|x2) Pr(y1|x1)]

M2
1 = max

x2

Pr(x2|x1) Pr(y2|x2)max
x3

Pr(x3|x2) Pr(y3|x3)max
x1

Pr(x1|x3) Pr(y1|x1)

M1
2 = max

x1

Pr(x1|x2) Pr(y1|x1)max
x3

Pr(x3|x1) Pr(y3|x3)max
x2

Pr(x2|x3) Pr(y2|x2)

M3
1 = max

x3

Pr(x3|x1) Pr(y3|x3)max
x2

Pr(x2|x3) Pr(y2|x2)max
x1

Pr(x1|x2) Pr(y1|x1)

M1
3 = max

x1

Pr(x1|x3) Pr(y1|x1)max
x2

Pr(x2|x1) Pr(y2|x2)max
x3

Pr(x3|x2) Pr(y3|x3)

M3
2 = max

x3

Pr(x3|x2) Pr(y3|x3)max
x1

Pr(x1|x3) Pr(y1|x1)max
x2

Pr(x2|x1) Pr(y2|x2)

M2
3 = max

x2

Pr(x2|x3) Pr(y2|x2)max
x1

Pr(x1|x2) Pr(y1|x1)max
x3

Pr(x3|x1) Pr(y3|x3)

(3.27)

The BP algorithm does not converge because the updated message at the end of

the 2nd iteration is not equal to the one after the 3rd iteration. Even if we proceed

with a few more iterations, we can verify that the BP still does not converge. In order

to explain the inherent different between an acyclic graph (Figure 3.3) and a loopy

graph (Figure 3.4), we may consider the MAP estimation of x1 (see Equation (3.18)),

for example. For a tree-like topology in Figure 3.3, the joint distribution of the MRF

can be factorized using the Markov assumption as follows:

Pr(x1, x2, x3) = Pr(x1) Pr(x2|x1) Pr(x3|x2) (3.28)

Thus, the MAP estimation can also be factorized (repeating Equation (3.19)):
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x̂1 MAP =argmax
x1

Pr(x1) Pr(y1|x1) max
x2,x3

Pr(x2|x1) Pr(x3|x2) Pr(y2|x2) Pr(y3|x3)

=argmax
x1

Pr(x1) Pr(y1|x1) max
x2

Pr(x2|x1) Pr(y2|x2) max
x3

Pr(x3|x2) Pr(y3|x3)

(3.29)

Under the above factorization, max
x3

Pr(x3|x2) Pr(y3|x3) is a (single-variant!) func-

tion of x2, and max
x2

Pr(x2|x1) Pr(y2|x2)max
x3

Pr(x3|x2) Pr(y3|x3) is also a single-variant

function, i.e., a function of x1. This ensures the time complexity of computing the

maximum does not increase when we proceed to an outer-level. The BP algorithm is

simply a faster algorithm of the above factorization that computes duplicated com-

ponents only once for all the vertices. As we know, BP ∈ O(N) but the above

factorization ∈ O(N2).

For a graph with loop(s), unfortunately, the above factorization does not exist

since the dependencies between vertices starting from a vertex can propagate back to

itself through the loop(s). Although we can run the same BP algorithm on the loopy

graph, it will not converge to the true MAP (or MMSE) estimation.

Although the BP algorithm is not exact on loopy Markov networks, in several

applications of image restoration, it has been proved empirically to produce excellent

estimations [18], [19]. We will use the sub-optimal results given by the BP algorithm,

and rely on the experimental results.

3.4.3 Learning the Prior Model Pr(xj) and Pr(xk|xj)

To use Equations (3.14) and (3.15), the probabilities Pr(xj), Pr(xk|xj) (prior

model) and the observational probabilistic densities Pr(yj|xj), Pr(yk|xk) (observa-

tional model) have to be estimated. The prior probabilities Pr(xj) and Pr(xk|xj) are

learned from a training set of clean handwriting images. The training set contains

three high quality binarized handwriting images from different writers. We can ex-

tract about two million patch images from these samples. Some samples from the
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Figure 3.6. 114 representatives of shared patches obtained from clustering.

Figure 3.7. Binarized images from three writers for learning the prior model.
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training set are shown in Figure 3.7. For training we use clean samples because unlike

the observed image, the hidden image should have good quality.

Assuming the size of a patch is B ×B, the number of states of a binarized patch

xj is 2B2
. If B=5, for example, there will be about 34 million states. This makes the

computation of searching for the maximum in Equation (3.15) intractable. In order

to solve this problem, we convert the original set of states to a much smaller set, and

then estimate the probabilities over the smaller set of states. Usually this can be

done by dimension reduction using transforms like PCA. But it is hard to apply such

a transform to binarized images. Therefore we use a number of standard patches to

represent all of the 2B2
states. This is similar to vector quantization (VQ) used in

data compression. The set of representatives is referred to as the codebook of VQ.

Our method is inspired by the idea that images of similar objects can be represented

by a very small number of the shared patches in the spatial domain. Recently, Jolic et

al. [29] explored this possibility of representing an image by shared patches. Similarly

the binarized document images with handwriting of fixed pen-width under the same

resolution can also be decomposed into patches that appear frequently (Figure 3.5).

The representatives are learned by clustering all the patches in our training set. We

use the following approach. After every iteration of k-means clustering, we round all

the dimensions of each cluster center to 0 or 1. Given a training set of B ×B binary

patches, represented by {pi}, we run the k-means clustering with initial number of

clusters = 1024, and remove the duplicated clusters and clusters containing less than

1000 samples. The remaining cluster centers are taken as the representatives.

If the codebook is denoted by C̃={C1, C2, ..., CM} where C1, ..., CM are M repre-

sentatives, the error of vector quantization is given by the following equation

εvq =

∑

i

[d(pi, C̃)]2

#{pi} ·B2
(3.30)
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where d(pi, C̃) denotes the Euclidian distance from pi to its nearest neighbor(s) in C̃,

and #{pi} denotes the number of elements in {pi}. εvq is the square error normalized

by the total number of pixels in the training set.

We can use the quantization error εvq to determine the parameter B. A larger

patch size provides stronger local dependency but it is non-trivial to represent very

large patches because of the variety of writing styles exhibited by different writers.

We tried different values of B ranging between 5 and 8 which coincide with the range

of stroke width in 300dpi handwriting images, and chose the largest value of B that

led to an εvq that is below 0.01. Thus, we determined the patch size B = 5. Then

the representation error εvq = 0.0079 and 114 representatives are generated (Figure

3.6). The size of the search space of a binarized patch is reduced from 252
(about 34

million) to 114.

Now we can estimate the prior probability Pr(xj) over codebook C̃.

M∑

l=1

Pr(xj = Cl) = 1 (3.31)

so that the prior probabilities Pr(xj) over the reduced search space must add up to

1. We estimate Pr(xj) from the relative size of the cluster centered at Cl. A patch pi

from the training set is a member of cluster Cl (1 ≤ l ≤M) if Cl is a nearest neighbor

of pi among all of C1, ..., CM , and is denoted by pi ∈ Cl. Note that a patch pi from

the training set may have multiple nearest neighbors among C1, ..., CM . The number

of nearest neighbors of pi in C̃ is denoted by n
�C(pi). Thus the probability Pr(xj) is

estimated by

P̂r(xj = Cl) =

∑

pi∈Cl

1

n
�C(pi)

#{pi} , l = 1, 2, ...,M (3.32)

where #{pi} is the number of patches in {pi}. P̂r(xj = Cl) in Equation (3.32)

is estimated by the size of cluster Cl normalized by the total number of training

patches. It is easy to verify that the probabilities in Equation (3.32) add up to 1.
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Pr(xj, xk) are estimated in the horizontal and vertical directions, respectively.

Similar to Equation (3.32), Pr(xj, xk) (xj, xk ∈ C̃) in horizontal direction is estimated

by

P̂r(xj = Cl1 , xk = Cl2) =

∑

(pi1
,pi2

),pi1
∈Cl1

,pi2
∈Cl2

1

n
�C(pi1) · n �C(pi2)

#{(pi1 , pi2)}
,l1 = 1, 2, ...,M ;

l2 = 1, 2, ...,M

(3.33)

where (pi1 , pi2) runs for all pairs of patches in the training set {pi} such that pi1

is the left neighbor of pi2 and #{(pi1 , pi2)} is the number of pairs of left-and-right

neighboring patches in {pi}.
Pr(xj, xk) (xj, xk ∈ C̃) in vertical direction is estimated by an equation similar to

Equation (3.33) except that pi1 is the top neighbor of pi2.

3.4.4 Learning the Observational Model Pr(yj|xj)

For the observational model of a single pixel we can use the histogram based

model generalized in [58]. For a patch based observational model, we need to map

the single-pixel version to the vector space of patches. The pixels of an observed

patch yj are denoted by yr,s
j , 1 ≤ r, s ≤ 5. The pixels of a binarized patch xj are

denoted by xr,s
j , 1 ≤ r, s ≤ 5. We assume that the pixels inside an observed patch

yj and the respective binarized patch xj obey similar dependence assumption as the

patches in the patch-based topology (Equation (3.2)), i.e.,

Pr(yr,s
j |y1,1

j , ..., yr,s−1
j , yr,s+1

j , ..., y5,5
j , x1,1

j , ...x5,5
j ) = Pr(yr,s

j |xr,s
j ), 1 ≤ r, s ≤ 5 (3.34)

Thus it can be proved that

Pr(y1,1
j , ..., y5,5

j |x1,1
j , ...x5,5

j ) =
5∏

r=1

5∏

s=1

Pr(yr,s
j |xr,s

j ) (3.35)
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(a) Raw Density by smoothing the Gray-scale Histogram of the image in Figure 3.9.

(b) 2-Gaussian Mixture Density from Thresholding.

(c) 2-Gaussian Mixture Density from EM Algorithm.

Figure 3.8. The smoothed gray-scale histogram and estimated foreground and back-
ground p.d.f. using two methods. Thresholding based method did not perform well
at the intersection of two density functions, whereas EM algorithm based method
improved the result.
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Given the distribution of the lightness of foreground (strokes) pf (y
r,s
j ) = Pr(yr,s

j |xr,s
j =

0) and the distribution of the lightness of background pb(y
r,s
j ) = Pr(yr,s

j |xr,s
j = 1),

according to Equation (3.35), the conditional p.d.f Pr(yj|xj) is calculated as

Pr(yj|xj) =
∏

1≤r,s≤5,xr,s
j =0

pf (y
r,s
j )

∏

1≤r,s≤5,xr,s
j =1

pb(y
r,s
j ) (3.36)

The expression 1 ≤ r, s ≤ 5, xr,s
j = 0 means that the scope of the product is for any

r and s such that 1 ≤ r, s ≤ 5 and xr,s
j = 0. The expression 1 ≤ r, s ≤ 5, xr,s

j = 1 is

specified in the same way.

The probability densities pf and pb change over an image while the lightness of

the background is changing. However, it is not a problem as we can use background

regularization techniques such as the Background Surface Thresholding (BST) [54] to

obtain the background and normalize the images. The background mapping technique

is equivalent to adaptive thresholding algorithms such as the Niblack algorithm [45].

Learning the p.d.f. pf and pb is unsupervised. Assuming that pf and pb are two

normal distributions, one way to compute pf and pb is as follows. First we determine

a threshold T by an adaptive thresholding method such as the Niblack algorithm.

