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Integrity constraints (dependencies)

Database instance D:

• a finite first-order structure

• the information about the world

Integrity constraints Σ:

• first-order logic formulas

• the properties of the world

Satisfaction of constraints: D |= Σ

Formula satisfaction in a first-order structure.

Consistent database: D |= Σ

Name City Salary

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Inconsistent database: D 6|= Σ

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

The need for integrity constraints

Roles of integrity constraints

• capture the semantics of data:
• legal values of attributes
• object identity
• relationships, associations

• reduce data errors ⇒ data quality

• help in database design

• help in query formulation

• (usually) no effect on query semantics but ...

• query evaluation and analysis are affected:
• indexes, access paths
• query containment and equivalence
• semantic query optimization (SQO)

Examples

• key functional dependency: “every employee has a single address and
salary”

• denial constraint: “no employee can earn more than her manager”

• foreign key constraint: “every manager is an employee”



Constraint enforcement

Enforced by application programs

• constraint checks inserted into code

• code duplication and increased application complexity

• error-prone: different applications can make different assumptions

• prevent system-level optimizations

Enforced by DBMS

• constraint checks performed by DBMS (“factored out”)

• violating updates rolled back

• leads to application simplification and reduces errors

• enables query optimizations

• but ... integrity checks are expensive and inflexible

Not enforced

• data comes from multiple, independent sources

• long transactions with inconsistent intermediate states

• enforcement too expensive

Basic issues

Implication

Given a set of ICs Σ and an IC σ, does D |= Σ imply D |= σ for every database
D?

Axiomatization
Can the notion of implication be “axiomatized”?

Inconsistent databases

1 How to construct a consistent database on the basis of an inconsistent
one?

2 How to obtain information unaffected by inconsistency?



ICs in logical form

Atomic formulas

• relational (database) atoms P(x1, . . . , xk)

• equality atoms x1 = x2

• no constants

General form

∀x1, . . . xk . A1 ∧ · · · ∧ An ⇒ ∃y1, . . . , yl . B1 ∧ · · · ∧ Bm.

Subclasses

• full dependencies: no existential variables (l = 0)

• tuple-generating dependencies (TGDs): no equality atoms

• equality-generating dependencies (EGDs): m = 1, B1 is an equality atom

• functional dependencies (FDs): typed binary unirelational EGDs

• join dependencies (JDs): TGDs with LHS a multiway join

• denial constraints: l = 0, m = 0

• inclusion dependencies (INDs): n = m = 1, no equality atoms

Examples

Database schema NAM(Name,Address,Manager),
NAS(Name,Address,Salary), NM(Name,Manager).

Full TGD
∀n, a,m, s. NAS(n, a, s) ∧ NM(n,m)⇒ NAM(n, a,m)

Non-full TGD
∀n, a,m. NAM(n, a,m)⇒ ∃s. NAS(n, a, s)

Inclusion dependency
(IND)

NAM[Name,Address] ⊆
NAS [Name,Address]

EGD
∀n, a,m, a′,m′. NAM(n, a,m) ∧ NAM(n, a′,m′)⇒
a = a′

Functional dependency
(FD)

Name → Address



Implication: from linear-time to undecidable

Functional dependencies

1 view each attribute as a propositional variable

2 view each dependency A1 . . .Ak → B ∈ Σ as a Horn clause
A1 ∧ · · · ∧ Ak ⇒ B

3 if σ = C1 ∧ · · · ∧ Cd ⇒ D, then ¬σ = C1 ∧ · · · ∧ Cd ∧ ¬D consists of Horn
clauses

4 thus Σ ∪ ¬σ is a set of Horn clauses whose (un)satisfiability can be tested
in linear time (Dowling, Gallier [22])

Theorem (Chandra, Vardi [14])

The implication problem for functional dependencies together with inclusion
dependencies is undecidable.

Implication in logic

No restriction to finite structures.

Finite and unrestricted implication

• coincide for full dependencies

• if they coincide, then they are decidable

• but not vice versa (FDs and unary INDs)

Counterexample

Σ = {A→ B,R[A] ⊆ R[B]}
σ = R[B] ⊆ R[A]

A B

1 0

2 1

3 2

4 3

· · ·

Finite and unrestricted implication do not have to coincide.



