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Abstract

The binary relation framework has been shown to be applicable to many
real-life preference handling scenarios. Here we study preference contraction:
the problem of discarding selected preferences. We argue that the property
of minimality and the preservation of strict partial orders are crucial for con-
tractions. Contractions can be further constrained by specifying which pref-
erences should be protected. We consider preference relations that are finite
or finitely representable using preference formulas. We present algorithms
for computing minimal and preference-protecting minimal contractions for
finite as well as finitely representable preference relations. We study rela-
tionships between preference change in the binary relation framework and
belief change in the belief revision theory. We evaluate the proposed algo-
rithms experimentally and present the results.
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1. Introduction

A large number of preference handling frameworks have been developed
[16, 7, 20]. In this paper, we work with the binary relation preference frame-
work [10, 22]. Preferences are represented as ordered pairs of tuples, and sets
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of preferences form preference relations. Preference relations are required
to be strict partial orders (SPO): transitive and irreflexive binary relations.
The SPO properties are believed to capture the rationality of preferences [16].
This framework can deal with finite as well as infinite preference relations,
the latter represented using finite preference formulas.

Working with preferences in any framework, it is naive to expect that they
never change. Preferences can change over time: if one likes something now,
it does not mean one will still like it in the future. Preference change is an
active topic of current research [11, 17]. It was argued [15] that along with the
discovery of sources of preference change and elicitation of the change itself,
it is important to preserve the correctness of the preference model in the
presence of change. In the binary relation framework, a natural correctness
criterion is the preservation of SPO properties of preference relations.

An operation of preference change – preference revision – has been pro-
posed in [11]. We note that when a preference relation is changed using
a revision operator, new preferences are “semantically combined” with the
original preference relation. However, combining new preferences with the
existing ones is not the only way people change their preferences in real life.
Another very common operation of preference change is “semantic subtrac-
tion” from a set of preferences another set of preferences one used to hold, if
the reasons for holding the contracted preferences are no longer valid. That is,
we are given an initial preference relation � and a subset CON of � (called
here a base contractor) which should not hold. We want to change � in such
a way that CON does not hold in it. This is exactly opposite to the way
the preference revision operators change preference relations. Hence, such a
change cannot be captured by the existing preference revision operators.

In multi-agent scenarios, a negotiation between different agents may in-
volve giving up individual agents’ preferences [1]. In more complex scenarios,
preferences may be added as well as given up.

Another reason for contracting user preferences in real-life applications
is the need for widening preference query results. In many database applica-
tions, preference relations are used to compute sets of the best (i.e. the most
preferred) tuples, according to user’s preferences. Such tuples may represent
objects like cars, books, cameras etc. The operator which is used in the bi-
nary relation framework to compute such sets is called winnow [10] (or BMO
in [22]). The winnow operator is denoted as w�(r), where r is the original
set of tuples, and � is a preference relation. If the preference relation � is
large (i.e. the user has many preferences), the result of w�(r) may be too
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narrow. One way to widen the result is by discarding some preferences in �.
Those may be the preferences which do not hold any more or are not longer
important.

In this paper, we address the problem of contraction of preference rela-
tions. We consider it for finitely representable and finite preference relations.
We illustrate now preference contraction for finite (Example 1) and finitely
representable (Example 2) preference relations.

t1 t2 t3 t4 t5

Figure 1: Example 1. Mary’s preferences

Example 1 Assume a car dealer has a web site showing his inventory of
cars, and Mary is a customer interested in buying a car. Assume also that
Mary has a previous purchase history with the dealer, so her preferences
(possibly outdated) over cars are known: she prefers every car ti to every car
tj (denoted ti �1 tj) with i > j (i, j ∈ [1, 5]). Let the inventory r1 consist of
four cars (r1 = {t1, t3, t4, t5}), while t2 is currently missing. The preference
relation is illustrated in Figure 1 by the set of all edges, where an edge from
ti to tj shows that ti is preferred to tj. The set of the best cars according to
Mary’s preference relation is w�1(r1) = {t1}.

Assume that the dealer observes that while Mary is browsing the web site,
she indicates equal interest in three cars: t1 (as expected according to �1),
t3, and t5. As a result, her preference relation �1 has to be changed so that
t1, t3, and t5 are all among the best cars, i.e., they must not be dominated
by any car in the inventory. That implies that the preferences in the set
CON1 consisting of the following preferences: the preference of t1 over t3,
and the preference of t1, t3, and t4 over t5 do not hold any more and need to
be contracted (removed from �1). Those preferences are shown as dashed
arrows in Figure 1. Notice that since t2 is not in the inventory, and Mary has
not explicitly provided any information regarding her preferences involving t2,
the preferences of t1 over t2 and t2 over t3, t4 and t5 remain unchanged.

In the example above, we showed a simple scenario of preference contrac-
tion. The user preference relation there is a finite relation; and preferences
to be contracted are elicited from the user-provided feedback. Variations of
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this scenario are possible. First, the user’s preference relation may be infinite
but representable by a finite preference formula. Second, a possibly infinite
set of preferences to discard may also be defined by a formula.

Example 2 Assume that Bob prefers newer cars, and given two cars made
in the same year, the cheaper one is preferred.

t �2 t
′ ≡ t.year > t′.year ∨ t.year = t′.year ∧ t.price < t′.price

where >,< denote the standard orderings of rational numbers, the attribute
“year” defines the year when the car was made, and the attribute “price” –
its price. The information about all cars which are in stock now is shown in
the table r2 below:

id make year price

t1 Kia 2007 12000
t3 VW 2007 15000
t4 Kia 2006 15000
t5 VW 2006 7000

Then the set of the most preferred cars according to �2 is w�2(r2) = {t1}.
Assume that having observed the set w�2(r2), Bob understands that it is too
narrow. He decides that the car t3 is not really worse than t1. He generalizes
that by stating that the cars made in 2007 which cost 12000 are not better
than the cars made in 2007 costing 15000. Hence, the set of preferences the
user wants to discard can be represented by the relation CON2

CON2(t, t′) ≡ t.year = t′.year = 2007 ∧ t.price = 12000 ∧ t′.price = 15000.

The scenarios illustrated in the examples above have the following in
common: we have a (finite or finitely representable infinite) SPO preference
relation � and a set CON , finite of infinite, of preferences to discard. Our
goal is to modify �, so that the resulting preference relation is an SPO, and
the preferences in CON do not hold anymore.