Then we use all the pixels with gray-level ≤ T to estimate the mean and variance

of pf , and use the remaining pixels to estimate the mean and variance of pb. This

method to estimate the observational probabilistic densities is affected by the sharp

truncation of “tails” in both normal distributions. Instead, we estimate the densities

by modeling them as a 2-Gausian Mixture Model (2-GMM) using the Expectation-

Maximization (EM) algorithm. The 2-GMM is not always reliable owing to the fact

that the signals are not strictly Gaussian and that the algorithm is unsupervised of the

categories (foreground and background). Our strategy is to get a reliable estimation

of the p.d.f. of the background by background extraction and fix it when fitting the

mixture model. Our algorithm is as follows:
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1. Background Extraction.

Estimate the mean, µ and variance, σ2 of the entire input image. Binarize the

image using threshold, thr = µ − 2σ and dilate the foreground with a 4 by

4 template. We mark the background pixels in the original image using the

binarized image and estimate the mean, µb0 and variance, σb0 of density pb from

the extracted background pixels.

2. EM Algorithm for Estimating the 2-GMM.

Suppose K samples of the gray-scale values of pixels from the image z1, z2, ..., zK

are available and their distribution is ΛZ1 + (1 − Λ)Z2 where Z1, Z2 and Λ

are three random variables, Z1 ∼ N(µf , σ
2
f ), Z2 ∼ N(µb, σ

2
b ), Λ ∈ {0, 1} and

Pr(Λ = 1) = λ. Denote the density of a normal distribution N(µ, σ2) by

nµ,σ2(y).

Initial values: µ̂f = µb0/2, µ̂b = µb0 , σ̂f = σ̂b = 10.0, and λ̂ = 0.5.

E-step: obtain the expectation of λ for every sample

λ̂i =
λ̂ · nµ̂f ,σ̂2

f
(zi)

λ̂ · nµ̂f ,σ̂2
f
(zi) + (1 − λ̂) · nµ̂b,σ̂

2
b
(zi)

, i = 1, 2, ..., K. (3.37)

M-step: update the foreground mean and variance:

µ̂f =

K∑

i=1

λ̂i · zi

K∑

i=1

λ̂i

(3.38)

σ̂2
f =

K∑

i=1

λ̂i · (zi − µ̂f )
2

K∑

i=1

λ̂i

(3.39)

and the prior

λ̂ =
K∑

i=1

λ̂i/K (3.40)
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Figure 3.9. A sample patch cropped from a carbon image in our test set. All pixels
we intend to paint in are marked in black.

Repeat the above E and M steps until the algorithm converges.

The comparison of the two methods for p.d.f. estimation is shown in Figure 3.8.

This p.d.f. estimation algorithm (based on 2-GMM and EM) has an advantage over

the thresholding based algorithms because it avoids the problem of truncation of

density functions and has a smoother estimation at the intersection of two Gaussian

distributions.

Note that we assume the image is bimodal. Our work focuses on document images

where the bimodal assumption generally holds. If it does not hold, we can extract

the region with different colors through page segmentation, and use local histogram

to binarize the image.

3.4.5 Form Grid Removal

First the form grids are located by template matching - this is relatively straight-

forward to implement because of the fixed form layout, and is true for most types of

forms in other applications as well. Therefore, we can define a boolean mask m such

that

m(j, r, s) = true⇐⇒

pixel yr,s
j is within any of the lines in the grid.

(3.41)

We only need to make a minor modification to Equation (3.36) for the form grid

removal:
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Pr(yj|xj) = 1 ×
∏

1 ≤ r, s ≤ 5,xr,s
j = 0,

and m(j, r, s) = false

pf (y
s,t
j )×

∏

1 ≤ r, s ≤ 5,xr,s
j = 1,

and m(j, r, s) = false

pb(y
s,t
j )

(3.42)

The probability Pr(yj|xj) in Equation (3.42) is 1 if m(j, r, s) is always true for any

r and s in the j-th patch. Replace Equation (3.36) with Equation (3.42) for the

compound tasks of binarization and grid removal.

3.4.6 Pruning the Search Space of MRF Inference

So far the MRF based preprocessing algorithm has been presented as a self-

contained general algorithm. To make the MRF based algorithm tractable, we

adopted a patch based strategy and reduce the search space of each patch using vec-

tor quantization. Initially, the size of the search space of every patch xi in Equations

(4) and (5) is 225. Thus, the domain of every variable xi is {00...0︸ ︷︷ ︸
25 0′s

, 00...0︸ ︷︷ ︸
24 0′s

1, ..., 11...1︸ ︷︷ ︸
25 1′s

},

and we reduce the search space to C̃ = {C1, C2, ..., C114} by vector quantization. Al-

though the computation is reduced by the above strategies, the MRF based algorithm

is still slower than traditional binarization algorithms. There are ways to make the

algorithm faster. Next, we will describe a technique to prune the search space of each

xi. After pruning, a number of elements are removed from C1, C2, ..., C114 to make an

even smaller search space of xi.

The number of possible values per patch (114) can be reduced by pruning the

smaller posterior probabilities Pr(xj = Cl|y) calculated using Equation (3.14) after

each iteration, i.e.,
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Pr(xj = Cl|y) =

Pr(xj = Cl) Pr(yj|xj = Cl)
∏
k

Mk
j (Cl)

114∑

m=1

(
Pr(xj = Cm) Pr(yj|xj = Cm)

∏

k

Mk
j (Cm)

)

(l = 1, 2, ..., 114),

(3.43)

where Mk
j (Cl) is the message from xj to xk when xj = Cl. However this pruning is not

safe on patches containing pixel(s) to paint in. Due to lack of observations of these

pixels, it will take several iterations for them to converge to the right values which may

have very small posterior probabilities in the first one or two iterations. Therefore

the right values tend to be pruned incorrectly if we prune aggressively. In order to

reduce the search space of the inpainted patches, we use a heuristic method to identify

the patches surrounded by background and prune their search space. This method is

effective due to the higher prior probability of the background (white patches).

Based on the above analysis, we arrive at the following two-step strategy to ac-

celerate the algorithm.

1. Find a global threshold thrprune such that 90% of the pixels in the test image

are below thrprune. thrprune is obtained by solving

λ̂ · nµ̂f ,σ̂2
f
(thrprune)

λ̂ · nµ̂f ,σ̂2
f
(thrprune) + (1 − λ̂) · nµ̂b,σ̂

2
b
(thrprune)

= 90%. (3.44)

For any patch xj, define a pruning mask PRUNEj(l), (l = 0, 1, ..., 114). If

PRUNEj(l) is true, Cl is pruned from the search space for solving xj. Given

a patch xj and observed patch yj centered at j0, the pruning mask of xj is ini-

tialized as PRUNEj(1) = false, PRUNEj(2) = ... = PRUNEj(114) = true if

every observed pixel within a 9 × 9 neighborhood of j0 is either above thrprune

or is marked for in-painting. Thus, all possible values of xj will be pruned

except the pure white patch. Otherwise, the pruning mask is initialized as
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PRUNEj(1) = PRUNEj(2) = ... = PRUNEj(114) = false.

2. In each iteration, skip any Cl in the search spaces of xj or xk in Equations (3.14)

and (3.15) if PRUNEj(l) or PRUNEk(l) is true. Thus, Equation (3.14) be-

comes

x̂j MAP = argmax
xj , PRUNEj(xj) is false

Pr(xj) Pr(yj|xj)
∏

k

Mk
j . (3.45)

Equation (3.15) becomes

Mk
j (xj) = max

xk, PRUNEk(xk) is false
Pr(xk|xj) Pr(yk|xk)

∏

l �=j

M̃ l
k, if PRUNEj(xj) is false

(3.46)

After each iteration, update the posterior probabilities

Pr(xj = Cl|y):
Pr(Cl|y) =

Ll∑

l

Ll

(l = 1, 2, ..., 114) (3.47)

where

Ll =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Pr(xj = Cl) Pr(yj|xj = Cl)
∏

k

Mk
j (Cl),

if PRUNEj(l) is true

0, otherwise.

(3.48)

Switch any PRUNEj(l) (l = 1, 2, ..., 114) to true if Pr(xj = Cl|y) < Prmin,

where Prminis a threshold of pruning. Larger Prmin makes the algorithm faster

and less accurate.

We will show experimentally how different Prmin affects the accuracy and the speed

of the proposed algorithm. In general, we should choose a small Prmin so that the

algorithm does not depend on heuristic and is reliable.
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3.5 Experimental Results and Analysis

3.5.1 Test Datasets

Our test data includes the PCR carbon forms and handwriting images from the

IAM database 3.0 [41].

• PCR Forms

In New York State all patients who enter the Emergency Medical System (EMS)

are tracked through their pre-hospital care to the emergency room using the

Pre-hospital Care Reports (PCR). The PCR is used to gather vital patient in-

formation. The PCR forms are scanned as color images at 300dpi. Handwriting

recognition on this data set is quite challenging for several reasons: (i) hand-

written responses are very loosely constrained in terms of writing style due to

irrepressible emergency situations; (ii) images are scanned from noisy carbon

copies and color background leads to low contrast and low signal-to-noise ratio

(Figure 5.2); (iii) the (pre-printed) ruling lines often intersect text; (iv) medical

lexicons of words are large (more than 4,000 entries). Very low word recognition

rates (below 20%) have been reported on this dataset [43]. An example of the

handwritten text and pre-printed ruling lines in the PCR forms is shown in

Figure 5.2.

• IAM Database

The IAM database contains high-quality images of unconstrained handwritten

English text, which were scanned as grayscale images at 300dpi. Using rough

estimates the content of the database can be summarized as follows:

– 500 writers contributed samples of their handwriting

– 1,500 pages of scanned text
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Table 3.1. Comparison of the speed and accuracy of the proposed algorithm over
different values of Prmin tested on the PCR carbon form image (2420 × 370) in
Figure 3.9.

Prmin Number of Percentage of Time (sec)
Different Pixels Different Pixels (%)

0 0 0 3249
1 × 10−8 0 0 204
1 × 10−7 0 0 138
1 × 10−6 56 0.0063 96
1 × 10−5 145 0.016 72
1 × 10−4 308 0.034 57
1 × 10−3 1122 0.13 37

Table 3.2. Comparison of the speed and accuracy of the proposed algorithm over
different values of Prmin tested on the IAM image (2124×369) in Figure 3.12.

Prmin Number of Percentage of Time (sec)
Different Pixels Different Pixels (%)

0 0 0 1694
1 × 10−8 0 0 29
1 × 10−7 0 0 25
1 × 10−6 0 0 24
1 × 10−5 0 0 24
1 × 10−4 14 0.002 23
1 × 10−3 107 0.014 23

– 10,000 isolated and labeled text lines

– 100,000 isolated and labeled words

3.5.2 Display of Preprocessing Results

First we applied our algorithm to the input image (Figure 3.9). This input image is

cropped from a PCR form. Lines and unwanted machine-printed blocks are identified

and marked in black. Our test images and images for training the prior model are from

different writers. It is clear that the writing style in Figure 3.9 is not like any of the

styles in Figure 3.7. The results after iterations 1, 2, 4, and 16 of belief propagation
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run on Figure 3.9 are shown in Figure 3.11. After the first iteration, the message has

not yet been passed between neighbors. The edges of strokes are jagged due to noisy

background and error in the vector quantization discussed in section 3.4.3. All of the

pre-printed lines are dropped. After 2 iterations, text edges are smoothed but most

lines are not fully restored. After 4 iterations, nearly all the strokes are restored, with

a few remaining glitches. After 16 iterations the glitches are mostly removed.

3.5.3 Results of Acceleration: Speed vs. Accuracy

We have tested the effect of different values of parameter Prmin on the speed and

accuracy of our algorithm using the PCR carbon form image in Figure 3.9 and the

IAM handwriting image in Figure 3.12. In order to compare the results obtained

by our algorithm with different values of Prmin, we have taken the output images of

Prmin = 0 (which indicates no acceleration) as reference images, and have counted the

pixels in the output images with various Prmin’s that are different from the reference

images. The results are shown in Table 3.1. The running times are obtained on a PC

with an Intel 2.8G Hz CPU.