Chase

Deciding the implication of full dependencies using chase

1 apply chase steps using the dependencies in Σ nondeterministically,
obtaining a sequence of dependencies τ0 = σ, τ1, . . . , τn

2 stop when no chase steps can be applied to τn (a terminal chase sequence)

3 if τn is trivial, then Σ implies σ

4 otherwise, Σ does not imply σ

Trivial dependencies

• tgd: LHS contains RHS

• egd: RHS ≡ x = x

Fundamental properties of the chase

Terminal chase sequence τ0 = σ, τ1, . . . , τn:

• the LHS of τn, viewed as a database Dn, satisfies Σ

• if τn is nontrivial, then Dn violates σ

• the order of chase steps does not matter

Chase steps

A chase sequence τ0 = σ, τ1, . . ..

Applying a chase step using a tgd C

1 view the LHS of τj as a database Dj

2 find a substitution h that (1) h makes the LHS of C true in Dj , and (2) h
cannot be extended to a substitution that makes the RHS of C true in
that instance

3 apply h to the RHS of C

4 add the resulting facts to the LHS of τj , obtaining τj+1

Applying a chase step using an egd C

1 view the LHS of τj as a database Dj

2 RHS of C ≡ x1 = x2

3 find a substitution h such that makes the LHS of C true in Dj and
h(x1) 6= h(x2)

4 replace all the occurrences of h(x2) in τj by h(x1), obtaining τj+1



Chase in action

Integrity constraints

C1 = ∀x , y . P(x , y)⇒ R(x , y)
C2 = ∀x , y , z . R(x , y) ∧ R(x , z)⇒ y = z
C3 = ∀x , y , z . P(x , y) ∧ P(x , z)⇒ y = z

Goal
Show that {C1,C2} implies C3.

Terminal chase sequence

τ0 = {P(x , y) ∧ P(x , z)⇒ y = z}
τ1 = {P(x , y) ∧ P(x , z) ∧ R(x , y)⇒ y = z}
τ2 = {P(x , y) ∧ P(x , z) ∧ R(x , y) ∧ R(x , z)⇒ y = z}
τ3 = {P(x , y) ∧ R(x , y)⇒ y = y}: a trivial dependency

A general perspective

Computational complexity

Testing implication of full dependencies is:

• in EXPTIME (using chase)

• EXPTIME-complete (Chandra et al. [13])

First-order logic

• implication of σ by Σ = {σ1, . . . , σk} is equivalent to the unsatisfiability of
the formula ΦΣ,σ ≡ σ1 ∧ · · · ∧ σk ∧ ¬σ

• for full dependencies, the formulas ΦΣ,σ are of the form ∃∗∀∗φ where φ is
quantifier-free (Bernays-Schöfinkel class)

• Bernays-Schöfinkel formulas have the finite-model property and their
satisfiability is in NEXPTIME

Theorem proving

Chase corresponds to a combination of hyperresolution and paramodulation.



Axiomatization

Inference rules

• specific to classes of dependencies

• guarantee closure: only dependencies from the same class are derived

• bounded number of premises

Properties

Inference rules capture finite or unrestricted implication:

• soundness: all the dependencies derived from a given set Σ are implied by
Σ

• completeness: all the dependencies implied by Σ can be derived from Σ

• finite set of rules ⇒ implication decidable (but not vice versa)

Example axiomatization

Axiomatizing INDs

1 Reflexivity: R[X ] ⊆ R[X ]

2 Projection and permutation: If R[A1, . . .Am] ⊆ S [B1, . . .Bm], then
R[Ai1 , . . . ,Aik ] ⊆ S [Bi1 , . . . ,Bik ] for every sequence i1, . . . , ik of distinct
integers in {1, . . . ,m}.

3 Transitivity: If R[X ] ⊆ S [Y ] and S [Y ] ⊆ T [Z ], then R[X ] ⊆ T [Z ].

A derivation
Schemas R(ABC) and S(AB):

(1) S [AB] ⊆ R[AB] (given IND)

(2) R[C ] ⊆ S [A] (given IND)

(3) S [A] ⊆ R[A] (from (1))

(4) R[C ] ⊆ R[A] (from (2) and (3))



Review of results

Implication Axiomatization

FDs PTIME Finite

INDs PSPACE-complete Finite

FDs + INDs Undecidable No

Full (typed) dependencies EXPTIME-complete Yes

Join dependencies NP-complete No

First-order logic Undecidable Yes

Application: database design

Keys

A set of attributes X ⊆ U is a key with respect to a set of FDs Σ if:

• Σ implies X → U

• for no proper subset Y of X , Σ implies Y → U

Decomposition

A decomposition R = (R1, . . . ,Rn) of a schema R has the lossless join property
with respect to a set of FDs Σ iff Σ implies the join dependency ./ [R].