Another important property of preference relation change is minimality.
Indeed, a simple way of removing a subset of a preference relation without
violating its SPO properties is to remove all the preferences from this re-
lation. However, most likely it is not what the user expects. Hence, it is
important to change the preference relation minimally.
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t1 t2 t3 t4 t5

(a) Naive contraction

t1 t2 t3 t4 t5

(b) Minimal contraction

t1 t2 t3 t4 t5

(c) Minimal contraction

Figure 2: Example 3

Example 3 Take Mary’s preferences from Example 1. A naive way to dis-
card CON1 (CON1 = {t1t3, t1t5, t3t5, t4t5}) from �1 is to represent the con-
tracted preference relation as �′1=�1 − CON1 (Figure 2(a)). However it
turns out that �′1 is not transitive (and thus not an SPO): t1 �′1 t2, t2 �′1 t3,
but t1 6�′1 t3; t1 �′1 t2, t2 �′1 t5, but t1 6�′1 t5. Hence, this change does not pre-
serve SPO. To make the changed preference relation transitive, some other
preferences have to be discarded in addition to CON1. At the same time,
discarding too many preferences is not a good solution since some of them
may be important. Therefore, we need to discard a minimal subset of �1

which contains CON1 and preserves SPO in the modified preference relation.
Two solutions are possible here: in the first case, we remove the preferences
P−1 = {t1t2} ∪CON1 (Figure 2(b) shows the contracted relation); in the sec-
ond – the preferences P−2 = {t2t3, t2t4, t2t5} ∪ CON1 (Figure 2(c) shows the
contracted relation).

Similarly, take �2 and CON2 from Example 2. The relation �′2 ≡
(�2 − CON2) is not transitive: if we take t5 = (VW, 2007, 12000), t6 =
(VW, 2007, 14000), and t7 = (VW, 2007, 15000), then t5 �′2 t6 and t6 �′2 t7
but t5 6�′2 t7. An SPO preference relation which is minimally different from
�2 and does not contain CON2 is shown below:

t �∗2 t′ ≡(t.y > t′.y ∨ t.y = t′.y ∧ t.p < t′.p)∧
¬(t.y = t′.y = 2007 ∧ t.p = 12000 ∧ t′.p > 12000 ∧ t′.p ≤ 15000)

As we can see, the relation �∗2 is different from the naive solution �′2 in the
sense that �∗2 implies that a car made in 2007 costing 12000 is not better
than a car made in 2007 costing from 12000 to 15000. We note that �∗2 is
not the only relation minimally different from �2 and not containing CON2.

The examples above show that when a subset of an SPO preference rela-
tion is discarded, the resulting relation may lose its SPO properties: while it
is always irreflexive, the transitivity axiom may not be preserved. A possible
way to remedy the problem is to relax the SPO requirements imposed on
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preference relations and allow non-transitive preference relations. However,
there is a number of reasons why all SPO axioms are important to preserve.
First, the SPO properties are believed to capture the rationality of prefer-
ences. The second reason is related to the usage of preferences in database
applications: There are many efficient algorithms for preference query eval-
uation which assume preference relations to be transitive [12, 6].

Example 4 A popular preference query evaluation algorithm SFS [12] works
as follows. Given a database table r and a preference relation �, SFS 1) sorts
r according to a weak order consistent with �, 2) picks every tuple o from r
in sorted order and checks if there is any tuple o′ in r that appeared before
o such that o′ � o. If there at least one such tuple, then o 6∈ w�(r) (i.e.,
not among the best in r according to �) and is discarded, and otherwise
o ∈ w�(r).

Take r = {o1, o3}, and �= {o1o2, o2o3} (i.e., not transitive). Applying
SFS to r and � results in w�(r) = {o1, o3}. Note that SFS fails to return
the correct answer (which is w�(r) = {o1}) due to the intransivity of �: the
tuple o2, the only tuple that dominates o3, is discarded before it can prevent
o3 from being output.

Hence, relaxing the SPO properties of preference relations would require
developing new preference query evaluation algorithms that are likely to be
less efficient [8]. Moreover, the approach of contracting preference relations
we propose in this paper has the property of closure: both the original and
the contracted preference relation are SPOs. Closure is important because
it makes iterating contraction (or revision [11]) possible.

As illustrated in Examples 1 and 2, the essence of the preference con-
traction approach we propose here is the following: when discarding a subset
CON of a preference relation �, some preferences additional to CON should
be discarded to make the resulting preference relation an SPO. A subset P−

of � which contains CON and whose removal from � preserves the SPO
properties of the modified preference relation is called a full contractor of �
by CON . The set Pm of alternative minimal full contractors for a given �
and CON may contain a large or even infinite number of elements. How to
perform contraction in such cases?

There are essentially two possibilities:

• Minimal contraction: The user does not care which full contractor from
Pm is chosen; the goal is to change the preference relation minimally.
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• Meet contraction: The user does not know (or does not want to reveal)
which full contractor from Pm to choose. So it is only safe to remove
all P− ∈ Pm from �. In this case, the minimality of change may be
sacrificed.

We notice that the two approaches to preference contraction are similar to
minimal contraction and meet contraction used in belief revision [19]. They
are justified by similar reasons. Section 8 contains a comparison analysis of
the framework proposed here and preference change in belief revision.

t1 t2 t3 t4 t5

Figure 3: Meet contraction

Example 5 Consider Example 3 and the contraction of �1 by CON1. The
set of all minimal full contractors Pm of �1 by CON1 is {P−1 , P−2 }. The
meet contraction corresponds to picking and removing both P−1 and P−2 from
�1. The result of the meet contraction is shown in Figure 3.

The operators of preference contraction – minimal contraction and meet
contraction – describe two extreme cases. However, they share an important
property: after specifying CON and the type of the contraction (minimal or
meet), the user has no further control over the result.

To overcome this disadvantage, we also introduce two variants of these
contraction operators operators: preference-protecting minimal contraction
and preference-protecting meet contraction. These operators require the user
to provide a set of preferences P+ ⊆� which she believes must hold after
the contraction (i.e., none of them should be contracted). This gives the user
limited control over the result of the contraction.

• Preference-protecting minimal contraction: We choose some P− ∈ Pm

that protects P+ (i.e., P− ∩ P+ = ∅) and remove it from �. The
minimality of change is preserved in this case because P− is a minimal
full contractor (i.e., a member of Pm).

• Preference-protecting meet contraction: We choose all P− ∈ Pm pro-
tecting P+ (i.e.,P− ∩ P+ = ∅) and remove them from �.
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Example 6 Take the set of minimal contractors Pm = {P−1 , P−2 } from Ex-
ample 3. Assume that the user wants to protect the preference set P+ = {t2t3}
from contraction. Out of the full contractors {P−1 , P−2 }, only P−1 protects it.
Hence, the preference-protecting minimal contraction will return P−1 , and the
result of the contraction is shown in Figure 2(b). Similarly, since the set of
all minimal full contractors protecting P+ is a singleton, Figure 2(b) also
shows the result of applying the preference-protecting meet contraction.

We observe that the operators of minimal contraction and meet con-
traction are special cases (i.e., P+ = ∅) of preference-protecting minimal
contraction and preference-protecting meet contraction, respectively.