In Table 3.1, even with a very small Prmin, e.g. 10−8, the running time decreased

significantly. The error rate of the low-quality PCR image is below 0.01% when

Prmin ≤ 1 × 10−6, and is zero when Prmin ≤ 1 × 10−7. In Table 3.2, the error rate of

the high-quality IAM image is below 0.01% when Prmin ≤ 1× 10−4, and is zero when

Prmin ≤ 1× 10−5. In the following experiments on comparing OCR results, we chose

Prmin = 10−7.

3.5.4 Comparison to Other Preprocessing Methods

Our approach has been compared (Figure 3.13) with the preprocessing algorithm

of Milewski et al. [43], Niblack algorithm [45], and Otsu algorithm [47]. Milewski

algorithm performs both binarization and line removal. Niblack and Otsu are for

binarization only. The text of the images shown in Figure 3.13 is “67 yo ♀ pt found
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mfg X Ray”. From the result of the MRF based algorithm, the text “67 yo ♀ pt

found” is clear and the “X ray” is obscured but is still legible. In the output of

the Milewski’s algorithm, the words “pt”, “mfg”, “X”, and “Ray” are not legible.

The output of Niblack is noisier although it retains some details of the foreground.

The result of Otsu is also very noisy and loses more foreground details than Niblack.

Figure 3.14 shows our line removal (Figure 3.14(c)) achieves a smoother restoration

of strokes which touch the form grid than the Milewski algorithm (Figure 3.14(b)).

In addition to the above qualitative comparison, we have also used the OCR test

to obtain a quantitative comparison. First we tested the four algorithms on 100 PCR

forms. All of the 3149 binarized word images extracted from the 100 form images

were recognized using the word recognition algorithm in [33] with a lexicon of 4580

English words. We split the 3149 word images into two sets: set #1 contains 1203

word images that are not affected by overlapping form lines, i.e., no intersection of

stroke and line; set #2 contains 1946 pairs that are affected by form lines. Thus, the

word recognition accuracy on set #1 measures the performance of binarization only

and can be used to compare all four algorithms.

We calculated the top-n (n ≥ 1) recognition rates instead of only the top-1 rate for

comparison because top-n rates are of greater importance to the problem of indexing

text with very high error rate [25]. Moreover, recognition rates measured in terms of

multiple candidates provides a strong proof of the effectiveness of the preprocessing

techniques. Table 3.3 shows that the MRF based method results in higher overall

recognition rates and also performs more efficient line removal.

We have also run the MRF binarization algorithm on some images from IAM

DB3.0 [41]. We generated zero-mean Gaussian noise with deviation σ=50, 70, and

100 in the IAM images to test the performance of binarization algorithms at different

noise levels. For the group of images of σ=100, a 3×3 mean filter was applied to all the

images before binarization. The top-1 word recognition rates of the original images
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Table 3.3. Comparison of word recognition rates of Milewski algorithm, MRF based
approach, Niblack and Otsu algorithms (set #1: sample word images not affected by
forms lines; set #2: sample word images affected by forms lines; overall: set #1 +
set #2).

Method Milewski MRF Niblack Otsu

Top 1 rate 17.5% 25.9% 19.4% 11.6%
Set #1 Top 2 rate 24.4% 36.6% 26.9% 16.0%

Top 5 rate 33.4% 44.9% 35.9% 23.3%
Top 10 rate 39.6% 51.7% 42.3% 28.8%
Top 1 rate 19.5% 30.3% NA NA

Set #2 Top 2 rate 28.1% 40.7% NA NA
Top 5 rate 37.6% 52.7% NA NA
Top 10 rate 45.0% 60.0% NA NA
Top 1 rate 18.7% 28.6% NA NA

Overall Top 2 rate 26.7% 39.1% NA NA
Top 5 rate 36.0% 49.7% NA NA
Top 10 rate 42.9% 56.8% NA NA

Table 3.4. Comparison of word recognition rates (top-one accuracies in percentage)
of the MRF based method, Niblack algorithm and Otsu algorithm on images with
different noise levels.

Original Gaussian Noise Gaussian Noise Gaussian Noise
images (σ = 50) (σ = 70) (σ = 100) and 3 × 3

Mean Filter

MRF 83.0% 70.3% 43.7% 48.1%
Niblack 83.0% 60.7% 31.1% 38.5%
Otsu 82.2% 65.2% 37.0% 37.8%
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and the images with Gaussian noise binarized by the MRF based method, Niblack,

and Otsu are shown in Table 3.4. Each group has 135 word images. We use a lexicon

of 59 English words. The word recognition rates of the original images among all three

methods are very close. The MRF based method shows higher recognition rates on

the images with Gaussian noise.

3.6 Summary

In this chapter we have presented a novel method for binarizing degraded doc-

ument images of handwriting and removing pre-printed form lines. Our method

models binarized objective image as a Markov Random Field. Different from related

approaches, we reduce the large search space of the prior model to a class of 114 rep-

resentatives by vector quantization, and learn the observation model directly from the

input image. We also presented an effective method of pruning the search space of the

MRF. Our work is the first attempt at applying a stochastic method to preprocessing

of degraded high-resolution handwritten documents. Our model is targeted towards

document images, and therefore may not handle intense illumination variations, com-

plex backgrounds, and blurring that are common in tasks of video and scene text

processing. However it is possible to generalize our model to these applications as

well.
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(a)

(b)

(c)

Figure 3.10. An example of PCR forms. (a) A entire PCR form. (b) A small local
region showing obscure text and background noise array. (c) Fields of interest in the
PCR form.
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(a) Original image with lines marked in black.

(b) Output after 1 iteration of BP.

(c) Output after 2 iteration of BP.

(d) Output after 4 iteration of BP.

(e) Output after 16 iteration of BP.

Figure 3.11. The binarization and line removal result of the sample shown in figure
3.9.

Figure 3.12. A sample from IAM database.
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(a) Input image.

(b) Output of the Milewski algorithm.

(c) Output of the MRF based algorithm.

(d) Output of the Niblack algorithm.

(e) Output of the Otsu algorithm.

Figure 3.13. Comparison of binarization results of the MRF based algorithm versus
three other algorithms.
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(a) Input image.

(b) Output of the Milewski algorithm.

(c) Output of the MRF based algorithm.

Figure 3.14. Comparison of line removal results of the Milewski algorithm and the
MRF based algorithm.
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CHAPTER 4

HANDWRITTEN DOCUMENT RETRIEVAL

4.1 Introduction

Our work is motivated by the lack of tools available to search handwritten docu-

ments. Although the development in optical character recognition (OCR) and infor-

mation retrieval (IR) techniques have provided ways to digitalize and search printed

of documents, a similar approach for handwritten documents is undermined by the

errors occurring in document analysis and recognition [17, 3]. The state of the art

word recognition accuracy is 60-70% on handwritten documents of good quality which

makes IR results acceptable, but only 20-30% on low-quality documents such as his-

torical manuscripts, carbon forms, etc. Therefore conventional IR algorithms perform

poorly on these documents.

Several researches have been proposed to improve the IR performance of OCR’ed

text to overcome this problem. Mittendorf et al. [44] adjust the term-weighting scheme

of IR using a model of OCR errors. Ohta et al. [46] generate candidate terms for each

“true” search term and add the retrieval results of candidate terms into the final result.

Jing [28] uses a language model that takes common recognition errors into account

to approximate an “uncorrupted” version of the document. These methods focus on

modeling and correcting OCR errors and are primarily applicable to machine-printed

documents.

There has been some work on handwritten document retrieval recently[8, 21, 49,

24, 37]. Lee et al.[37] run retrieval tests on text composed of top-k (k > 1) candidates

of character recognition results of Hangul document images as opposed to the OCR’ed
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text composed of top-1 candidates. The use of top-k (k > 1) candidates improves the

recall performance of the IR system. Rath et al. [49] use an IR model that takes the

product of frequencies of query terms in a document as the similarity between the

query and the document. They assign different frequencies to terms according to the

posterior probabilities of terms. Their method is to estimate probabilities directly

from the vector space of profile features of word images which can be improved by

using the probabilities produced by established probabilistic word recognition algo-

rithms such as HMM. Howe et al [24] use the same IR model as [49] but they simply

assume the word recognition probabilities to be inversely proportional to the recog-

nition rank which is more effective than the probabilities estimated from the training

set. In our prior work [13], we use the Vector IR Model [1] for retrieval and learn

the term probabilities from word recognition results on the training set. The Vector

Model takes weighted sum of term frequencies as the similarity measure and performs

better (in our approach) than the model in [24, 49] that uses multiplicative similarity.

We present an approach to relevant retrieval of handwritten documents in this

chapter. Our retrieval method is based on the modified Vector IR Model presented in

our previous works [8, 21]. Different from text retrieval, the raw term frequency (the

number of occurrences of a term in a document) required by the Vector Model is not

immediately available. We estimate the raw term frequency from word segmentation

and recognition results using a probabilistic method [14, 9]. By assuming perfect word

segmentation, the existing methods [24, 49, 13] estimate the raw term frequency as

the sum of word recognition probabilities. We improve upon the above methods

by taking word segmentation errors and language model into account (Table 4.1).

The solution to the term-weighting scheme that unifies segmentation probabilities,

recognition probabilities and the language model (n-gram) is non-trivial due to large

amount of search branches, as opposed to the scheme that only uses word recognition

probabilities. We solve this problem using dynamic programming.
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Table 4.1. Approaches to handwritten document retrieval.

Existing Approach I Existing Approach II Proposed Approach
Index is created using Index is created using word Index is created using word
OCR’ed text [37] recognition probabilities recognition probabilities,

[8, 21, 49, 24] word segmentation
probabilities and language
model (n-gram, n > 1)

4.2 Vector IR Model for Handwritten Documents

4.2.1 Classic Vector Model

In the classic Vector Model [1], the documents are represented by the vector space

of terms. A term is a word from the vocabulary of all of the documents. Given the

vocabulary {ti}, 1 ≤ i ≤ N , the term frequency of document dj is defined by formula

tfi,j =
freqi,j
Lj

, i = 1, ..., N (4.1)

where freqi,j is the number of occurrences of term ti in document dj (raw term

frequency) and Lj is the total number of occurrences of all terms in document

dj, i.e., the length of dj. For example, in a document dj of 1000 words, if the

term ti=“diseases” occurs 3 times, then the raw term frequency freqi,j = 3 and

term frequency tfi,j = 0.003. Thus document dj can be represented by the vector

[tf1,j, tf2,j, ..., tfN,j ].

The inverse document frequency (IDF) of a term is defined by the formula

idfi = log
#{dj}

#{dj|freqi,j > 0} , i = 1, ..., N (4.2)

where #{·} denotes the number of elements in set {·}. The IDF of a term shows the

importance of the term based on the observation that a term that appears in most

documents is less important than a term that appears in only a few documents.
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A query is also represented by the vector of terms. The query term frequency

(QTF) of query q is defined as

tfi,q =

⎧
⎪⎨

⎪⎩

1, if term ti is in q

0, otherwise

i = 1, ..., N (4.3)

and the query is represented by vector [tf1,q, tf2,q, ..., tfN,q].

The similarity between document dj and query q is defined as

sim(dj, q) =
N∑

i=1

tfi,j · idfi · tfi,q. (4.4)

Now let’s show an example of the Vector Model. Support we have the following

two documents:

d1=“pt has a trauma”, and

d2=“pt has breath difficulty”,

where “pt” is the abbreviation for “patient”.