Decomposition (R1,R2) of R(ABC )

Relation schemas: R1(AB) with FD A→ B, R2(AC).
Terminal chase sequence:

R(x , y , z ′) ∧ R(x , y ′, z)⇒ R(x , y , z) given JD

R(x , y , z ′) ∧ R(x , y , z)⇒ R(x , y , z) chase with A→ B



Application: data exchange

Goal
Exchange of data between independent databases with different schemas.

Setting for data exchange

• source and target schemas

• source-to-target dependencies : describe how the data is mapped between
source and target

• target integrity constraints

Data exchange is a specific scenario for data integration, in which a target
instance is constructed.

Constraints and solutions

φS , φT , ψT are conjunctions of relation atomic formulas over source and target.

Source-to-target dependencies Σst

• tuple-generating dependencies: ∀x (φS(x)⇒ ∃y ψT(x, y)).

Target integrity constraints Σt

• tuple-generating dependencies (tgds): ∀x (φT(x)⇒ ∃y ψT(x, y))

• equality-generating dependencies: ∀x (φT(x)⇒ x1 = x2).

Solution
Given a source instance I , a target instance J is

• a solution for I if J satisfies Σt and (I , J) satisfy Σst

• a universal solution for I if it is a solution for I and there is a
homomorphism from it to any other solution for I

• solutions can contain labelled nulls

There may be multiple solutions.



Query evaluation (Fagin et al.[24])

Certain answer
Given a query Q and a source instance I , a tuple t is a certain answer with
respect to I if t is an answer to Q in every solution J for I .

Conjunctive queries

• relational calculus: ∃,∧
• relational algebra: σ, π,×

Query evaluation

1 construct any universal solution J0

2 evaluate the query over J0

3 discard answers with nulls

4 the above returns certain answers for unions of conjunctive queries without
inequalities

Building a universal solution [24]
Apply a variant of the chase [1] to the source instance using target and
source-to-target dependencies, obtaining a sequence of instances
I0 = I , I1, . . . , In, . . ..

Chasing a tgd C

1 find a substitution h that (1) h makes the LHS of C true in the
constructed instance Ij , and (2) h cannot be extended to a substitution
that makes the RHS of C true in that instance

2 apply h to the RHS of C , mapping the existentially quantified variables to
fresh labelled nulls

3 add the resulting facts to Ij , obtaining Ij+1.

Chasing an egd C

Find a substitution h such that makes the LHS of C true in Ij and
h(x1) 6= h(x2):

• if h(x1) and h(x2) are constants, then FAILURE

• otherwise, identify h(x1) and h(x2) in Ij (preferring constants), obtaining
Ij+1.



Chase at work

Source and target databases
Source: Emp(N,A), Num(N, Id)

Target: Name(Id ,N), Addr(Id ,A)

Source-to-target dependencies
∀n, a. Emp(n, a)⇒ ∃id . Name(id , n) ∧ Addr(id , a)

∀n, a, id . Emp(n, a) ∧ Num(n, id)⇒ Name(id , n)

Target constraints

Name : N → Id , Id → N, Addr : Id → A.

Chase sequence
I0 = {Emp(Li , LA),Num(Li , 111)}
I1 = {Emp(Li , LA),Num(Li , 111),Name(id1, Li),Addr(id1, LA)}
I2 = {Emp(Li , LA),Num(Li , 111),Name(id1, Li),Addr(id1, LA),Name(111, Li)}
I3 = {Emp(Li , LA),Num(Li , 111),Name(111, Li),Addr(111, LA)}

Chase termination

Chase result

• there is a sequence of chase applications that ends in failure: no universal
solution

• otherwise: every finite sequence that cannot be extended yields a universal
solution

Termination
For weakly acyclic tgds, each chase sequence is of length polynomial in the size
of the input.