Above we showed some simple use cases of preference contraction. In real-
life applications, preference contraction can be done in a step-by-step manner
by collecting user feedback and elaborating contraction: the user can change
the sets CON and P+, undo contraction, or vary the contraction parameters
and operators. Such feedback may be collected from the users directly, by
asking them questions about relationships of certain objects [4], or indirectly,
e.g., by analyzing users’ clicks on web pages or critiques of various parameters
of objects [9]. However, the details of such usage scenarios are beyond the
scope of this work.

The main results of the paper are as follows:

1. We present necessary and sufficient conditions for minimality of full
contractors.

2. We propose two algorithms for minimal preference contraction: the
first for finitely representable preference relations and the second for
finite preference relations. The algorithms require that CON be finitely
stratifiable.

3. We show that for the class of preference formulas studied in this paper
checking finite stratifiability can be performed using quantifier elimi-
nation.

4. We show how to reduce minimal preference-protecting contraction to
minimal contraction.

5. We show how meet and preference-protecting meet contraction can be
accommodated in our framework.

6. We study the relationship of preference contraction to belief contraction
and revision.

7. We perform experimental evaluation of the proposed framework and
present the results of the experiments (Appendix A).
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2. Basic Notions

The preference relation framework we use in the paper is a variation of the
one proposed in [10]. Let A = {A1, . . . , Am} be a fixed set of attributes. Ev-
ery attribute Ai is associated with a domain Di. We consider here two kinds
of infinite domains: C (uninterpreted constants) and Q (rational numbers).
Then the universe U of tuples is defined as

U =
∏
Ai∈A

Di

We assume that two tuples o and o′ are equal iff the values of their corre-
sponding attributes are equal.

Definition 1 A binary relation �⊆ U × U is a preference relation, if it is
a strict partial order (SPO) relation, i.e., transitive and irreflexive.

Binary relations R ⊆ U ×U considered in the paper are finite or infinite.
Finite binary relations are represented as finite sets of pairs of tuples. The
infinite binary relations we consider here are finitely representable as formu-
las. Given a binary relation R, its formula representation is denoted by FR.
That is, R(o, o′) iff FR(o, o′). A formula representation F� of a preference
relation � is called a preference formula.

We consider two kinds of atomic formulas here:

• equality constraints : o.Ai = o′.Ai, o.Ai 6= o′.Ai, o.Ai = c, or o.Ai 6=
c, where o, o′ are tuple variables, Ai is a C -attribute, and c is an
uninterpreted constant;

• rational-order constraints : o.Ai θ o
′.Ai or o.Ai θ c, where θ ∈ {=, 6=,

<, >, ≤,≥}, o, o′ are tuple variables, Ai is a Q -attribute, and c is a
rational number.

A preference formula whose all atomic formulas are equality (resp. ra-
tional-order) constraints will be called an equality (resp. rational order)
preference formula. If both equality and rational order constraints are used
in a formula, the formula will be called an equality/rational-order formula or
simply ERO -formula. Without loss of generality, we assume that all pref-
erence formulas are quantifier-free because ERO-formulas admit quantifier
elimination.

We also use the representation of binary relations as directed graphs, both
in the finite and the infinite case.
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Definition 2 Given a binary relation R ⊆ U × U and two tuples x and y
such that xRy (xy ∈ R), xy is an R-edge from x to y. A path in R (or
an R-path) from x to y is a finite sequence of R-edges such that the start
node of the first edge is x, the end node of the last edge is y, the end node
of every edge (except the last one) is the start node of the next edge in the
sequence, and no R-edge appears more than once in it. The sequence of nodes
participating in an R-path is an R-sequence. The length of an R-path is the
number of R-edges in the path. The length of an R-sequence is the number
of nodes in it.

An element of a preference relation is called a preference. We use the
symbol � with subscripts to refer to preference relations. We write x � y as
a shorthand for (x � y ∨ x = y). We also say that x is preferred to y and y
is dominated by x according to � if x � y.

In this paper, we present several algorithms for finite relations. Such
algorithms are implemented using the relational algebra operators: selection
σ, projection π, join ./, set difference −, and union ∪ [24]. Set difference and
union in relational algebra have the same semantics as in set theory, provided
the argument relations are compatible. The semantics of the other operators
are as follows:

• Selection σC(R) picks from the relation R all the tuples for which the
condition C holds. The condition C is a boolean expression involving
comparisons between attribute names and constants.

• Projection πL(R) returns a relation which is obtained from the relation
R by leaving in it only the columns listed in L and dropping the others.

• Join of two relations R and S

R ./
R.X1=S.Y1,...,R.Xn=S.Yn

S

computes a product of R and S, leaves only the tuples in which R.X1 =
S.Y1, . . . , R.Xn = S.Yn, and drops the columns S.Y1, . . . , S.Yn from the
resulting relation.

When we need more than one copy of a relation R in a relational algebra
expression, we add subscripts to the relation name (e.g. R1, R2 etc).
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3. Preference contraction

Preference contraction is an operation of discarding preferences. We as-
sume that when the user intends to discard some preferences, he or she
expresses the preferences to be discarded as a binary relation called a base
contractor. The interpretation of each pair in a base contractor is that the
first tuple should not be preferred to the second tuple. We require base con-
tractor relations to be subsets of the preference relation to be contracted.
Hence, a base contractor is irreflexive but not necessary transitive. Apart
from the containment in the original preference relation, we impose no other
restrictions on the base contractors (e.g., they can be finite or infinite), un-
less stated otherwise. Throughout the paper, base contractors are typically
referred to as CON .

Definition 3 A binary relation P− is a full contractor of a preference rela-
tion � by CON if CON ⊆ P− ⊆�, and (� − P−) is a preference relation
(i.e., an SPO). The relation (� − P−) is called the contracted relation.

A relation P− is a minimal full contractor of � by CON if P− is a full
contractor of � by CON , and there is no other full contractor P ′ of � by
CON s.t. P ′ ( P−.

Definition 4 A preference relation is minimally contracted if it is con-
tracted by a minimal full contractor. Contraction is the operation of con-
structing a full contractor. Minimal contraction is the operation of con-
structing a minimal full contractor.

We notice that the requirement of CON being a subset of � introduced
above is imposed solely for the sake of simplifying the discussion. Indeed,
if according to the user preference relation �, a tuple o is not better than
o′, then removing the preference of o over o′ from � is trivial. Moreover,
our definition of preference contraction guarantees that such a preference
cannot appear in the contracted �, because a contracted preference relation
is always a subset of the original one. Therefore, contracting � by some
CON∗ not contained in � is equivalent to contracting � by CON = �
∩ CON∗. At the same time, if preference contraction is used in conjunction
with preference revision [11] (which may result in adding new preference to
the revision preference relation), some special care has to be taken of the
preferences in (CON∗− �). However, the discussion of such techniques is
outside of the scope of the current paper.
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According to Definition 3, minimality of full contractor is defined in terms
of set containment. Obviously, other definitions are possible. For instance,
minimality can be defined in terms of the cardinality of a full contractor.
However, in this paper, we focus on developing techniques of preference con-
traction which would work for for finite as well as finitely representable (i.e.,
possibly infinite) preference relations. It is clear that the minimality-as-
minimum-cardinality criterion cannot be used in the latter case.