Then there are 6 terms:

t1=“pt”, t2=“has”, t3=“a”, t4=“trauma”, t5=“breath”, and t6=“difficulty”.

The term frequency matrix is

(tfi,j) =

⎡

⎢⎣
0.25 0.25 0.25 0.25 0 0

0.25 0.25 0 0 0.25 0.25

⎤

⎥⎦ (4.5)

The vector of IDF’s is

(idfi) =

[
log

2

2
, log

2

2
, log

2

1
, log

2

1
, log

2

1
, log

2

1

]

= [0, 0, log 2, log 2, log 2, log 2]

(4.6)
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Suppose a query is q: “breath difficulty”, then the vector of QTF’s is

(qtfi,q) = [0, 0, 0, 0, 1, 1] (4.7)

The similarity between document d1 and query q is

simd1,q = 0.

The similarity between document d2 and query q is

simd1,q = 0.5 log 2.

This shows that document d2 is more relevant to the query than document d1.

4.2.2 Modified Vector Model

The raw frequency freqi,j is not immediately available from the document im-

age and need to be estimated. Thus we modify the definitions of TF and IDF in

Equations (4.1) and (4.2): the modified TF is

tf ′
i,j =

E{freqi,j}
Lj

, (4.8)

and the modified IDF

idf ′
i = log

#{dj}
max {1,#{dj|E{freqi,j} > 0.5}} (4.9)

where E{freqi,j} is an estimation of freqi,j. Note that here we use E{freqi,j} >

0.5 which is equivalent to a rounding function of the expected value of freqi,j, i.e.,

round(E{freqi,j}) ≥ 1.

65



The text length in Equation (4.8) is estimated by

Lj =
N∑

i=1

E{freqi,j} (4.10)

The similarity between document image dj and the query q is given by

sim(dj, q) =
N∑

i=1

tf ′
i,j · idf ′

i · tfi,q. (4.11)

We estimate E{freqi,j} using the MMSE method as follows. Suppose document dj

is composed of an observational sequence of image features denoted by −→o = o1o2...oN ,

and −→w = w1w2...wL is any segmentation of sequence −→o where w1, ..., wL are word

images. The MMSE estimation of freqi,j is given by

E{freqi,j} =
∑

−→w
Pr(−→w |−→o ) ·

∑

−→τ
Pr(−→τ |−→w ) · #ti(

−→τ ) (4.12)

where −→τ = τ1...τL is a sequence of terms. Pr(−→w |−→o ) is the probability that −→w is a

valid segmentation. Pr(−→τ |−→w ) is the word sequence recognition probability. #ti(
−→τ )

is the number of term ti occurring in sequence −→τ .

Equation (4.12) can be simplified in some special situations. −→w is unique and

Pr(−→w |−→o ) ≡ 1 if we assume the correct segmentation −→w is known. Thus Equa-

tion (4.12) is equivalent to

E{freqi,j} =
∑

−→τ
Pr(−→τ |−→w ) · #ti(

−→τ ) (4.13)

In addition to the assumption of knowing the correct segmentation, assuming the

independence of terms τ1, τ2, ..., τL, i.e.,

Pr(−→τ |−→w ) =
L∏

k=1

Pr(τk|wk), (4.14)
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then Equation (4.13) is equivalent to

E{freqi,j} =
L∑

k=1

Pr(τk|wk) (4.15)

Equation (4.15) is used in [49, 24] for retrieval. It is a solution to Equation (4.12)

based on the assumptions of perfect word segmentation and independence of terms.

In the general case, given the probability of every single segmentation point and a

language model (n-gram), we can solve Equation (4.12) by dynamic programming.

4.2.3 Estimating Raw Term Frequency freqi,j

The observational sequence of a document image can be represented by a sequence

of connected components sorted in the reading order. Since the following discussion

focuses on a single document, we can omit the subscript j of dj from notations like

freqi,j without ambiguity.

Given N consecutive connected components c1, ...cn and the set of terms t1, ...tN ,

we use a dynamic programming based algorithm to solve the raw term frequency. We

assume a word image is composed of at most C connected components. The raw term

frequency of ti in sequence c1, ..., ck (0 < k ≤ n) is denoted by freqk
i . The probability

that the last word of sequence c1, ..., ck is term ti is denoted by λk
i . The probability

that the gap after the connected component ck is a true word gap is denoted by σk.

When we define freqk
i and σk on a sequence c1, ..., ck, we assume σ0 = σk = 1.

When k = 0, the sequence is empty, and thus

E(freq0
i ) = 0 (4.16)

When k = 1, the only possible segmentation is that c1 is a word image, and thus

E(freq1
i ) =

pi · Pr(c1|ti)
N∑

i2=1

pi2 · Pr(c1|ti2)
(4.17)
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When k = 2, the last word image can be either c2 or c1c2. The probability of c2

being ti equals
N∑

i1=1

λ1
i1
· pi1→i · Pr(c2|ti)

N∑

i2=1

pi1→i2 · Pr(c2|ti2)
, (4.18)

where pi1→i2 represents the transition probability from term ti1 to term ti2 and

Pr(c2|ti) is the probability density of observation c2 in class ti. The probability of

c1c2 being ti equals

pi · Pr(c1c2|ti)
N∑

i2=1

pi2 · Pr(c1c2|ti2)
(4.19)

Thus

E(freq2
i ) = σ1 · (freq1

i +
N∑

i1=1

λ1
i1
· pi1→i · Pr(c2|ti)

N∑

i2=1

pi1→i2 · Pr(c2|ti2)
)+ (1−σ1) · pi · Pr(c1c2|ti)

N∑

i2=1

pi2 · Pr(c1c2|ti2)

(4.20)

For an arbitrary k > 0, we can prove that
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E(freqk
i ) =

k−1∑

c=1

σk−c · (
∏

k−c<q<k

(1 − σq)) · (freqk−c
i +

N∑

i1=1

λk−c
i1

· pi1→i · Pr(ck−c+1...ck−1ck|ti)
N∑

i2=1

pi1→i2 · Pr(ck−c+1...ck−1ck|ti2)
)

+ (
∏

0<q<k

(1 − σq)) · ( pi · Pr(c1...ck−1ck|ti)
N∑

i2=1

pi2 · Pr(c1...ck−1ck|ti2)
)

if k ≤ C;

E(freqk
i ) =

C∑

c=1

σk−c · (
∏

k−c<q<k

(1 − σq)) · (freqk−c
i +

N∑

i1=1

λk−c
i1

· pi1→i · Pr(ck−c+1...ck−1ck|ti)
N∑

i2=1

pi1→i2 · Pr(ck−c+1...ck−1ck|ti2)
)

if k > C.

(4.21)

Similarly, we can prove that
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λ0
i =

1

N
;

λk
i =

k−1∑

c=1

σk−c · (
∏

k−c<q<k

(1 − σq)) · (
N∑

i1=1

λk−c
i1

· pi1→i · Pr(ck−c+1...ck−1ck|ti)
N∑

i2=1

pi1→i2 · Pr(ck−c+1...ck−1ck|ti2)
)

+ (
∏

0<q<k

(1 − σq)) · ( pi · Pr(c1...ck−1ck|ti)
N∑

i2=1

pi2 · Pr(c1...ck−1ck|ti2)
)

if 1 ≤ k ≤ C;

λk
i =

C∑

c=1

σk−c · (
∏

k−c<q<k

(1 − σq)) · (
N∑

i1=1

λk−c
i1

· pi1→i · Pr(ck−c+1...ck−1ck|ti)
N∑

i2=1

pi1→i2 · Pr(ck−c+1...ck−1ck|ti2)
)

if k > C.

(4.22)

The raw term frequencies freqn
i (i = 1, 2, ..., N) are obtained by calculating freqk

i ’s

and λk
i ’s recursively for k from 0 to n using Equations (4.16) - (4.22).

4.2.4 Estimating Word Segmentation Probability

Word segmentation is defined as the process of segmenting a line into words. In

handwritten lines, the space between words is uneven. Moreover, the same amount

of space may be present between words, and between characters within a word. Such

cases arise due to differences in writing styles, and space constraints.

In our word segmentation method, for the gap between any two consecutive con-

nected components, the probability of the gap being a valid word gap is estimated.

A gap between two connected components is represented by three features:
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1. Euclidean Distance. This feature is defined as the horizontal distance be-

tween the bounding boxes of the two consecutive connected components of the

line image (Figure 4.1(a)).

2. Minimum Run Length. This feature represents the minimum horizontal

white run length distance between the two adjacent connected components of

the line image.

3. Convex Hull Distance. We compute the convex hulls of two consecutive

connected components and draw a line connecting the mass centers of the two

convex hulls. The Euclidean distance between points at which this line crosses

the two convex hulls is defined as the Convex Hull distance of the two adjacent

components.

To eliminate the effect of different text sizes, we compute the average height of all the

components and normalize the extracted features by dividing them by the average

height of all components in the same line.

The segmentation probability of a gap g is given by the Bayes’ Rule

σg = Pr(g|f1,g, f2,g, f3,g) =
Pr(g)p(f1,g, f2,g, f3,g|g)

Pr(g)p(f1,g, f2,g, f3,g|g) + Pr(ḡ)p(f1,g, f2,g, f3,g|ḡ) (4.23)

where Pr(g) and Pr(ḡ) are the prior probabilities of valid gaps and non-valid gaps,

respectively. f1,g, f2,g and f3,g are three features of g. p(f1,g, f2,g, f3,g|g) is the proba-

bility density of the features of valid gaps. p(f1,g, f2,g, f3,g|ḡ) is the probability density

of the features of non-valid gaps.

Given a set of gap features with the annotation of “valid” and “non-valid”, we

can estimate Pr(g), Pr(ḡ), p(f1,g, f2,g, f3,g|g) and p(f1,g, f2,g, f3,g|ḡ) as follows. Pr(g)

71



(a) Euclidean distance.

(b) Run length distance.

(c) Convex hull distance.

Figure 4.1. Three feature representing a gap between two consecutive connected
components.
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and Pr(ḡ) are estimated from the ratio of the numbers of valid and non-valid gaps in

the training set.

Pr(g) =
#{valid gaps}

#{valid gaps} + #{non-valid gaps} (4.24)

Pr(ḡ) = 1 − Pr(g) (4.25)

p(f1,g, f2,g, f3,g|g) and p(f1,g, f2,g, f3,g|ḡ) are estimated non-parametrically using Parzen

window technique with a Gaussian kernel function.

4.2.5 Estimating Word Recognition Likelihood

We use a lexicon-driven word recognition algorithm [33] based on character seg-

mentation and dynamic programming to find the best matching path. First a word

image is segmented into candidate character images. Then the directional features

are extracted from the contours of character images and matched to every word in

the lexicon by searching all possible segmentations for the minimum sum of Euclid-

ean distances from the features of the test image and the character templates in the

training set. The minimum Euclidean distance indicates the similarity between the

word image and the term in the lexicon. The square of the distance associated with

a pair of a word image w and a term ti is denoted by s(w, ti).

The word recognition likelihood is estimated from the recognition score using a

Universal Background Model (UBM) [50]. In a Background Model, the posterior

probability of the word recognition is given by Bayes’ rule:

Pr(w = ti|s(w, ti)) =
Pr(w = ti)pti(s(w, ti)|w = ti)

Pr(w = ti)pti(s(w, ti)|w = ti) + Pr(w 
= ti)pti(s(w, ti)|w 
= ti)

(4.26)

where pti(s(w, ti)|w = ti) is the likelihood of the genuine matching score of ti,

pti(s(w, ti)|w 
= ti) is the likelihood of the imposter matching score of ti, and Pr(w =
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ti), Pr(w 
= ti) are the prior probabilities of genuine and imposter matches of ti,

respectively.