Data complexity of computing certain answers

• in PTIME for unions of conjunctive queries (without inequalities) and
constraints that are egds and weakly acyclic tgds

• co-NP-complete for unions of conjunctive queries (with inequalities) and
constraints that are egds and weakly acyclic tgds



Application: semantic query optimization

Query optimization

• rewrite-based

• cost-based

Semantic query optimization

Rewritings enabled by satisfaction of integrity constraints:

• join elimination/introduction

• predicate elimination/introduction

• eliminating redundancies

• ...

Preference queries

The winnow operator ωC (Chomicki [15])

Find the best answers to a query, according to a given preference relation �C .

Relation Book(Title,Vendor,Price)

Preference: (i , v , p) �C1 (i ′, v ′, p′) ≡ i = i ′ ∧ p < p′

Indifference: (i , v , p) ∼C1 (i ′, v ′, p′) ≡ i 6= i ′ ∨ p = p′

Book Title Vendor Price

t1 The Flanders Panel amazon.com $14.75

t2 The Flanders Panel fatbrain.com $13.50

t3 The Flanders Panel bn.com $18.80

t4 Green Guide: Greece bn.com $17.30

Book Title Vendor Price

t1 The Flanders Panel amazon.com $14.75

t2 The Flanders Panel fatbrain.com $13.50

t3 The Flanders Panel bn.com $18.80

t4 Green Guide: Greece bn.com $17.30



Eliminating redundant occurrences of winnow

Redundant winnow (Chomicki [17])

Given a set of integrity constraints Σ, ωC (r) = r for every relation r satisfying
Σ iff Σ implies the dependency

R(t1) ∧ R(t2)⇒ t1 ∼C t2.

Example

Book(i1, v1, p1) ∧ Book(i2, v2, p2)⇒ i1 6= i2 ∨ p1 = p2

is a functional dependency in disguise:

Book(i1, v1, p1) ∧ Book(i2, v2, p2) ∧ i1 = i2 ⇒ p1 = p2.

If this dependency is implied by Σ, ωC (Book) = Book.

Constraint-generating dependencies (Baudinet et al. [5])

• general form:
∀t1, . . . tn. R(t1) ∧ · · · ∧ R(tn) ∧ C(t1, . . . , tn)⇒ C0(t1, . . . , tn)

• implication of CGDs is decidable for decidable constraint classes

• implication in PTIME for some classes of CGDs

• axiomatization not known

Prospects for integrity constraints

XML

• constraint classes

• normalization

• schema mapping

• equational chase

Semantic Web

• knowledge bases and ontologies

• extensions of ICs

• relational representations

Data mining

• discovery of FDs and INDs

Data cleaning
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Consistent query answers
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Whence Inconsistency?

Sources of inconsistency:

• integration of independent data sources with overlapping data

• time lag of updates (eventual consistency)

• unenforced integrity constraints

• dataspace systems,...

Eliminating inconsistency?

• not enough information, time, or money

• difficult, impossible or undesirable

• unnecessary: queries may be insensitive to inconsistency

Ignoring Inconsistency

Query results not reliable.

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Name

Gates

Grove

SELECT Name
FROM Employee
WHERE Salary ≤ 25M



Horizontal Decomposition

Decomposition into two relations:

• violators

• the rest

(De Bra, Paredaens [21])

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Grove Santa Clara 10M

Name → City Salary

Gates Redmond 20M

Gates Redmond 30M

Name → City Salary

Exceptions to Constraints

Weakening the contraints:

• functional dependencies → denial constraints

(Borgida [10])

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

except Name=’Gates’



The Impact of Inconsistency on Queries

Traditional view

• query results defined irrespective of integrity constraints

• query evaluation may be optimized in the presence of integrity constraints
(semantic query optimization)

Our view

• inconsistency reflects uncertainty

• query results may depend on integrity constraint satisfaction

• inconsistency may be eliminated or tolerated

Database Repairs

Restoring consistency:

• insertion, deletion, update

• minimal change?

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Name City Salary

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Name City Salary

Gates Redmond 20M

Grove Santa Clara 10M

Name → City Salary



Consistent Query Answering

Consistent query answer:

Query answer obtained in every
repair.

(Arenas, Bertossi, Chomicki [3])

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Name

Grove

SELECT Name
FROM Employee
WHERE Salary ≤ 25M

Name

Gates

Grove

SELECT Name
FROM Employee
WHERE Salary ≥ 10M

Research Goals

Formal definition
What constitutes reliable (consistent) information in an inconsistent database.