The notion of a minimal full contractor narrows the set of full contractors.
However, as we illustrate in Example 7, a minimal full contractor is generally
not unique for the given preference and base contractor relations. Moreover,
the number of minimal full contractors for infinite preference relations can be
infinite. Thus, minimal contraction differs from minimal preference revision
[11] which is uniquely defined for given preference and revising relations.

x1 x2 x3 x4

Figure 4: � and CON from Example 7

Example 7 Take the preference relation � which is a total order of
{x1, . . . , x4} (Figure 4). Let the base contractor relation CON be {x1x4}.
Then the following sets are minimal full contractors of � by CON : P−1 =
{x1x2, x1x3, x1x4}, P−2 = {x3x4, x2x4, x1x4}, P−3 = {x1x2, x3x4, x1x4}, and
P−4 = {x1x3, x2x4, x2x3, x1x4}.

The number of minimal full contractors can be rather large. As the
following example illustrates, it is in some cases exponential in the number
of edges in base contractor.

x1 . . . x2i+1 x2i+2 x2i+3 x2i+4 x2i+5 . . . x2n+1

Figure 5: � and CON from Example 8. Transitive edges are omitted

Example 8 Let a preference relation � be a total order of {x1, . . . , x2n+1} for
some n (i.e., xi � xj for 1 ≤ i < j ≤ 2n+ 1), and CON = {x2i+1x2i+3 | i ∈
[0, n− 1]}, consisting of n edges. To remove an edge x2i+1x2i+3 from � and
make the resulting relation transitive, we also need to remove either x2i+1x2i+2
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or x2i+2x2i+3 from it. Thus, we have 2n possible full contractors. It is easy
to show that each of them is minimal.

Another important observation here is that that the contracted preference
relation is defined as a subset of the original preference relation. We want
to preserve the SPO properties – transitivity and irreflexivity – of preference
relations. Since any subset of an irreflexive relation is also an irreflexive
relation, no additional actions are needed to preserve irreflexivity during
contraction. However, not every subset of a transitive relation is a transitive
relation. We need to consider paths in the original preference relation, which,
by transitivity, may produce CON -edges to be discarded. We call such paths
CON-detours.

Definition 5 Let � be a preference relation, and P ⊆ �. Then a �-path
from x to y is a P -detour if xy ∈ P .

First, let us consider the problem of finding any full contractor, not nec-
essary a minimal one. As we showed above, a contracted preference relation
cannot have any CON -detours. To achieve that, some additional edges of
the preference relation have to be discarded. However, when we discard these
edges, we have to make sure that there are no paths in the contracted pref-
erence relation which produce the removed edges. Hence, a necessary and
sufficient condition for a subset of a preference relation to be its full contractor
can be formulated in an intuitive way.

Lemma 1 Given a preference relation (i.e., an SPO) � and a base con-
tractor CON , a relation P− ⊆� is a full contractor of � by CON iff
CON ⊆ P−, and for every xy ∈ P−, (� − P−) contains no paths from
x to y.

Proof.
⇐ Prove that if for all xy ∈ P−, (� −P−) contains no paths from x to
y, then (� −P−) is an SPO. The irreflexivity of (� −P−) follows from
the irreflexivity of �. Assume (� −P−) is not transitive, i.e., there are
xz, zy ∈ (� −P−) but xy 6∈ (� −P−). If xy ∈ P− then the path xz, zy is
not disconnected, which contradicts the initial assumption. If xy 6∈ P−, then
the assumption of transitivity of � is violated.
⇒ First, CON 6⊆ P− implies that P− is not a full contractor of � by CON
by definition. Second, the existence of a path from x to y in (� −P−) for
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xy ∈ P− implies that (� −P−) is not transitive, which violates the SPO
properties. �

Now let us consider the property of minimality of full contractors. Let P−

be any minimal full contractor of a preference relation � by a base contractor
CON . Pick any edge xy of P−. An important question which arises here is
why is xy a member of P−? The answer is obvious if xy is also a member
of CON : every CON -edge has to be removed from the preference relation.
However, what if xy is not a member of CON? To study this problem, we
introduce the notion of the outer edge set of an edge belonging to a full
contractor relation.

Definition 6 Let CON be a base contractor of a preference relation �, and
P− be a full contractor of � by CON . Let xy ∈ (P− − CON), and

Φ0(xy) = {xy}, and
Φi(xy) = {uivi ∈ P−|∃ui−1vi−1 ∈ Φi−1(xy) . ui = ui−1 ∧ vi−1vi ∈ (� −P−)∨

vi−1 = vi ∧ uiui−1 ∈ (� −P−)}, for i > 0.

Then the outer edge set Φ(xy) for xy is defined as

Φ(xy) =
∞⋃
i=0

Φi(xy).

u x y v z

Figure 6: Φ(xy) for Example 9.

Intuitively, the outer edge set Φ(xy) of an edge xy ∈ (P− − CON) con-
tains all the edges of a full contractor P− which should be removed from P−

(i.e., added back to the preference relation �) to preserve the full contractor
property of the result, should xy be removed from P− (i.e., added back to
the preference relation). The reasoning here is as follows. When for some i,
Φi(xy) is removed from P−, then Φi+1(xy) has also to be removed from P−.
Otherwise, for every edge in Φi+1(xy), there is a two-edge path in �, one of
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whose edges is in Φi(xy) while the other is not contracted. Hence, if the SPO
properties of (� −P−) need to be preserved, removing xy from P− requires
recursively removing the entire Φ(xy) from P−.

The next example illustrates the inductive construction of an outer edge
set. Some properties of outer edge sets are shown in Lemma 2.

Example 9 Let a preference relation � be the set of all edges in Figure 6,
and P− be defined by the dashed edges. Let us construct Φ(xy) (assuming
that xy is not an edge of the base contractor CON).

• Φ0(xy) = {xy};

• Φ1(xy) = {xv, xz};

• Φ2(xy) = {uv, uz};

Thus, Φ(xy) = {xy, xv, xz, uv, uz}.

Lemma 2 Let P− be a full contractor of a preference relation � by a base
contractor CON . Then for every xy ∈ (P−−CON), Φ(xy) has the following
properties:

1. for all uv ∈ Φ(xy), u � x and y � v;

2. for all uv ∈ Φ(xy), ux, yv 6∈ P−;

3. if (Φ(xy) ∩ CON) = ∅, then P ′ = (P− − Φ(xy)) is a full contractor of
� by CON .

