Data Integration: Query Evaluation

Jan Chomicki

University at Buffalo and Warsaw University

March 15, 2007
Data exchange

ϕ_S, ϕ_T, and ψ_T are conjunctions of atomic formulas.

Target integrity constraints Σ_t

- tuple-generating dependencies (tgds): $\forall x \ (\phi_T(x) \Rightarrow \exists y \ \psi_T(x, y))$
- equality-generating dependencies: $\forall x \ (\phi_T(x) \Rightarrow x_1 = x_2)$.

Source-to-target dependencies Σ_{st}

- tuple-generating dependencies: $\forall x \ (\phi_S(x) \Rightarrow \exists y \ \psi_T(x, y))$.

Given a source instance I, a target instance J is a solution for I if J satisfies Σ_t and (I, J) satisfy Σ_{st}.

A universal solution for I if it is a solution for I and there is a homomorphism from it to any other solution for I.

Solutions can contain labelled nulls. There may be multiple solutions...

Jan Chomicki (UB/UW) Data Integration: Query Evaluation March 15, 2007 2 / 10
ϕ_S, ϕ_T, and ψ_T are conjunctions of atomic formulas.

Target integrity constraints Σ_t
- tuple-generating dependencies (tgds): $\forall x \ (\phi_T(x) \Rightarrow \exists y \ \psi_T(x, y))$
- equality-generating dependencies: $\forall x \ (\phi_T(x) \Rightarrow x_1 = x_2)$.

Source-to-target dependencies Σ_{st}
- tuple-generating dependencies: $\forall x \ (\phi_S(x) \Rightarrow \exists y \ \psi_T(x, y))$.

Solution
Given a source instance I, a target instance J is
- a solution for I if J satisfies Σ_t and (I, J) satisfy Σ_{st}
- a universal solution for I if it is a solution for I and there is a homomorphism from it to any other solution for I
- solutions can contain labelled nulls
Data exchange

ϕ_S, ϕ_T, and ψ_T are conjunctions of atomic formulas.

Target integrity constraints Σ_t
- tuple-generating dependencies (tgds): $\forall x \ (\phi_T(x) \Rightarrow \exists y \ \psi_T(x, y))$
- equality-generating dependencies: $\forall x \ (\phi_T(x) \Rightarrow x_1 = x_2)$.

Source-to-target dependencies Σ_{st}
- tuple-generating dependencies: $\forall x \ (\phi_S(x) \Rightarrow \exists y \ \psi_T(x, y))$.

Solution

Given a source instance I, a target instance J is
- a solution for I if J satisfies Σ_t and (I, J) satisfy Σ_{st}
- a universal solution for I if it is a solution for I and there is a homomorphism from it to any other solution for I
- solutions can contain labelled nulls

There may be multiple solutions...
Certain answer

Given a query Q and a source instance I, a tuple t is a certain answer with respect to I if t is an answer to Q in every solution J for I.
Certain answer

Given a query Q and a source instance I, a tuple t is a certain answer with respect to I if t is an answer to Q in every solution J for I.

Conjunctive queries

- relational calculus: \exists, \land
- relational algebra: σ, π, \times
Certain answer

Given a query Q and a source instance I, a tuple t is a **certain answer** with respect to I if t is an answer to Q in every solution J for I.

Conjunctive queries

- relational calculus: \exists, \land
- relational algebra: σ, π, \times

Query evaluation

1. construct any universal solution J_0
2. evaluate the query over J_0
3. discard answers with nulls
4. the above returns certain answers for unions of conjunctive queries without inequalities
Building a universal solution [FKMP05]

Apply exhaustively a variant of the chase [AHV95] to the source instance using target and source-to-target dependencies.

Chasing a tgd

1. find a substitution h that (1) h makes the LHS true in the constructed instance, and (2) h cannot be extended to a substitution that makes the RHS true in that instance
2. apply h to the RHS, mapping the existentially quantified variables to fresh labelled nulls
3. add the resulting facts to the instance.

Chasing an egd

Find a substitution h such that makes the LHS true and $h(x_1) \neq h(x_2)$:

- if $h(x_1)$ and $h(x_2)$ are constants, then FAILURE
- otherwise, identify $h(x_1)$ and $h(x_2)$ (preferring constants).
Apply exhaustively a variant of the chase [AHV95] to the source instance using target and source-to-target dependencies.

Chasing a tgd

1. find a substitution h that (1) h makes the LHS true in the constructed instance, and (2) h cannot be extended to a substitution that makes the RHS true in that instance
2. apply h to the RHS, mapping the existentially quantified variables to fresh labelled nulls
3. add the resulting facts to the instance.
Apply exhaustively a variant of the chase [AHV95] to the source instance using target and source-to-target dependencies.

Chasing a tgd

1. find a substitution h that (1) h makes the LHS true in the constructed instance, and (2) h cannot be extended to a substitution that makes the RHS true in that instance
2. apply h to the RHS, mapping the existentially quantified variables to fresh labelled nulls
3. add the resulting facts to the instance.