Algorithms

How to compute consistent information.

Computational complexity analysis

• tractable vs. intractable classes of queries and integrity constraints

• tradeoffs: complexity vs. expressiveness.

Implementation

• preferably using DBMS technology.

Applications

???



Basic Notions

Repair D ′ of a database D w.r.t. the integrity constraints IC :

• D ′: over the same schema as D

• D ′ |= IC

• symmetric difference between D and D ′ is minimal.

Consistent query answer to a query Q in D w.r.t. IC :

• an element of the result of Q in every repair of D w.r.t. IC .

Another incarnation of the idea of sure query answers
[Lipski: TODS’79].

A Logical Aside

Belief revision

• semantically: repairing ≡ revising the database with integrity constraints

• consistent query answers ≡ counterfactual inference.

Logical inconsistency

• inconsistent database: database facts together with integrity constraints
form an inconsistent set of formulas

• trivialization of reasoning does not occur because constraints are not used
in relational query evaluation.



Exponentially many repairs

Example relation R(A,B)

• violates the dependency A→ B

• has 2n repairs.

A B

a1 b1

a1 c1

a2 b2

a2 c2

· · ·
an bn

an cn

A→ B

It is impractical to apply the definition of CQA directly.

Computing Consistent Query Answers

Query Rewriting

Given a query Q and a set of integrity constraints IC , build a query Q IC such
that for every database instance D

the set of answers to Q IC in D = the set of consistent answers to Q
in D w.r.t. IC .

Representing all repairs

Given IC and D:

1 build a space-efficient representation of all repairs of D w.r.t. IC

2 use this representation to answer (many) queries.

Logic programs

Given IC , D and Q:

1 build a logic program PIC ,D whose models are the repairs of D w.r.t. IC

2 build a logic program PQ expressing Q

3 use a logic programming system that computes the query atoms present in
all models of PIC ,D ∪ PQ .



Constraint classes

Universal constraints
∀. ¬A1 ∨ · · · ∨ ¬An ∨ B1 ∨ · · · ∨ Bm

Example

∀. ¬Par(x) ∨Ma(x) ∨ Fa(x)

Denial constraints
∀. ¬A1 ∨ · · · ∨ ¬An

Example

∀. ¬M(n, s,m)∨¬M(m, t,w)∨s ≤ t

Functional dependencies

X → Y :

• a key dependency in F if
Y = U

• a primary-key dependency: only
one key exists

Example primary-key dependency

Name → Address Salary

Inclusion dependencies

R[X ] ⊆ S [Y ]:

• a foreign key constraint if Y is
a key of S

Example foreign key constraint

M[Manager ] ⊆ M[Name]

Query Rewriting

Building queries that compute CQAs

• relational calculus (algebra)  relational calculus (algebra)

• SQL  SQL

• leads to PTIME data complexity

Query

Emp(x , y , z)

Query

Emp(x , y , z)

Integrity constraint

∀ x , y , z , y ′, z ′. ¬Emp(x , y , z) ∨ ¬Emp(x , y ′, z ′) ∨ z = z ′

Integrity constraint

∀ x , y , z , y ′, z ′. ¬Emp(x , y , z) ∨ ¬Emp(x , y ′, z ′) ∨ z = z ′

Rewritten query

Emp(x , y , z) ∧ ∀ y ′, z ′. ¬Emp(x , y ′, z ′) ∨ z = z ′



The Scope of Query Rewriting

(Arenas, Bertossi, Chomicki [3])

• Queries: conjunctions of literals (relational algebra: σ,×,−)

• Integrity constraints: binary universal

(Fuxman, Miller [26])

• Queries: Cforest

• a class of conjunctive queries (π, σ,×)
• no non-key or non-full joins
• no repeated relation symbols
• no built-ins

• Integrity constraints: primary key functional dependencies

SQL Rewriting

SQL query

SELECT Name FROM Emp

WHERE Salary ≥ 10K

SQL rewritten query

SELECT e1.Name FROM Emp e1

WHERE e1.Salary ≥ 10K AND NOT EXISTS

(SELECT * FROM EMPLOYEE e2

WHERE e2.Name = e1.Name AND e2.Salary < 10K)

(Fuxman et al. [25])

• ConQuer: a system for computing CQAs

• conjunctive (Cforest) and aggregation SQL queries

• databases can be annotated with consistency indicators

• tested on TPC-H queries and medium-size databases



Conflict Hypergraph

Vertices
Tuples in the
database.