Proof. First, we prove that Properties 1 and 2 hold. We do it by induction
on the index of Φi(xy) used to construct Φ(xy). Since by definition {xy} =
Φ0(xy), Properties 1 and 2 hold by the construction of Φ0. Now let Properties
1 and 2 hold for Φn(xy), i.e.,

∀unvn ∈ Φn(xy)→ un � x ∧ y � vn ∧ unx, yvn 6∈ P− (1)

Pick any un+1vn+1 ∈ Φn+1(xy). By construction of Φn+1(xy), we have

∃unvn ∈ Φi(xy) . un+1 = un ∧ vn � vn+1 ∧ vnvn+1 6∈ P−∨
un+1 � un ∧ vn = vn+1 ∧ un+1un 6∈ P− (2)
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Note that un+1 � x and y � vn+1 follows from (1), (2), and transitivity of
�. Similarly, un+1x, yvn+1 6∈ P− is implied by (1), (2), and transitivity of
(� −P−). Hence, Properties 1 and 2 hold for ∪ni=0Φi(xy) for any n.

Now we prove Property 3: (� −P ′) is an SPO and CON ⊆ P ′. The
latter follows from CON ⊆ P− and Φ(xy) ∩ CON = ∅. Irreflexivity of (�
−P ′) follows from irreflexivity of �. Assume (� −P ′) is not transitive, i.e.,
there are uv 6∈ (� −P ′) and uz, zv ∈ (� −P ′). Transitivity of (� −P−)
implies that at least one of uz, zv is in Φ(xy). However, Property 1 implies
that exactly one of uz, zv is in Φ(xy) and the other one is not in Φ(xy)
and thus in (� −P−). However, uz ∈ Φ(xy) and zv ∈ (� −P−) imply
uv ∈ Φ(xy), and thus uv ∈ (� − (P− − Φ(xy))) = (� −P ′), i.e., we derive
a contradiction. A similar contradiction is derived in the case uz ∈ (� −P−)
and zv ∈ Φ(xy). Therefore, (� −P ′) is an SPO and P ′ is a full contractor
of � by CON . �

Out of the three properties shown in Lemma 2, the last one is the most
important. It says that if an edge xy of a full contractor is not needed to
disconnect any CON -detours, then that edge may be dropped from the full
contractor along with its entire outer edge set. A more general result which
follows from Lemma 2 is formulated in the next theorem. It represents a
necessary and sufficient condition for a full contractor to be minimal.

Theorem 1 (Full-contractor minimality test). Let P− be a full con-
tractor of � by CON . Then P− is a minimal full contractor of � by CON
iff for every xy ∈ P−, there is a CON-detour in � in which xy is the only
P−-edge.

Proof.
⇐ The proof in this direction is straightforward. Assume that for every
edge of the full contractor P− there exists at least one CON -detour in which
only that edge is in P−. If P− loses a subset P containing that edge, then
there is a CON -detour in � having no edges in (P−− P ), and thus (P−− P )
is not a full contractor of � by CON by Lemma 1. Hence, P− is a minimal
full contractor.
⇒ Let P− be a minimal full contractor. For the sake of contradiction,
assume for some xy ∈ P−, 1) there is no CON -detour which xy belongs to,
or 2) any CON -detour xy belongs to has at least one more P−-edge. If 1)
holds, then Φ(xy) has no edges in CON by construction. Thus, Lemma 2
implies that (P− − Φ(xy)) is a full contractor of � by CON . Since Φ(xy)
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is not empty, we get that P− is not a minimal full contractor which is a
contradiction. If 2) holds, then we use the same argument as above and
show that Φ(xy) ∩ CON = ∅. If Φ(xy) ∩ CON is not empty (i.e., some
uv ∈ Φ(xy) ∩ CON), then by Lemma 2,

u � x ∧ x � y ∧ y � v ∧ ux, yv 6∈ P−,

and thus there is a CON -detour going from u to v in which xy is the only
P−-edge. This contradicts the initial assumption. �

Note that using directly Definition 3 to check the minimality of a full
contractor P− requires checking the full contractor properties of all subsets
of P−. In contrast, the minimality checking method shown in Theorem 1
requires checking properties of distinct elements of P− with respect to its
other members.

Sometimes a direct application of the minimality test from Theorem 1
is hard because it does not give any bound on the length of CON -detours.
Hence, it is not clear how the test can be formulated in terms of validity of
finite formulas. Fortunately, the transitivity of preference relations implies
that the minimality condition from Theorem 1 can be stated in terms of
paths of length at most three.

Corollary 1 A full contractor P− of � by CON is minimal iff for every
edge xy ∈ P−, there is a CON-detour consisting of at most three edges
among which only xy is in P−.

Proof.
⇐ Trivial.
⇒ For every xy ∈ P−, pick any CON -detour T in which the only P−-edge is
xy. If its length is less or equal to three, then the corollary holds. Otherwise,
x is not the start node of T , or y is not the end node of T , or both. Let the
start node u of T be different from x. Since the only common edge of T and
P− is xy, every edge in the path from u to x is an element of (� −P−).
Transitivity of (� −P−) implies ux ∈ (� −P−). Similarly, yv ∈ (� −P−)
for the end node of T if y is different from v. Hence, there is a CON -detour
of length at most three in which xy is the only element of P−. �

As a result, the following tests can be used to check the minimality of a
full contractor P−. In the finite case, P− is minimal if the following relational
algebra expression results in an empty set
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P - [πP2.X,P2.Y((R1 − P1) ./
R1.Y=P2.X

P2 ./
P2.Y=R3.X

(R3 − P3) ./
R1.X=C.X, R3.Y=C.Y

C) ∪ πP2.X,P2.Y(P2 ./
P2.Y=R3.X

(R3 − P3) ./
P2.X=C.X, R3.Y=C.Y

C) ∪
πP2.X,P2.Y((R1 − P1) ./

R1.Y=P2.X
P2 ./

R1.X=C.X, P2.Y=C.Y
C) ∪ C ],

for the tables R, C and P with columns X and Y, storing �, CON , and
P− correspondingly. R1, R3, and P1, P2, P3 refer to renamings of R and P,
respectively. Applying the minimality test to finite relations is illustrated in
the next example.

Example 10 Take a preference relation represented by the table R, and a
base contractor represented by the table C (Figure 7(a)). Consider the table
P representing a full contractor of R by C. Then the result of the relational
algebra expression above evaluated for these tables is shown in the table D.
Since it is not empty, the full contractor represented by P is not minimal.
The minimality of P can be achieved by removing from it any (but only one)
tuple from D.