We need a term specific training set for every term to learn the background model.

This is a drawback in applications using large number of terms. The Universal Back-

ground Model is an alternative approach that solves this problem. In the UBM, we

use a single Background Model for all of the terms. The genuine matching probability

is given by

UBM(s) = Pr(Genuine|s) =
Pr(Genuine)p(s|Genuine)

Pr(Genuine)p(s|Genuine) + Pr(Imposter)p(s|Imposter)
(4.27)

where s is a matching score, Pr(Genuine), Pr(Imposter) are the prior probabilities

of genuine match and imposter match, respectively, and p(s|Genuine), p(s|Imposter)
are the likelihoods of the score of genuine match and imposter match, respectively.

Pr(Genuine), Pr(Imposter), p(s|Genuine), and p(s|Imposter) are estimated from

the scores of all of the terms.

We model p(s|Genuine) and p(s|Imposter) as Gamma distributions. Actually,

the matching score s is a squared sum of distances between character-level feature

vectors and the centers of clusters in the training features. In other words,

s =
L∑

l=1

D2
l (4.28)

where Dl is a character matching distance. If we assume all the clusters of the training

feature vector space are independent normal distributions, then the squared sum of

the distances can be modeled as a gamma distribution. The probability density

function of the gamma distribution can be represented by

fS(s; k, θ) = sk−1 e−s/θ

θkΓ(k)
, s > 0 and k, θ > 0 (4.29)
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where Γ(k) is the gamma function:

Γ(k) =

∫ ∞

0

xk−1e−xdx. (4.30)

If k is a positive integer, then Γ(k) = (k − 1)!. There is no closed-form solution for

the maximum likelihood estimation of k and θ [16]. However we can use a simple

way to estimate the Gamma distribution. First we can prove that the mean and

variance of the Gamma distribution are k · θ and k · θ2, respectively. Then, given N

genuine matching scores s1, s2, ...sN , we can compute the ML estimation of mean and

variance: ⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

µ̄ =
1

N

N∑

i=1

si

σ̄2 =
1

N

N∑

i=1

(si − µ̄)2

(4.31)

Let k̄ · θ̄ = µ̄ and k̄ · θ̄2 = σ̄2, then

⎧
⎪⎪⎨

⎪⎪⎩

k̄ =
µ̄2

θ̄2

θ̄ =
θ̄2

µ̄

(4.32)

A Genuine probability/score curve estimated from 5461 genuine matching scores

and 1,226,022 imposter matching scores is shown in Figure 4.2.

We estimate the posterior probabilities by amending Equation (5.6):

Pr(ti|w) =
Pr(ti)UBM(s(w, ti))

N∑

j=1

Pr(tj)UBM(s(w, tj))

, i = 1, 2, ..., N (4.33)

By Bayes’ rule, the likelihood
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Figure 4.2. Genuine matching probability/score curve estimated from training set.

Pr(w|ti) =

N∑

j=1

Pr(tj) Pr(w|tj)

Pr(ti)
· Pr(ti|w)

= UBM(s(w, ti)) ·

N∑

j=1

Pr(tj) Pr(w|tj)

N∑

j=1

Pr(tj)UBM(s(w, tj))

(4.34)

where

N∑

j=1

Pr(tj) Pr(w|tj)
N∑

j=1

Pr(tj)UBM(s(w, tj))

is an invariant of ti and can be reduced from the

fractions in Equations (4.16) - (4.22). Thus we can use

p(w|ti) ∝ UBM(s(w, ti)) (4.35)

to estimate the likelihoods in Equations (4.16) - (4.22).

4.2.6 Search Engine Based on Modified Vector Model

A search engine for handwritten document is built using the modified Vector

Model and raw term frequency estimation method discussed in the previous sections.
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Figure 4.3. Flowchart of the search engine.

The flowchart of the search engine (Figure 4.3) shows three phases of the system:

preprocessing, indexing, and document retrieval.

In the preprocessing phase, image enhancement such as noise filtering and bina-

rization are performed, and text lines are identified by page segmentation.

Indexing includes word segmentation and recognition with the estimation of prob-

abilities. We use these probabilities to estimate the term frequency (TF) and inverse

document frequency (IDF) and store the estimated TF and IDF values for retrieval.

When searching the database for relevant documents, the user input query is

converted to a query vector and the similarity of the Vector Model is calculated for

each document. Documents are ranked in the decreasing order of similarity and top

documents are returned.

4.2.7 Computational Issues

Only the non-zero values of the TF matrix are needed to be stored in the index

and thus the space to store the index and time complexity of retrieval are both linear
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(a) The TF matrix from a text IR application

(b) The TF matrix from a document image IR application

Figure 4.4. TF matrices from text IR and document image IR. The TF matrix for
document image IR can be approximated by a sparse matrix if we turn the shadowed
elements that are below a threshold to 0.

in the number of non-zero values in the TF matrix. The TF matrix for text retrieval

is usually sparse so the size of index file and the retrieval speed are not issues. But the

TF matrix are no longer sparse when indexing document images (using the proposed

method). Practically, we can convert the TF matrix into a sparse one without affect

performance much: we can choose a threshold THRsparse, and turn those elements

from the TF matrix that are less or equal to THRsparse (see shadowed elements in

Figure 4.4 (b)). We set THRsparse to 0.002 in our experiments.

4.3 Experimental Results and Discussions

4.3.1 Test Corpus

Our test corpus is the New York State Pre-hospital Care Reports (PCR forms).

In New York State all patients who enter the Emergency Medical System (EMS)

are tracked through their pre-hospital care to the emergency room using the PCR.
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The PCR is used to gather vital patient information. Retrieval on this data set

is quite challenging for several reasons: (i) handwritten responses are very loosely

constrained in terms of writing style, format of response, and choice of text due to

irrepressible emergency situations, (ii) images are scanned from noisy carbon copies

and color background leads to low contrast and low signal-to-noise ratio (Figure 5.2),

(iii) medical lexicons of words are very large ( more than 4,000 entries). This leads

to difficulties in the automatic transcription of forms. The word recognition rate

of the forms using Word Model Recognizer (WMR) [33] is below 30%. Each PCR

contains only about 100 handwritten words on average so the content is very short

and ordinary IR methods perform badly since some of the terms are often absent

from the OCR result.

4.3.2 Preprocessing and Recognition of PCR Form Images

First we detect and remove the skew of every PCR form image as follows.

1. We manually de-skew a form and take it as a template. Two special regions are

taken from the template as anchors.

2. The positions of two anchoring regions in any test image are found by cross-

correlation.

3. The skew angle of the test image is obtained by the relative skewing between

the test image and the template. We de-skew the image by rotating to the

opposite direction.

By aligning the test image to the template image, we can also obtain the position

of each form cell containing a line of text. The template-matching based de-skewing

and page segmentation work well on the PCR form images since they have a fixed

layout and are scanned at the same resolution. Our approach is applicable to other

types of forms as well.
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(a) (b)

(c)

Figure 4.5. An example of PCR forms. (a) A entire PCR form. (b) A small local
region showing obscure text and background noise array. (c) Fields of interest in the
PCR form.
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(a) The original grayscale image.

(b) The bnarized image. Grid lines are removed and broken strokes are fixed.

Figure 4.6. An example of the binarization and line removal result.

Figure 4.7. The performance of word segmentation (recall-precision curve).

We use the MRF based document image preprocessing algorithm [11] to binarize

the form image and remove the grid lines from the image. Assuming the binarized

objective image is x and the grayscale image is y, we solve the maximum a posteriori

(MAP) estimation x̂ = argmax
x

Pr(x|y) using the Markov Random Fields (MRF).

An example of binarization and line removal result is shown in Figure 5.3. The

MRF based preprocessing method improves the word recognition accuracy from 18.7%

(obtained by the PCR form preprocessing algorithm in [42]) to 28.6%.

We use 1099 valid word gaps and 5138 non-valid word gaps to train the word gap

classifier using the method presented in Section 5.2.2. The classifier is evaluated on a

test deck of 791 valid word gaps and 4369 non valid word gaps. If we take probability
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pthr as a threshold to determine the validity of a gap, we can compute the recall

and precision values obtained from the given test deck. Thus a precision-recall curve

(Figure 4.7) is obtained by taking various values of threshold, pthr.

The WMR handwritten word recognizer is trained using 21054 character images

extracted from images of the US Postal Service database. A lexicon of 4670 English

words is generated from the ground truth of 783 PCR forms. We also learn the prior

probabilities and bi-gram model from these 783 forms. A word recognition rate of

28.6% is obtained on the PCR forms.

4.3.3 Evaluation Metrics of IR Test

The IR tests are evaluated in terms of Mean Average Precision (MAP) and R-

Precision [1]. The Mean Average Precision is obtained in the following way:

1. For each query, check the returned documents starting from rank 1. Whenever

a relevant document is found, record the precision of the documents from the

one with rank 1 to the current one. The average value of the recorded precisions

for the query is the Average Precision of the query.

2. The mean value of the Average Precisions of all the queries is the Mean Average

Precision of the test.

R-Precision of a query is the mean value of precisions computed for each query

when R documents are retrieved, where R is the number of relevant documents. The

mean value of the R-Precisions of all queries is the R-Precision of all of the queries.

For example, suppose 100 documents are relevant to query q1, and 30 of the top

100 retrieved documents are relevant to the query, then the R-Precision of query q1

is 30/100 = 30%. Suppose the R-Precision of another query q2 is 20%, then the

R-Precision of q1 and q2 is (30% + 20%)/2 = 25%.
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Table 4.2. 28 query phrases used in our IR tests.

“head pain” “emesis” “breath difficulty short”
“trachea” “lung” “chest pain”
“fracture” “rib fracture” “head fracture”

“ankle fracture” “cancer” “trauma”
“glucose” “diabetes” “foot”
“tender” “hurts” “ambulate”
“cardiac” “dizzy dizzyness dizziness” “cardiac monitor”
“wrist” “arthritis” “shoulder pain”

“syncope” “mri” “blind”
“dementia”

In addition to the Mean Average Precision and R-Precision, the performance of the

IR system can also be visualized using a 11-point precision. First, the 11 interpolated

precisions at recalls 0, 0.1, ..., 1 are calculated for each query. Then the average

precision of all of the queries at each of the 11 recalls is calculated. Finally we get 11

precisions.

4.3.4 IR Tests

The document images involved in our IR tests are 342 PCR forms with manually

transcribed ground truth and coordinates of each word. We have 28 queries, and

manual annotation of relevance of the 342 forms to these queries. An example of an

entire PCR form and handwritten regions of interest in the PCR form are shown in

Figure 5.2(c). The queries used in our IR tests are shown in Table 4.2

We compare the performances of the following 7 IR tests:

Tests 1-4: IR tests on OCR’ed text

We apply the classic Vector Model on OCR’ed text. First we apply word

segmentation to the 342 form images as follows. For any m (m ≤ 16) consecu-

tive connected components cqcq+1...cq+m, suppose σq−1, σq, ..., and σq+m are gap

validity probabilities obtained by the gap classification algorithm presented in
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Section 5.2.2, then the probability of the concatenation cqcq+1...cq+m being a

word image is σq−1 · (1 − σq) · ... · (1 − σq+m−1) · σq+m.

We recognize all the word images with the word segmentation probability

above 0.3. The OCR’ed text is composed of the top-S word recognition candi-

dates of every word image. The parameter S = 1, 3, 7, and 15 in four separate

tests. IR tests based on the Classic VM are performed on the OCR’ed text of

342 form images.