Edges

Minimal sets of tuples
violating a constraint.

Repairs

Maximal independent
sets in the conflict
graph.

(Gates, Redmond, 20M)(Gates, Redmond, 20M)

(Gates, Redmond, 30M)(Gates, Redmond, 30M)

(Grove, Santa Clara, 10M)(Grove, Santa Clara, 10M)

Computing CQAs Using Conflict Hypergraphs

Algorithm HProver

INPUT: query Φ a disjunction of ground atoms, conflict hypergraph G
OUTPUT: is Φ false in some repair of D w.r.t. IC?
ALGORITHM:

1 ¬Φ = P1(t1) ∧ · · · ∧ Pm(tm) ∧ ¬Pm+1(tm+1) ∧ · · · ∧ ¬Pn(tn)

2 find a consistent set of facts S such that
• S ⊇ {P1(t1), . . . ,Pm(tm)}
• for every fact A ∈ {Pm+1(tm+1), . . . ,Pn(tn)}: A 6∈ D or there is an edge

E = {A,B1, . . . ,Bm} in G and S ⊇ {B1, . . . ,Bm}.

(Chomicki et al. [20])

• Hippo: a system for computing CQAs in PTIME

• quantifier-free queries and denial constraints

• only edges of the conflict hypergraph are kept in main memory

• optimization can eliminate many (sometimes all) database accesses in
HProver

• tested for medium-size synthetic databases



Logic programs

Specifying repairs as answer sets of logic programs

• (Arenas, Bertossi, Chomicki [4])

• (Greco, Greco, Zumpano [27])

• (Cal̀ı, Lembo, Rosati [12])

Example

emp(x , y , z)← empD(x , y , z), not dubious emp(x , y , z).
dubious emp(x , y , z)← empD(x , y , z), emp(x , y ′, z ′), y 6= y ′.
dubious emp(x , y , z)← empD(x , y , z), emp(x , y ′, z ′), z 6= z ′.

Answer sets

• {emp(Gates,Redmond , 20M), emp(Grove,SantaClara, 10M), . . .}
• {emp(Gates,Redmond , 30M), emp(Grove,SantaClara, 10M), . . .}

Logic Programs for computing CQAs

Logic Programs

• disjunction and classical negation

• checking whether an atom is in all answer sets is Πp
2-complete

• dlv, smodels, . . .

Scope

• arbitrary first-order queries

• universal constraints

• approach unlikely to yield tractable cases

INFOMIX (Eiter et al. [23])

• combines CQA with data integration (GAV)

• uses dlv for repair computations

• optimization techniques: localization, factorization

• tested on small-to-medium-size legacy databases



Co-NP-completeness of CQA

Theorem (Chomicki, Marcinkowski [19])

For primary-key functional dependencies and conjunctive queries, consistent
query answering is data-complete for co-NP.

Proof.
Membership: S is a repair iff S |= IC and W 6|= IC if W = S ∪ A.
Co-NP-hardness: reduction from MONOTONE 3-SAT.

1 Positive clauses β1 = φ1 ∧ . . . φm, negative clauses β2 = ψm+1 . . . ∧ ψl .

2 Database D contains two binary relations R(A,B) and S(A,B):
• R(i , p) if variable p occurs in φi , i = 1, . . . ,m.
• S(i , p) if variable p occurs in ψi , i = m + 1, . . . , l .

3 A is the primary key of both R and S .

4 Query Q ≡ ∃x , y , z .
(
R(x , y) ∧ S(z , y)

)
.

5 There is an assignment which satisfies β1 ∧ β2 iff there exists a repair in
which Q is false.

Q does not belong to Cforest .