In the finitely representable case, P− is minimal if the following formula
is valid

∀x, y (FP−(x, y)⇒ F�(x, y)∧∃u, v . FCON(u, v) ∧ (F�(u, x) ∨ u = x)∧
(F�(y, v) ∨ y = v) ∧ ¬FP−(u, x) ∧ ¬FP−(y, v)).

We note that when the relations are definable using ERO-formulas, check-
ing minimality of a full contractor can be done by performing quantifier
elimination on the above formula.

Example 11 Let a preference relation � be defined by the formula F�(o, o′)
≡ o.d < o′.d, where d is a Q -attribute. Let a base contractor CON of � be
defined by the formula

FCON(o, o′) ≡ (1 ≤ o.d ≤ 2 ∧ o′.d = 4) ∨ (o.d = 0 ∧ o′.d = 3)

(Figure 7(b)). Denote the relation represented by the first and second dis-
juncts of FCON as CON1 and CON2 correspondingly. The relation P− de-
fined by FP− is a full contractor of � by CON

FP−(o, o′) ≡ (1 ≤ o.d ≤ 2 ∧ 2 < o′.d ≤ 4) ∨ (o.d = 0 ∧ 0 < o′.d ≤ 3).
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R X Y

u x
x y
y v
u y
x v
u v

C X Y

u v

P X Y

u x
y v
x v
u v

D X Y

u x
x v

(a) Finite case, Example 10

0 1 2 3 4

infinitely many edges

(b) Infinite case, Example 11

Figure 7: Checking minimality of a full contractor

Similarly, denote the relations represented by the first and the second dis-
juncts of FP− as P−1 and P−2 correspondingly. We use Corollary 1 to check
the minimality of P−. By the corollary, we need to consider CON-detours
of length at most three. Note that every P−1 -edge starts a one- or two-edge
CON-detour with the corresponding CON1-edge. Moreover, the second edge
of all such two-edge detours is not contracted by P−. Hence, the minimal
full contractor test is satisfied for P−1 -edges. Now we consider P−2 -edges. All
CON-detours, which these edges belong to, correspond to CON2-edges and
are started by P−2 -edges. Hence, we need to consider only CON2-detours of
length at most two. When a P−2 -edge ends in o′ with the value of d in (0, 1)
and (2, 3], the second edge in the corresponding two-edge CON2-detour is not
contracted by P−. However, when d is in [1, 2], the second edge is already in
P−. Hence, P− is not minimal by Corollary 1. To minimize it, we construct
P ∗ by removing the edges from P− which end in o′ with d in [1, 2]

FP ∗(o, o
′) ≡ (1 ≤ o.d ≤ 2 ∧ 2 < o′.d ≤ 4)∨

(o.d = 0 ∧ (0 < o.d′ < 1 ∨ 2 < o′.d ≤ 3))

4. Construction of a minimal full contractor

In this section, we propose a method of computing a minimal full con-
tractor. An approach for minimally contracting a preference relation � by
CON that seems intuitive is incremental contraction. Namely, one may try
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to partition CON arbitrarily into subsets CON = ∪ni=0CONi, and in every
i-th iteration (i = 0, . . . , n), compute a minimal full contractor P−i of the
intermediate preference relation (� −Pi−1) by CONi (given that P−1 = ∅),
expecting that P− = ∪ni=0P

−
i will be a minimal full contractor of � by the

entire CON . However, in the following example we show that to guarantee
the minimality of P−, the ways in which CON is partitioned and the inter-
mediate preference relations are contracted by individual partitions have to
be chosen carefully.

x1 x2 x3 x4

(a) Preference relation �

x1 x2 x3 x4

(b) Preference relation (� −P−
0 )

x1 x2 x3 x4

(c) Preference relation � − (P−
0 ∪ P−

1 )

Figure 8: Preference contraction

Example 12 Let the preference relation � be a total order shown in Figure
8(a), and a base contractor CON be {x1x3, x2x4}. Let us partition CON into
CON0 = {x1x3} and CON1 = {x2x4}. Then a minimal full contractor P−0
of � by CON0 is {x1x3, x1x2}, and a minimal full contractor P−1 of � −P−0
is {x2x4, x2x3}. However, the relation P− = P−0 ∪ P−1 is not a minimal
full contractor of � by CON because its subset {x1x3, x2x4, x2x3} is a full
contractor.

In the algorithms for computing minimal full contractors proposed in this
section, we essentially follow the approach described above. First, we show
a method of computing a full contractor of � by CON . Then we show why
such full contractor may fail to be minimal. Subsequently, we propose a
method for partitioning CON into strata, such that an iterative contraction
of � stratum-by-stratum results in a minimal full contractor.

4.1. Stratification of base contractor

We illustrate the idea of computing full contractors using the set P−1 from
Example 7. The set P−1 was constructed as follows: we took the CON -edge
x1x4 and put in P−1 all the edges which start some path from x1 to x4. For
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the preference relation � in Example 7, P−1 turned out to be a minimal
full contractor. As shown in the next lemma, the set consisting of all edges
starting CON -detours is a full contractor by CON .

Lemma 3 Let � be a preference relation and CON be a base contractor
relation of �. Then

P− := { xy | ∃x′v ∈ CON . x′ = x ∧ x′ � y ∧ y � v}

is a full contractor of � by CON .

Proof. By construction of P−, CON ⊆ P−. Lemma 1 implies that (�
−P−) is an SPO. Indeed, given any xy ∈ P−, every path from x to y is
disconnected by its starting edge. Hence, P− is a full contractor of � by
CON . �

However, in the next example we show that such a full contractor is not
always minimal. Recall that by Theorem 1, for every edge of a minimal full
contractor there should be a CON -detour which shares only that edge with
the contractor. However, it may be the case that an edge starting a CON -
detour does not have to be discarded because the CON -detour is already
disconnected by another edge of the full contractor.

x1 x2 x3 x4 x5

(a) Preference relation �

x1 x2 x3 x4 x5

(b) (� −P−)

x1 x2 x3 x4 x5

(c) Minimally con-
tracted �

Figure 9: Preference contraction

Example 13 Let a preference relation � be a total order of {x1, . . . , x5}
(Figure 9(a)). Let a base contractor CON be {x1x4, x2x5}. Let P− be defined
as in Lemma 3. That is P− = {x1x2, x1x3, x1x4, x2x3, x2x4, x2x5}. Then
(� − P−) is shown in Figure 9(b) as the set of solid edges. P− is not
minimal because (P− − {x1x2}) (Figure 9(c)) is also a full contractor of �
by CON . In fact, (P−−{x1x2}) is a minimal full contractor of � by CON .
As we can see, having the edge x1x2 in P− is not necessary. First, it is not
a CON-edge. Second, the edge x2x4 of the CON-detour x1 � x2 � x4 is
already in P−.