Test 5: Vector IR Model + HR Estimation

We apply the Modified Vector Model to 342 form images for document re-

trieval. The raw term frequencies are estimated from handwriting recognition

(HR) results using Equation (4.13) by assuming perfect word segmentation and

identical independent distribution (i.i.d.) of terms, i.e.,

E{freqi,j} =
L∑

k=1

Pr(τk|wk) (4.36)

We use the same word segmentation method in Test 1-4.

Test 6: Probabilistic IR Model + Isolated Word Estimation

We apply the probabilistic IR model [49, 24] to 342 form images for document

retrieval. In this model, the doc-query similarity is defined as

sim(dj, q) =
∏

1≤i≤N, tfi,q=1

tfi,j, (4.37)

and the raw frequency is estimated by Equation (4.36). We use the same word

segmentation method in Test 1-4. The difference between [49, 24] and our im-

plementation is the way word recognition probabilities Pr(τk|wk) are estimated.

Test 7: Vector IR Model + Word Sequence Estimation

We apply the Modified Vector Model to 342 form images for document re-

trieval. The raw term frequencies are obtained by the word sequence based
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estimation using Equations (4.16) - (4.22).

The MAP and R-Precision values of the above IR tests are compared in Figure 4.8-

(a). A trivial average precision of 4.76% is obtained by generating random retrieval

results for the 28 queries. We amend the metrics by subtracting the trivial AP

from the MAP and R-Precision values. The amended metrics show the incremental

improvement from the trivial result. The amended MAP and R-Precision values of the

above IR tests are compared in Figure 4.8-(b). Tests 1-4 show that the improvement

of using more word recognition candidates (S=3, 7, and 15) compared to the result of

IR test on top-1 word recognition text is very slight. Even a naive estimation of the

raw term frequencies (Equation (4.36)) improves the IR performance compared to the

tests based on OCR’ed text. But the use of the word segmentation probabilities and

the language model (Test 7) resulted in better IR performance than the estimation

method that only uses isolated word recognition results.

The interpolated 11-point precision curves of tests 1 (OCR’ed text, S = 1), 5

(VM + isolated word estimation) and 7 (VM + word sequence estimation) are shown

in Figure 4.9 (a). The IR performance of building the index on the ground truth is

also shown in Figure 4.9 (a). Tests 5 and 7 produce similar precisions at low recall

(around 0) but Test 7 produces significantly higher precisions at higher recalls.

For better comparison, the above 11-point precision curves can also be amended

this way: we first get two addition precisions at each recall level: trivial precision and

ground-truth precision, and then normalize the recall-precision coordinates so that

the trivial precision is always 0 and the ground-truth precision is always 1. The trivial

precision is defined as the precision obtained by ranking all the documents randomly:

Prectrivial =
average number of relevant documents per query

number of documents
(4.38)
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(a) Original MAP’s and R-Precisions.

(b) Amended MAP’s and R-Precisions.

Figure 4.8. The MAP and R-Precision values of 7 IR tests.
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Table 4.3. Approaches to handwritten document retrieval.

Test 1 Test 5 Test 7
Size of Indexing file 17.0 MB 22.5 MB 74.4 MB
Retrieval Speed 119 queries/sec 83 queries/sec 47 queries/sec

The ground-truth precision Prectruth at a recall level is the precision obtained by IR

test performed on the index built on ground-truth text. The amended precision of

an original precision p is defined as

Precamended =
p− Prectrivial

p− Prectruth

× 100% (4.39)

The amended 11-point precision curves in Figure 4.9 (b) shows that the proposed

method obtained improvement at almost all recall levels but especially improved the

precisions at high recall rates (¿50%). The two existing methods perform very poorly

at high recall levels by giving nearly zero precisions. But the proposed method still

obtained about 10% precision at the recall level of 100%.

The sizes of the indexing files and retrieval speeds of the above three tests are

compared in Table 4.3. From Test 1 to Test 7, as we used more recognition and

segmentation hypothesis, the increased requirements of space and running time of

retrieval are still acceptable in practice: the space required to store the index increased

about 4 times and the running time increased about 2 times.

4.4 Summary

This chapter presents a vector model based method for indexing and retrieval of

handwritten document images. Instead of finding the best transcription (which is the

objective of handwriting recognition), tracking and weighting all possible transcrip-

tions is more important to the indexing and retrieval of handwritten documents. We

improve the term-weighting scheme of existing IR techniques by estimating the raw
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(a) Original recall-precision curves.

(b) Amended recall-precision curves.

Figure 4.9. The 11-point average precision curves of tests 1, 5 and 7.
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term frequencies using the MMSE criteria. The MMSE estimation of raw term fre-

quencies integrates word segmentation, word segmentation and language model into

a statistical approach. Our work is validated by the improvement of IR performance

compared with other term-weighting schemes.
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CHAPTER 5

HANDWRITTEN KEYWORD RETRIEVAL

5.1 Introduction

Keyword retrieval in document image is generally referred to as word spotting.

There can be two approaches to keyword retrieval in the handwritten document im-

ages. In the first approach, we can first perform a handwriting recognition followed

by the indexing step to keep track of the transcription and other useful informa-

tion (positions and recognition scores of word images) [12, 49, 24]. Retrieval can be

performed by some measurements of similarity between the keyword and the word

image.

In the second approach [31, 63, 38, 26, 35, 57, 39, 27], the index of word images

can be built from images features. During retrieval, each keyword is converted into a

word image. This can be done by annotating a small set of word images designated for

generating query images. The generated query image is compared to the word images

in the database. The similarity between them is measured using a certain distance

between the feature vectors of the word images. When a user provides a query word,

the similarity between the query and the word image in the database is computed,

and word images are returned in the decreasing order of similarities. In [31, 38],

the similarity between the feature vectors of two word images is achieved by Dynamic

Time Warping (DTW) matching of profile features computed using various definitions

of distances [31, 4, 51, 38] in the feature space. Similarity [63] is based on bitwise

matching of the GSC features of two word images. The second approach is referred

to as ”word spotting”. As we know a handwriting system is not easy to implement.
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The word spotting methods can be an alternative at very low cost of implement when

a handwriting recognition system is not available.

However, word spotting requires on-line matching which is time-consuming. Trade-

off between accuracy and speed has to made in order to be scalable to large database.

Thus Image feature based indexing approaches are limited in feature selection and the

complexity of matching and training methods and are only applicable to constrained

handwriting such as when dealing with a single writer or small lexicons. In contrast,

OCR score based indexing approaches [12, 49, 24] conquered the speed problem. In

these methods, the indices are built from OCR scores such posterior probabilities

or feature vector observational likelihoods (probability density) converted from dis-

tances returned by word recognizer. In general, The first approach provides much

more accuracy than the second approach.

Another question is whether to adopt a word-lexicon. The index for fast retrieval

can be built on the results of word level recognition in lexicon-driven mode [49, 24]. In

the lexicon driven mode, any word that is not in the lexicon can’t be retrieved. Thus

one need to select the set of keywords to meet the requirement of the application.

[12] performs word recognition on character level and search for optimal matches in

the series of character recognition scores. However searching in character recognition

scores requires additional time and is time-consuming for large-scale data. We adopt

a word-lexicon-driven method in this thesis for maximum accuracy and efficiency but

sacrifice some loss due to the OOV problem.

We improve the OCR score based indexing method by integrating word segmen-

tation probabilities into the ranking scheme of word images. Word spotting methods

mentioned above assume perfect word segmentation: word images are given by word

segmentation algorithm, and the ranks of word images are obtained by ordering the

word recognition scores. However it is difficult to get a nearly perfect word segmenta-

tion in unconstrained handwriting due to irregular variation of the word gaps. Thus,
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Figure 5.1. Diagram of the keyword spotting system.

the performance of word spotting can be improved by modeling word segmentation

probabilities. In this chapter, we describe a probabilistic model of word spotting that

integrates word segmentation probabilities and word recognition probabilities. The

word segmentation probabilities are obtained by modeling the conditional distribu-

tion of multivariate distance features of word gaps. The word recognition results are

also represented by a probabilistic model so that they are compatible with the prob-

abilistic word spotting model. The modeling of the word recognition probabilities is

obtained from the distances returned by the word recognizer.

5.2 Model Definition

5.2.1 Word Spotting Model

Given a series of consecutive connected components c1, c2, ..., cn and a possible

word image w represented by ci, ci+1, ...cj (1 ≤ i, j ≤ n), then the similarity between

w and a query word q can be represented by

sim(w, q) =

σi−1 · (1 − σi) · ... · (1 − σj−1) · σj · Pr(q|w)

(5.1)
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where σk (1 ≤ k ≤ n − 1) is the probability of the gap between ck−1 and ck being a

valid word gap, σ0 = σn = 1, and Pr(q|w) is the word recognition probability. Here

we assume the gaps are independent and thus the word segmentation probability is

σi−1 · (1 − σi) · ... · (1 − σj−1) · σj.

The size required to store the index can be reduced by applying constraints on

the number of connected components within a word image and minimum similarity:

Given a series of consecutive connected components c1, c2, ..., cn,

For i from 1 to n

For j from i to min(i+ Cmax − 1, n)

If the similarity sim(ci...cj, q) > simmin

Then store the document number, coordinates of the word image and the sim-

ilarity into index.

Cmax is the maximum number of connected components within a word image. simmin

is the minimum similarity that can be stored into the index. We assume Cmax = 16

and simmin = 0.1% in our experiment.

5.2.2 Estimating Word Segmentation Probability

Word segmentation is defined as the process of segmenting a line into words. In

handwritten lines, the space between words is uneven. Moreover, the same amount

of space may be present between words, and between characters within a word. Such

cases arise due to differences in writing styles, and space constraints.

In our word segmentation method [9], the probability of the gap between any two

consecutive connected components being a valid word gap is estimated from feature

space of distance measures. A gap between two connected components is represented

by three distance features:
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1. Euclidean Distance. This feature is defined as the horizontal distance be-

tween the bounding boxes of the two consecutive connected components of the

line image (Figure 4.1(a)).

2. Minimum Run Length. This feature represents the minimum horizontal

white run length distance between the two adjacent connected components of

the line image.

3. Convex Hull Distance. We compute the convex hulls of two consecutive

connected components and draw a line connecting the mass centers of the two

convex hulls. The Euclidean distance between points at which this line crosses

the two convex hulls is defined as the Convex Hull distance of the two adjacent

components.

To eliminate the effect of different text sizes, we compute the average height of all the

components and normalize the extracted features by dividing them by the average

height of all components in the same line.

The segmentation probability of a gap g is given by the Bayes’ Rule

σg = Pr(g|f1,g, f2,g, f3,g) =

Pr(g)p(f1,g, f2,g, f3,g|g)
Pr(g)p(f1,g, f2,g, f3,g|g) + Pr(ḡ)p(f1,g, f2,g, f3,g|ḡ)

(5.2)

where Pr(g) and Pr(ḡ) are the prior probabilities of valid gaps and non-valid gaps,

respectively. f1,g, f2,g and f3,g are three features of g. p(f1,g, f2,g, f3,g|g) is the proba-

bility density of the features of valid gaps. p(f1,g, f2,g, f3,g|ḡ) is the probability density

of the features of non-valid gaps.

Given a set of gap features with the annotation of “valid” and “non-valid”, we

can estimate Pr(g), Pr(ḡ), p(f1,g, f2,g, f3,g|g) and p(f1,g, f2,g, f3,g|ḡ) as follows. Pr(g)
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and Pr(ḡ) are estimated from the ratio of the numbers of valid and non-valid gaps in

the training set.

Pr(g) =
#{valid gaps}

#{valid gaps} + #{non-valid gaps} (5.3)

Pr(ḡ) = 1 − Pr(g) (5.4)

p(f1,g, f2,g, f3,g|g) and p(f1,g, f2,g, f3,g|ḡ) are estimated non-parametrically using Parzen

window technique with a Gaussian kernel function.