Data complexity of CQA

Primary keys Arbitrary keys Denial Universal

σ,×,− PTIME PTIME PTIME PTIME: binary

Πp
2-complete

σ,×,−,∪ PTIME PTIME PTIME Πp
2-complete

σ, π PTIME co-NPC co-NPC Πp
2-complete

σ, π,× co-NPC co-NPC co-NPC Πp
2-complete

PTIME: Cforest

σ, π,×,−,∪ co-NPC co-NPC co-NPC Πp
2-complete

• (Arenas, Bertossi, Chomicki [3])

• (Chomicki, Marcinkowski [19])

• (Fuxman, Miller [26])

• (Staworko, Ph.D., 2007)



The Semantic Explosion

Tuple-based repairs

• asymmetric treatment of insertion and deletion:
• repairs by minimal deletions only (Chomicki, Marcinkowski [19]) data

possibly incorrect but complete
• repairs by minimal deletions and arbitrary insertions (Cal̀ı, Lembo, Rosati

[11]) data possibly incorrect and incomplete

• minimal cardinality changes (Lopatenko, Bertossi [28])

Attribute-based repairs

• (A) ground and non-ground repairs (Wijsen [29])

• (B) project-join repairs (Wijsen [30])

• (C) repairs minimizing Euclidean distance (Bertossi et al. [7])

• (D) repairs of minimum cost (Bohannon et al. [9])

Computational complexity

• (A) and (B): similar to tuple based repairs

• (C) and (D): checking existence of a repair of cost < K NP-complete.

The Need for Attribute-based Repairing

Tuple-based repairing leads to information loss.

EmpDept

Name Dept Location

John Sales Buffalo

Mary Sales Toronto

Name → Dept

Dept → City

Name Dept Location

John Sales Buffalo

Name → Dept

Dept → City

Name Dept Location

Mary Sales Toronto

Name → Dept

Dept → City



Attribute-based Repairs through Tuple-based Repairs
Repair a lossless join decomposition.

The decomposition:

πName,Dept(EmpDept) on πDept,Location(EmpDept)

Name Dept Location

John Sales Buffalo

John Sales Toronto

Mary Sales Buffalo

Mary Sales Toronto

Name → Dept

Dept → City

Name Dept Location

John Sales Buffalo

Mary Sales Buffalo

Name → Dept

Dept → City

Name Dept Location

John Sales Toronto

Mary Sales Toronto

Name → Dept

Dept → City

Probabilistic framework for “dirty” databases

(Andritsos, Fuxman, Miller [2])

• potential duplicates identified and grouped into clusters

• worlds ≈ repairs: one tuple from each cluster

• world probability: product of tuple probabilities

• clean answers: in the query result in some (supporting) world

• clean answer probability: sum of the probabilities of supporting worlds
• consistent answer: clean answer with probability 1

Salaries with probabilities

EmpProb

Name Salary Prob

Gates 20M 0.7

Gates 30M 0.3

Grove 10M 0.5

Grove 20M 0.5

Name → Salary



Computing Clean Answers

SQL query

SELECT Name

FROM EmpProb e

WHERE e.Salary > 15M

SQL rewritten query

SELECT e.Name,SUM(e.Prob)

FROM EmpProb e

WHERE e.Salary > 15M

GROUP BY e.Name

EmpProb

Name Salary Prob

Gates 20M 0.7

Gates 30M 0.3

Grove 10M 0.5

Grove 20M 0.5

Name → Salary

Name Prob

Gates 1

Grove 0.5

SELECT e.Name,SUM(e.Prob)

FROM EmpProb e

WHERE e.Salary > 15M

GROUP BY e.Name

Taking Stock: Good News

Technology

• practical methods for CQA for a subset of SQL:
• restricted conjunctive/aggregation queries, primary/foreign-key constraints
• quantifier-free queries/denial constraints
• LP-based approaches for expressive query/constraint languages

• implemented in prototype systems

• tested on medium-size databases

The CQA Community

• over 30 active researchers

• up to 100 publications (since 1999)

• outreach to the AI community (qualified success)

• overview papers [8, 6, 16, 18]



Taking Stock: Initial Progress

“Blending in” CQA

• data integration: tension between repairing and satisfying source-to-target
dependencies

• peer-to-peer: how to isolate an inconsistent peer?

Extensions

• nulls:
• repairs with nulls?
• clean semantics vs. SQL conformance

• priorities:
• preferred repairs
• application: conflict resolution

• XML
• notions of integrity constraint and repair
• repair minimality based on tree edit distance?

Taking Stock: Largely Open Issues

Applications

• no deployed applications

• repairing vs. CQA: data and query
characteristics

• heuristics for CQA and repairing

CQA in context

• taming the semantic explosion

• CQA and data cleaning

• CQA and schema matching/mapping

Foundations

• defining measures of consistency

• more refined complexity analysis

• dynamic aspects
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