21



As we have shown in Example 13, a minimal full contractor can be con-
structed by including in it only the edges which start some CON -detour, if
the detour is not already disconnected. Thus, before adding such an edge to
a full contractor, we need to know if an edge in the detour but not starting
it is already in the full contractor. So instead of contracting � by CON
at once, we split CON into strata, and contract � incrementally by the
strata of CON . Essentially, a stratum of CON consists of the edges whose
detours can be disconnected in a single iteration without violating the mini-
mality of the full contractor computed so far. The method of splitting a base
contractor into strata we propose to use is as follows.

Definition 7 The stratum index of xy ∈ CON is the maximum length of
a �-path started by y and consisting of the end nodes of CON -edges. A
stratum is the set of all CON-edges with the same stratum index.

This method of stratification has the following useful property. If a pref-
erence relation is minimally contracted by the strata with indices of up to
n, then minimally contracting that relation by the stratum with the index
n+ 1 guarantees the minimality of the entire contraction.

Clearly, if a preference relation is infinite, a tuple can start �-paths of
arbitrarily large lengths. Therefore, the stratum index of a CON -edge may
be undefined. We exclude such cases here, so we can assume that for each
edge of CON relations, the stratum index is defined.

Definition 8 Let CON be a base contractor of a preference relation �. Let
KCON = {y | ∃x . xy ∈ CON}, and �CON = � ∩ KCON ×KCON . Then
CON is stratifiable iff for every y ∈ KCON there is an integer k such that
all the paths started by y in �CON are of length at most k. CON is finitely
stratifiable iff there is a constant k such that all paths in �CON are of length
at most k.

The intuition beyond the definition above is as follows. The KCON defines
the set of all the end nodes of CON -edges, i.e., all the nodes which will lose
incoming edges after the contraction. The relation �CON is the restriction
of � to the set KCON .

Definition 8 implies that for every edge of a stratifiable CON , the stratum
index is defined. Since the shortest path in �CON is of length 0, the least
stratum index for stratifiable relations is 0.
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Example 14 Take a preference relation �2

t �2 t
′ ≡ t.price < t′.price

where the domain is the set of rational numbers Q , and base contractors
CON1 and CON2

CON1(t, t′) =t.price < 10, 000;

CON2(t, t′) =t.price < t′.price ∧ (t′.price = 5, 000 ∨ t′.price = 6, 000).

Then KCON1 and KCON2 are defined by FCONK1
(x) = > and FCONK2

(x) =
x.price = 5, 000 ∨ x.price = 6, 000, respectively. Hence, �CON1 and �CON2

are defined by

F�CON1
(t, t′) =t.price < t′.price;

F�CON2
(t, t′) =t.price = 5, 000 ∧ t′.price = 6, 000.

Clearly, the length of paths in �CON1 is unbounded. Hence, CON1 is not
finitely stratifiable. The relation CON2 is finitely stratifiable – the longest
path in �CON2 is of length 1.

Above we illustrate the finite stratifiability property of a base contractor.
The preference relation and the base contractors are represented as ERO
formulas. It is an open question whether there are stratifiable relations,
defined using ERO formulas, which are not finitely stratifiable.

4.2. Computation of minimal full contractor

Below we present an approach of constructing a minimal full contractor
for a stratifiable relation CON .

Theorem 2 (Minimal full contractor construction). Let � be a pref-
erence relation, and CON be a stratifiable base contractor of �. Let Li be
the set of the end nodes of all CON-edges of stratum i. Then P−, defined as
follows, is a minimal full contractor of � by CON

P− =
∞⋃
i∈0

Ei,

where

Ei = {xy | ∃v ∈ Li . xv ∈ CON ∧ x � y ∧ y � v ∧ yv 6∈ (P−i−1 ∪ CON)}
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P−−1 = ∅,

P−i =
i⋃

j=0

Ei

Intuitively, the set Ei contains all the CON edges of stratum i along with
the edges of � which need to be discarded to contract the preference relation
by that stratum. P−i is the union of all such sets up to stratum i.

Proof of Theorem 2. Every Ei contains the CON -edges of stratum i.
Thus, P− contains CON . Now we prove that (� −P−) is an SPO. Its
irreflexivity follows from the irreflexivity of �. Transitivity is proved by
induction on stratum index.

It is given that � is transitive. Assume (� −P−n ) is transitive. Prove
that (� −P−n+1) = (� −(P−n ∪ En+1)) is transitive. For the sake of contra-
diction, assume

∃x, y, z . xy 6∈ (� −P−n+1) ∧ xz, zy ∈ (� −P−n+1) (1)

which implies

xz, zy 6∈ En+1 ∪ P−n (2)

Transitivity of (� −P−n ) and (1) imply xy ∈ (� −P−n ) and thus xy ∈ En+1.
Hence,

∃v ∈ Ln . xv ∈ CON ∧ x � y ∧ y � v ∧ yv 6∈ (P−n ∪ CON) (3)

According to (3), y � v. If y = v, then (2), (1) and (3) imply xz ∈ En+1

which is a contradiction. If y � v, then xz 6∈ En+1 implies zv ∈ P−n ∪ CON
by the construction of En+1. Note that zv ∈ CON implies zv is a CON -edge
of stratum index n+ 1 and thus either zy ∈ En+1 or yv ∈ P−n ∪CON , which
contradicts (2) and (3). If zv ∈ P−n , then zy, yv 6∈ P−n implies intransitivity
of (� −P−n ), which contradicts the inductive assumption. Thus, (� −P−n+1)
is transitive by induction. Assume that (� −P−) is not transitive. The
violation of transitivity means that there is an edge xy ∈ P− such that there
exists a path from x to y none of whose edges is in P− (Lemma 1). Since xy
must be in P−n for some n, that implies intransitivity of (� −P−n ), which is
a contradiction. Thus P− is a full contractor of � by CON .
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Now we prove that P− is a minimal full contractor. If it is not, then by
Theorem 1, there is xy ∈ P− for which there is no CON -detour which shares
with P− only the edge xy. Note that xy ∈ P− implies xy ∈ En for some n.
By definition of En, there is a CON -detour x � y � v which shares with
P−n only xy. Since all CON -detours which xy belongs to have other P−-
edges, yv ∈ P−. Since yv 6∈ P−n , there must exist k > n such that yv ∈ Ek.
However, that is impossible by construction: every CON -detour which may
be started by yv must have the stratum index not greater than n. �

x1 x2 x3 x4 x5

(a) � and CON

x1 x2 x3 x4 x5

(b) P−0

x1 x2 x3 x4 x5

(c) P−1

Figure 10: Using Theorem 2 to compute a minimal full contractor

Example 15 Let � and CON be as in Example 13 (Figure 10(a), the tran-
sitive edges are omitted for clarity). We use Theorem 2 to construct a mini-
mal full contractor of � by CON . The relation CON has two strata with the
end nodes L0 = {x5}, L1 = {x4}. Then E0 = {x2x3, x2x4, x2x5}, P−0 = E0,
E1 = {x1x3, x1x4}, P−1 = E0 ∪ E1, and a minimal full contractor of � by
CON is P− = P−1 .