5.2.3 Estimating Word Recognition Probability

We use a lexicon-driven word recognition algorithm [33] that performs character

segmentation and finds the best matching path using dynamic programming. First

a word image is segmented into candidate character images. Then the directional

features are extracted from the contours of character images and matched to every

word in the lexicon by searching all possible segmentations for the minimum sum of

Euclidean distances from the features of the test image and the character templates

in the training set. The minimum Euclidean distance indicates the similarity between

the word image and the term in the lexicon. The square of the distance associated

with a pair of a word image w and a term ti is denoted by s(w, ti).

The word recognition probability is estimated from the recognition score using a

Universal Background Model (UBM) [50, 9]. In a Background Model, the posterior

probability of the word recognition is given by Bayes’ rule:

Pr(w = ti|s(w, ti)) =
Pr(w = ti)pti

(s(w, ti)|w = ti)
Pr(w = ti)pti

(s(w, ti)|w = ti) + Pr(w 
= ti)pti
(s(w, ti)|w 
= ti)

(5.5)

where pti(s(w, ti)|w = ti) is the likelihood of the genuine matching score when the

word is ti, pti(s(w, ti)|w 
= ti) is the likelihood of the imposter matching score when
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the word is ti, and Pr(w = ti), Pr(w 
= ti) are the prior probabilities of genuine and

imposter matches of ti, respectively.

We need a term specific training set for every term to learn the background model.

This is a drawback in applications using large number of terms. The Universal Back-

ground Model is an alternative approach that solves this problem. In the UBM, we

use a single Background Model for all of the terms. The genuine matching probability

is given by

Pr(Genuine|s) =
Pr(Genuine)p(s|Genuine)

Pr(Genuine)p(s|Genuine) + Pr(Imposter)p(s|Imposter)
(5.6)

where s is a matching score, and Pr(Genuine) and Pr(Imposter) are the prior

probabilities of genuine match and imposter match, respectively, and p(s|Genuine),
p(s|Imposter) are the likelihoods of the score of genuine match and imposter match,

respectively. Pr(Genuine), Pr(Imposter), p(s|Genuine), and p(s|Imposter) are esti-

mated from the scores of all of the terms. We model p(s|Genuine) and p(s|Imposter)
as Gamma distributions.

5.3 Experimental Results

5.3.1 Data Collection

Our keyword retrieval algorithm has been tested on the New York State Pre-

hospital Care Reports (PCR forms). The task is quite challenging for several reasons:

(i) handwritten responses were very loosely constrained in terms of writing style,

format of response, and choice of text due to irrepressible emergency situations, (ii)

images are scanned from carbon copies and are very noisy (Figure 5.2), (iii) medical

lexicons of words are very large ( more than 4,000 entries). This leads to difficulties

in the automatic transcription of forms. The word recognition rate of the forms using

word recognizer [33] is about 20-30%.
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Figure 5.2. The text in a PCR form.

5.3.2 Preprocessing

First we detect and remove the skew of every PCR form image as follows.

1. We manually de-skew a form and take it as a template. Two special regions are

taken from the template as anchors.

2. The positions of two anchoring regions in any test image are found by cross-

correlation.

3. The skew angle of the test image is obtained by the relative skewing between

the test image and the template. We de-skew the image by rotating to the

opposite direction.

By aligning the test image to the template image, we can also obtain the position

of each form cell containing a line of text. The de-skewing and page segmentation

method using template-matching works well on the PCR form images since they have

a fixed layout and are scanned at the same resolution. Our approach is applicable to

other types of forms as well.

We use the MRF based document image preprocessing algorithm [11] to binarize

the form image and remove the grid lines from the image. Assuming the binarized

objective image is x and the grayscale image is y, we solve the maximum a posteriori

(MAP) estimation x̂ = argmax
x

Pr(x|y) using the Markov Random Fields (MRF).
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(a) The original grayscale image.

(b) The bnarized image. Grid lines are removed and broken strokes are fixed.

Figure 5.3. An example of the binarization and line removal result.

Figure 5.4. 11-point average precision curves of Tests 1-2.

An example of binarization and line removal result is shown in Figure 5.3. The

MRF based preprocessing method improves the word recognition accuracy from 18.7%

(obtained by the PCR form preprocessing algorithm in [42]) to 28.6%.

5.3.3 Evaluation Metrics

The performance of word spotting can be evaluated using the precisions at stan-

dard recall levels (0, 0.1, ..., 1). We may also use single value measures such as the

Mean Average Precision (MAP) [1] to evaluate the word spotting performance. The

Mean Average Precision is computed as follows:

1. For each query, check the returned word images starting from rank1. Whenever

a relevant word image is found, record the precision of the word images from

the one with rank 1 to the current one. The Average Precision (AP) of a given
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query q is weighted sum of the recorded precisions:

AP(q) =

∑

1≤r≤Nq ,Rel(r) is true

Prec(r)

Rq

(5.7)

where Nq is the number of word images returned, Rq is the number of relevant

documents, Prec(r) is the precision of top-r returned word images, and Rel(r)

is a Boolean function of the relevance of rank r.

2. The Mean Average Precision (MAP) of all the queries is:

MAP =

∑

q

Rq × AP(q)

∑

q

Rq

(5.8)

5.3.4 Keyword Retrieval Results

We performed two word spotting tests to show the improvement due to the use

of word segmentation probability.

Test 1: Word spotting with segmentation probability

We searched 342 PCR forms for 33 keywords using the similarity function in

Equation (5.1) and the estimation methods described in Section 5.2.

Test 2: Word spotting without segmentation probability

In this test we evaluate the performance of word spotting using connected com-

ponent clustering based word segmentation method without probability annota-

tion. This test is based on the same idea used by [24] but we implemented different

word segmentation and recognition method. We performed word spotting test on

the same PCR forms and keywords that we performed on in Test 1. The word

images in test 2 were obtained by grouping adjacent connected components with
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gap segmentation probability σk < Cgap. The cutoff threshold Cgap = 0.297 in

our test. The recall rate of the gap classification reached maximum (0.394) when

Cgap = 0.297. We used the same word recognition method that we used in Test

1. The word recognition probability returned by the Universal Background Model

(UBM) is taken as the similarity between the word image and the query.

The 11-point average precision curves of Tests 1-2 are shown in Figure. The Mean

Average Precision (MAP) scores of Test 1 and Test 2 are 4.7% and 2.8%, respectively.

The test results show the improvement obtained by using word segmentation proba-

bilities.

5.4 Summary

This chapter describes a method to search handwritten document images for key-

words. The image/text similarity of the proposed method is defined as the product

of word segmentation probability and word recognition probability. Test results show

the improvement of integrating the probabilistic annotation of word segmentation on

handwritten document images with word segmentation errors.
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CHAPTER 6

CONCLUSION

6.1 Contributions of the Thesis

This thesis described the methodologies and outcomes we have obtained on the

research of degraded handwritten document preprocessing and retrieval. We proposed

and validated a series of methods to solve problems in the following respects:

1. In Chapter 3, we described a method for extracting binarized text from low-

quality carbon form handwritten input. It also incorporated pre-printed ruling-

line removal and inpainting. We tested our method on two data-sets: PCR (real

degraded images which are the main data-set for our purpose of testing the

preprocessing and retrieval) and IAM DB (handwritten document images with

artificially added Gaussian noise.) For the PCR data, our preprocessing method

obtained remarkable gain of word recognition accuracy from below 20% to 28.6%

comparing to existing methods (Otsu, Niblack, and Milewski). Improvement of

word recognition accuracy is also obtained on the IAM data with synthetic

noise.

2. In Chapter 4 and 5, we explored methods of improving IR performance on

handwritten documents. The IR tasks include document retrieval and key-

word retrieval. In Chapter 4, we described a method to improve the estimation

of the term frequency from document images for better retrieval performance.

Different from text retrieval, the term frequency of a document image is not

immediately available without document analysis and recognition. The tradi-

tional way of indexing and retrieving document images is to build index on the
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OCR’ed text returned by OCR software which is treated as a black-box. In our

method, we use the word segmentation and recognition scores to the maximal

extent. First the word segmentation/recognition scores are converted into prob-

abilistic representations. Then the term frequency is estimated from the word

segmentation and recognition probabilities and a language model (n-gram.) The

estimated term frequency is incorporated with standard IR techniques such as

vector model for retrieval of the PCR data-set.

In Chapter 5, we applied the probability modeling of word segmentation directly

to the scheme of computing keyword retrieval similarity and obtained improved

performance comparing with the traditional method that neglects the evaluation

of word segmentation outcomes.

The contributions of this thesis can be summarized as follows:

• The first work to apply MRF to the binarization of high-resolution

document images.

• Use of speeding-up strategies which are proper in the MRF configu-

ration designed for the banirazation problem:

– Belief Propagation (BP)

– Vector quantization of the states of image patch

– Pruning of the search space of BP

• Ruling-line removal using the MRF.

• A modified vector IR model designated for handwritten document

retrieval

• Probabilistic modeling of word segmentation and recognition scores

which is incorporated with MMSE estimation of raw term frequency

102



• Use of word segmentation probabilities for high keyword retrieval

performance

6.2 Future Works

Our MRF preprocessing method can only work the the model learned from images

of the same or similar resolution. Use of the trained model on re-sampled images will

lead to inaccurate results. Practically, we can learn the MRF models at multiple

image resolutions and automatically select the model that fits the input image during

preprocessing. For example, we may want to use down-sampled scanned image to

train the MRF and apply it to video text. We will investigate the method of estimating

the resolution and selecting the model in the future work.

In our thesis, we improved the IR performance by using all possible information

provided by the handwriting recognition systems (Top-n word recognition choices,

multiple segmentation points). In addition to handwritten document retrieval, there

may be other applications such as Document Categorization and Machine Translation

(MT) that are also dependent on the handwriting recognition result.

Document categorization is to assign a document to one or more categories based

on the content of the document. The document categorization techniques are similar

to document retrieval in terms of the way to index the keywords in the documents.

The TF-IDF representation can also be used. It will be an interesting topic to apply

the techniques proposed in this thesis to the document categorization problem.

Machine translation is to use the computer to translate speech or text from one

natural language to another. In the automatic transcription of handwriting, we will

be struggling with the recognition errors and the translation will be unreliable. Simi-

lar idea of using multiple word recognition and segmentation choices may also be able

to apply to machine translation. However this is not very straightforward to imple-

ment because, unlike the document retrieval and categorization problems, machine
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translation is modeled differently and the estimation of term frequencies is not the

kernel problem as it is in the other two applications. We will be investigating these

new methods in the future works.

104



BIBLIOGRAPHY

[1] Baeza-Yates, Ricardo A., and Ribeiro-Neto, Berthier A. Modern Information
Retrieval. ACM Press / Addison-Wesley, 1999.

[2] Bai, Zhen-Long, and Huo, Qiang. Underline detection and removal in a docu-
ment image using multiple strategies. Proceedings of International Conference
on Pattern Recognition 2 , 578–581.

[3] Beitzel, Steven M., Jensen, Eric C., and Grossman, David A. A survey of retrieval
strategies for ocr text collections. In Proceedings of the Symposium on Document
Image Understanding Technologies (Greenbelt, Maryland, April 2003).

[4] Belonge, S., Malik, J., and Puzicha, J. Shape matching and object recognition
using shape contexts. IEEE Transactions on Pattern Analysis and Machine
Intelligence 24 (2002), 509–522.

[5] Bertalmio, M., Sapiro, G., Caselles, V., and Ballester, C. Image inpainting.
Computer Graphics (SIGGRAPH 2000) (2000), 417–424.

[6] Bozinovic, R.M., and Srihari, S.N. Off-line cursive script word recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence 11, 1 (1989), 68–83.