Chasing an egd

Find a substitution h such that makes the LHS true and $h(x_1) \neq h(x_2)$:

- if $h(x_1)$ and $h(x_2)$ are constants, then FAILURE
- otherwise, identify $h(x_1)$ and $h(x_2)$ (preferring constants).
Result

- there is a sequence of chase applications that ends in failure: no universal solution
- otherwise: every finite sequence that cannot be extended yields a solution
Result

- there is a sequence of chase applications that ends in failure: no universal solution
- otherwise: every finite sequence that cannot be extended yields a solution

Weakly acyclic tgds

- prevent the recurrent generation of labelled nulls
- program dependency graph (PDG) of tgds:
 - nodes: attributes
 - edges: value propagation from LHS to RHS
 - special edges: for existential variables
- weakly acyclic tgd: no cycle in the PDG contains a special edge
Chase

Result

- there is a sequence of chase applications that ends in failure: **no universal solution**
- otherwise: every finite sequence that cannot be extended **yields a solution**

Weakly acyclic tgds

- prevent the recurrent generation of labelled nulls
- program dependency graph (PDG) of tgds:
 - nodes: attributes
 - edges: value propagation from LHS to RHS
 - special edges: for existential variables
- weakly acyclic tgd: no cycle in the PDG contains a special edge

Termination

For weakly acyclic tgds, each chase sequence is of length polynomial in the size of the input.
Data complexity of computing certain answers

- in PTIME for unions of conjunctive queries (without inequalities) and constraints that are egds and weakly acyclic tgd
- co-NP-complete for unions of conjunctive queries (with inequalities) and constraints that are egds and weakly acyclic tgd
- already co-NP-hard for conjunctive queries and LAV settings (with no target constraints) [AD98]
Local-as-view (LAV)

Setting

- **Source-to-target dependencies:**

 \[\forall t. R(t) \Rightarrow \phi_T(t) \]

- no target constraints (but FDs can be added)
- queries: sets of Datalog rules (no inequalities).
Local-as-view (LAV)

Setting

- **Source-to-target dependencies:**
 \[
 \forall t. R(t) \Rightarrow \phi_T(t)
 \]
- no target constraints (but FDs can be added)
- queries: sets of Datalog rules (no inequalities).

Query rewriting

- the rewriting produces a set of nonrecursive Datalog rules with function symbols:
 - EDB predicates: source relations
 - IDB predicates: target relations
- function symbols can be eliminated.
Inverse rules for every source-to-target dependency:

\[\forall x_1, \ldots, x_m. (A \Rightarrow \exists y_1, \ldots, y_k. B_1 \land \cdots \land B_n) \]

produce \(n \) inverse rules \(B'_1 \):

\[-A, \ldots, -B'_n \]

\(B'_i \) is like \(B_i \), except that each of \(y_1, \ldots, y_k \) is replaced by the (Skolem) term \(f(x_1, \ldots, x_m) \) where \(f \) is a different, unique function symbol.

all the occurrences of the same variable are replaced by the same term

Query evaluation through rewriting:

1. the query rule and the inverse rules are evaluated bottom-up
2. the evaluation terminates
3. only the substitutions that do not contain Skolem terms are returned to the user

Theorem:

Given a source instance \(I \), query evaluation returns the certain answers w.r.t. \(I \).
Query evaluation in LAV

Inverse rules

- for every source-to-target dependency:

\[\forall x_1, \ldots, x_m.(A \Rightarrow \exists y_1, \ldots y_k. B_1 \land \cdots \land B_n) \]

produce \(n \) inverse rules \(B'_1 : \neg A, \ldots, B'_n : \neg A \)

- \(B'_i \) is like \(B_i \), except that each of \(y_1, \ldots y_k \) is replaced by the (Skolem) term \(f(x_1, \ldots, x_m) \) where \(f \) is a different, unique function symbol.

- all the occurrences of the same variable are replaced by the same term
Inverse rules

- for every source-to-target dependency:

\[\forall x_1, \ldots, x_m. (A \Rightarrow \exists y_1, \ldots y_k. B_1 \land \cdots \land B_n) \]

produce \(n \) inverse rules \(B'_1 : -A, \ldots, B'_n : -A \)

- \(B'_i \) is like \(B_i \), except that each of \(y_1, \ldots y_k \) is replaced by the (Skolem) term \(f(x_1, \ldots, x_m) \) where \(f \) is a different, unique function symbol.

- all the occurrences of the same variable are replaced by the same term

Query evaluation through rewriting

- the query rule and the inverse rules are evaluated bottom-up
- the evaluation terminates
- only the substitutions that do not contain Skolem terms are returned to the user
Query evaluation in LAV

Inverse rules

- for every source-to-target dependency:

\[\forall x_1, \ldots, x_m. (A \Rightarrow \exists y_1, \ldots, y_k. B_1 \land \cdots \land B_n) \]

produce \(n \) inverse rules \(B'_1 : \neg A, \ldots, B'_n : \neg A \)

- \(B'_i \) is like \(B_i \), except that each of \(y_1, \ldots, y_k \) is replaced by the (Skolem) term \(f(x_1, \ldots, x_m) \) where \(f \) is a different, unique function symbol.

- all the occurrences of the same variable are replaced by the same term

Query evaluation through rewriting

- the query rule and the inverse rules are evaluated bottom-up
- the evaluation terminates
- only the substitutions that do not contain Skolem terms are returned to the user

Theorem

Given a source instance \(I \), query evaluation returns the certain answers w.r.t. \(I \).
Global-as-view (GAV)

Setting

- **Source-to-target dependencies:**
 \[\forall t. \phi_S(t) \Rightarrow R(t). \]
- no target constraints
- queries: unions of conjunctive queries (defined using Datalog)
Global-as-view (GAV)

Setting

- Source-to-target dependencies:
 \[\forall t. \phi_S(t) \implies R(t). \]
- no target constraints
- queries: unions of conjunctive queries (defined using Datalog)

Query evaluation by unfolding

1. replace each atom in the query that unifies with the head of a rule with the body of the rule (to which the mgu has been applied)
2. stop when only EDB goals are left
3. take the union \(Q_u \) of all obtained queries
4. the evaluation of \(Q_u \) returns the certain answers
O. Abiteboul and O. Duschka.
Complexity of Answering Queries Using Materialized Views.

S. Abiteboul, R. Hull, and V. Vianu.
Foundations of Databases.
Addison-Wesley, 1995.

Data Exchange: Semantics and Query Answering.