[7] Bunke, H., Roth, M., and Schukat-Talamazzini, E.G. Off-line cursive handwrit-
ing recognition using hidden Markov models. Pattern Recognition 28, 9 (1995),
1399–1413.

[8] Cao, H., Farooq, F., and Govindaraju, V. Indexing and retrieval of degraded
handwritten medical forms. In Proceedings of the Workshop on Multimodal In-
formation Retrieval at IJCAI-2007 (2007).

[9] Cao, H., and Govindaraju, V. Handwritten document retrieval using MMSE
estimation of raw term frequencies. submitted to IEEE Transactions on Pattern
Analysis and Machine Intelligence.

[10] Cao, H., and Govindaraju, V. Preprocessing of low quality handwritten docu-
ments using markov random fields. to appear in IEEE Transactions on Pattern
Analysis and Machine Intelligence.

[11] Cao, H., and Govindaraju, V. Handwritten carbon form preprocessing based on
markov random field. Proceedings of the 2007 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition (CVPR’07) (2007).

105



[12] Cao, H., and Govindaraju, V. Template-free word spotting in low-quality manu-
scripts. In the Sixth International Conference on Advances in Pattern Recognition
(ICAPR) (Calcutta, India, 2007), vol. 5296, pp. 45–53.

[13] Cao, H., and Govindaraju, V. Vector model based indexing and retrieval of
handwritten medical forms. In Proceedings of the Ninth International Conference
on Document Analysis and Recognition (2007).

[14] Cao, H., and Govindaraju, V. Processing and retrieving handwritten medical
forms. Proceedings of the Digital Government Conference (DG.O) (2008).

[15] Chen, W.-T., Gader, P., and Shi, H. Lexicon-driven handwritten word recogni-
tion using optimal linear combinations of order statistics. IEEE Transactions on
Pattern Analysis and Machine Intelligence 21, 1 (1999), 77–82.

[16] Choi, S. C., and Wette, R. Maximum likelihood estimation of the parameters
of the gamma distribution and their bias. Technometrics 11, 4 (April 1969),
683–690.

[17] Croft, W. B., Harding, S. M., Taghva, K., and Borsack, J. An evaluation of
information retrieval accuracy with simulated OCR output. In Proceedings of
the Symposium on Document Analysis and Information Retrieval (1994).

[18] Freeman, W. T., and Pasztor, E. C. Learning low-level vision. Proc. of Interna-
tional Conference on Computer Vision (1999), 1182–1189.

[19] Freeman, W. T., Pasztor, E. C., and Carmichael, O. T. Learning low-level vision.
International Journal of Computer Vision 40, 1 (2000), 25–47.

[20] Geman, S., and Geman, D. Stochastic relaxation, gibbs distributions, and the
bayesian restoration of images. IEEE Transactions on Pattern Analysis and
Machine Intelligence 6, 6 (1984), 721–741.

[21] Govindaraju, V., and Cao, H. Indexing and retrieval of handwritten medical
forms. Proceedings of the Digital Government Conference (DG.O) (2007).

[22] Gupta, M. D., Rajaram, S., Petrovic, N., and Huang, T. S. Restoration and
recognition in a loop. Proceedings of the 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’05) (2005).

[23] Gupta, M. D., Rajaram, S., Petrovic, N., and Huang, T. S. Models for patch
based image restoration. Proceedings of the 2006 Conference on Computer Vision
and Pattern Recognition Workshop (2006).

[24] Howe, Nicholas R., Rath, Toni M., and Manmatha, R. Boosted decision trees
for word recognition in handwritten document retrievals. In Proceedings of the
SIGIR (2005), pp. 377–383.

106



[25] Howe, Nicholas R., Rath, Toni M., and Manmatha, R. Boosted decision trees
for word recognition in handwritten document retrievals. In Proceedings of the
SIGIR (2005), pp. 377–383.

[26] Jain, A., and Namboodiri, A. Indexing and retrieval of on-line handwritten doc-
uments. In Proceedings of the International Conference on Document Analysis
and Recognition (2003), pp. 655–659.

[27] J.Edwards, Y.W.Teh, D.A.Forsyth-R.Bock M.Maire G.Vesom. Making latin
manuscripts searchable using hmms. In Proceedings of Neural Information
Processing Systems (2004), pp. 385–392.

[28] Jing, Hongyan. Using hidden Markov modeling to decompose human-written
summaries. Computational Linguistics 28, 4 (2002), 527–543.

[29] Jojic, N., Frey, B. J., and Kannan, A. Epitomic analysis of appearance and
shape. Proceedings of the Ninth IEEE International Conference on Computer
Vision (2003).

[30] Kamel, M., and Zhao, A. Extraction of binary characters/graphics images from
grayscale document images. CVGIP: Graphic Models Image Processing 55, 3
(1993).

[31] Kane, S., Lehman, A., and Partridge, E. Indexing George Washington’s hand-
written manuscripts. In CIIR Technical Report MM-34 (Center for Intelligent
Information Retrieval, University of Massachusetts Amherst, 2001).

[32] Kato, N., Suzuki, M., Omachi, S., Aso, H., and Nemoto, Y. A handwritten
character recognition system using directional element feature and asymmetric
mahalanobis distance. IEEE Trans. Pattern Anal. Mach. Intell. 21, 3 (1999),
258–262.

[33] Kim, G., and Govindaraju, V. A lexicon driven approach to handwritten word
recognition for real-time applications. IEEE Transactions on Pattern Analysis
and Machine Intelligence 19 (April 1997), 366–379.

[34] Kundu, A., He, Yang, and Chen, Mou-Yen. Alternatives to variable duration
HMM in handwriting recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence 20, 11 (1998), 1275–1280.

[35] Kwok, T., Perrone, M., and Russell, G. Ink retrieval from handwritten docu-
ments. In Proceedings of the Second International Conference on Data Mining,
Financial Engineering, and Intelligent Agents (2000), pp. 461–466.

[36] Langville, A. N., and Meyer, C. D. In Google’s PageRank and Beyond: The
Science of Search Engine Rankings (2006), Princeton University Press.

107



[37] Lee, Duk-Ryong, Kim, Woo-Youn, and Oh, Il-Seok. Hangul document image
retrieval system using rank-based recognition. In Proceedings of the International
Conference on Document Analysis and Recognition (2005), vol. 2, pp. 615–619.

[38] Manmatha, R., and Rath, T. M. Indexing of handwritten historical documents-
recent progress. In Symposium on Document Image Understanding Technolegy
(SDIUT) (2003), pp. 77–85.

[39] Marinai, S., Marino, M., and Soda, G. Indexing and retrieval of words in old doc-
uments. In Proceedings of the International Conference on Document Analysis
and Recognition (2003), p. 223C227.

[40] Marti, U., and Bunke, H. On the influence of vocabulary size and language
models in unconstrained handwritten text recognition. In Proceedings. Sixth
International Conference on Document Analysis and Recognition (2001), vol. 2,
pp. 260–265.

[41] Marti, U., and Bunke, H. The IAM-database: an English sentence database
for off-line handwriting recognition. Int. Journal on Document Analysis and
Recognition 5 (2006), 39–46.

[42] Milewski, Robert, and Govindaraju, Venu. Extraction of handwritten text
from carbon copy medical form images. In Document Analysis Systems (2006),
pp. 106–116.

[43] Milewski, Robert, and Govindaraju, Venu. Extraction of handwritten text from
carbon copy medical form images. Document Analysis Systems 2006 (2006),
106–116.

[44] Mittendorf, Elke, Schauble, Peter, and Sheridan, Paraic. Applying probabilistic
term weighting to OCR text in the case of a large alphabetic library catalogue.
In Research and Development in Information Retrieval (1995), pp. 328–335.

[45] Niblack, W. An introduction to digital image processing. Englewood Cliffs, N.J.
Prentice Hall (1986).

[46] Ohta, M., Takasu, A., and Adachi, J. Retrieval methods for English text with
misrecognized OCR characters. In Proceedings of the International Conference
on Document Analysis and Recognition, (1997).

[47] Otsu, N. A. A threshold selection method from gray-level histogram. IEEE
Transactions on System Man Cybernetics 9, 1 (1979).

[48] Pearl, J. Probalistic reasoning in intelligent systems: networks of plausible in-
ference. Morgan Kaufmann Publishers Inc. (1988).

[49] Rath, Toni M., Manmatha, R., and Lavrenko, Victor. A search engine for his-
torical manuscript images. In Proceedings of the 27th annual international ACM
SIGIR conference on research and development in information retrieval (2004).

108



[50] Reynolds, D. A., Quatieri, T. F., and Dunn, R. B. Speaker verification using
adapted gaussian mixture models. Digital Signal Processing 10, 1-3 (2000), 19–
41.

[51] Rothfeder, J. L., Feng, S., and Rath, T. M. Using corner feature correspondences
to rank word images by similarity. In CIIR Technical Report MM-44 (Center for
Intelligent Information Retrieval, University of Massachusetts Amherst, 2003).

[52] S, Katz. Estimation of probabilities from sparse data for the language model
component of a speech recognizer. IEEE Trans on Acoustics, Speech, and Signal
Processing 35, 3 (1987), 400–401.

[53] Sauvola, J., Seppanen, T., Haapakoski, S., and Pietiktinen, M. Adaptive docu-
ment binarization. Proceedings of the 4th International Conference on Document
Analysis and Recognition (1997), 147–152.

[54] Seeger, M., and Dance, C. Binarising camera images for OCR. Proceedings of the
Sixth International Conference on Document Analysis and Recognition, 54–58.

[55] Sun, N., Abe, M., and Nemoto, Y. A handwritten character recognition system
by using improved directional element feature and subspace method. Trans.
IEICE J78-D-II, 6 (1995), 922–930.

[56] Tsukumo, J. Improved algorithm for direction pattern matching and its appli-
cation for handprinted kanji character classification. IEICE Technical Report
(1990).

[57] Uchiashi, S., and Wilcox, L. Automatic index creation for handwritten notes.
In Proceedings of the International Conference on Acoustic, Speech and Signal
Processing (1999), pp. 3453–3456.

[58] Wolf, C., and Doermann, D. Binarization of low quality text using a Markov ran-
dom field model. Proceedings of International Conference on Pattern Recognition
(2002).

[59] Xue, Hanhong, and Govindaraju, V. Hidden Markov models combining discrete
symbols and continuous attributes in handwriting recognition. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 28, 3 (2006), 458–462.

[60] Yang, Y., and Yan, H. An adaptive logical method for binarization of degraded
document images. Pattern Recognition (2000), 787–807.

[61] Yasuda, M., Ohkubo, J., and Tanaka, K. Digital image inpainting based on
Markov random field. Proceedings of the International Conference on Compu-
tational Intelligence for Modelling, Control and Automation and International
Conference on Intelligent Agents, Web Technologies and Internet Commerce 2
(2005), 747–752.

109



[62] Yoo, Jin-Yong, Kim, Min-Ki, Han, Sang Yong, and Kwon, Young-Bin. Line re-
moval and restoration of handwritten characters on the form documents. Proceed-
ings of the 4th International Conference on Document Analysis and Recognition
(1997), 128–131.

[63] Zhang, B., Srihari, S. N., and Huang, C. Word image retriecal using binary fea-
tures. In Document Recognition and Retrieval XI, SPIE (Greenbelt, Maryland,
April 2004), vol. 5296, pp. 45–53.

[64] Zhang, J., Ding, X., and Liu, C. Multi-scale feature extraction and nested-
subset classifier design for high accuracy handwritten character recognition. In
Proceedings of the International Conference on Pattern Recognition (2000).

110



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Times-Bold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