4.3. Prefix and suffix full contractors

It is easy to observe that the minimal full contractor P− constructed in
Theorem 2 has the property that its every edge xy starts at least one CON -
detour in which xy is the only P−-edge. Full contractors which have this
property are called prefix. Prefix full contractors are minimal by Theorem 1.
It turns out that for a given preference relation and a given base contractor,
a prefix full contractor is unique.

Proposition 1 Given a preference relation � and a stratifiable base con-
tractor CON , there exists a unique prefix full contractor P− of � by CON .

Proof. The existence of a prefix full contractor follows from Theorem 2.
The fact that every prefix full contractor is equal to P− constructed by The-
orem 2 can be proved by induction on the stratum index of CON . Namely,
we show that for every n, P−n is contained in every prefix full contractor of �
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by CON . Clearly, the set E0 contracting � by the 0th stratum of CON has
to be in any prefix full contractor. Assume every edge in P−n is in any prefix
full contractor of � by CON . If an edge xy ∈ En+1 − CON , then there is
a CON -detour x � y � v in which xy is the only P−-edge (i.e., yv 6∈ P−).
Hence if xy is not in some prefix full contractor P ′, then yv has to be in P ′

by Lemma 1. However, P−n ( P ′ is enough to disconnect every CON -detour
with index up to n, and yv can only start a CON -detour with the stratum
index up to n. Hence P ′ is not a minimal full contractor and P− is a unique
prefix full contractor. �

A natural question which arises after the discussion of prefix full contrac-
tors is whether the suffix full contractor can be constructed similarly to the
prefix full contractor above. Analogously, a full contractor P− of � by CON
is suffix if every edge xy of P− ends at least one CON -detour of � in which
xy is the only P−-edge. Note that as in the case of the prefix full contractor,
the suffix full contractor is minimal by Theorem 1. It turns out that the
connection between prefix and suffix full contractors is straightforward. To
define it, we use the notion of the inverse of a binary relation.

Definition 9 Given a binary relation R ⊆ U × U , the inverse Rinv of R is

Rinv = {xy | yx ∈ R}

Take a preference relation � and its base contractor CON . It is clear that
�inv is a preference relation (i.e., an SPO), and CON inv is a base contractor
of �inv (i.e., CON inv ⊆ �inv).

Proposition 2 Take a preference relation � and its base contractor CON .
Let P− be the prefix full contractor of �inv by CON inv. Then P−inv is the
suffix full contractor of � by CON .

Proof. The fact that P−inv is a full contractor of � by CON follows from
the definitions of SPO and the inverse of a binary relation. To prove that
P−inv is the suffix full contractor of � by CON , recall that the prefix prop-
erty of P− implies that every edge xy of P− starts some CON inv-detour of
�inv in which xy is the only P−-edge. In �, the edge yx ∈ P− ends the
inverse of that detour and is the only P−inv-edge in it. �

Note that Proposition 2 and the fact that the inverse of the inverse of a
relation R is R itself imply that the suffix full contractor of � by CON is
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unique. To compute the suffix full contractor of � by CON , one may com-
pute �inv and CON inv, use Theorem 2 to compute the prefix full contractor
P− of �inv by CON inv, and compute the inverse of P−. At the same time,
it is important to remember that one of the preconditions of that theorem
is that CON must be stratifiable w.r.t. �. By definition of inverse, CON
being stratifiable w.r.t. � does not imply that CON inv is stratifiable w.r.t.
�inv and vice versa.

5. Contraction by finitely stratifiable base contractors

In this section, we consider the practical issues of computing minimal full
contractors. In particular, we show how the method of constructing a prefix
full contractor we have proposed in Theorem 2 can be adapted to various
classes of preference and base contractor relations.

Due to the connection between prefix and suffix full contractors discussed
in the previous section, the same methods can be used to compute suffix full
contractors (with the overhead of computing inverses). From now on, we
focus on prefix full contractors only.

Observe that the definition of the minimal full contractor in Theorem 2
is recursive. Namely, to find the edges we need to discard for contracting the
preference relation by the stratum n + 1 of CON , we need to know which
edges to discard for contracting it by all the previous strata. It means that
for base contractor relations which are not finitely stratifiable (i.e., CON
has infinite number of strata), the corresponding computation will never
terminate.

Assume that CON is a finitely stratifiable relation. First we note that
any base contractor of a finite preference relation is finitely stratifiable: all
paths in such preference relations are not longer than the size of the relation,
and base contractors are required to be subsets of the preference relations. At
the same time, if CON is a base contractor of an infinite preference relation,
then it can be finitely stratifiable without being finite. In particular, it may
be the case that the length of all paths in �CON is bounded, but the number
of paths is infinite.

Below we consider the cases of finite and finitely representable, finitely
stratifiable base contractors separately.

27



5.1. Computing the prefix full contractor: finitely representable relations

Here we assume that the relations CON and � are represented by finite
ERO-formulas FCON and F�. We aim to construct a finite ERO-formula
FP− which represents the prefix full contractor of � by CON . The function
minContr(F�, FCON) shown below exploits the method of constructing pre-
fix full contractors from Theorem 2, adapted to formula representations of
relations. All the intermediate variables used in the algorithm store formu-
las. Hence, for example, any expression in the form ′′F (x, y) := . . .′′ means
that the formula-variable F is assigned the formula written in the right-hand
side, which has two free tuple variables x and y. The operator QE used in
the algorithm computes a quantifier-free formula equivalent to its argument
formula. For ERO-formulas, the operator QE runs in time polynomial in the
size of its argument formula (if the number of attributes in A is fixed), and
exponential in the number of attributes in A.

The function minContr (Algorithm 1) starts with an empty full contractor
P−−1 (line 2), then the formulas FKCON

and F�CON
representing KCON and

�CON are computed (lines 3 and 4) by definition of those sets. To get the
0-th stratum of CON , the function getStratum is used (line 5). After that,
in every iteration of the while-loop, we compute the formula defining Ei

(line 7) as in Theorem 2, compute the formula representing the intermediate
full contractor FP−i

(line 8), and compute the formula FLi
representing the

next stratum. The while-loop terminates when the next stratum contains
no edges (i.e., FLi

is not defined). Finally, the full contractor of � by CON
is returned.

To compute formulas representing different strata of CON , getStratum
(Algorithm 2) is used. It takes three parameters: the formula F�CON

repre-
senting the relation �CON , the formula FKCON

representing the set of the end
nodes of CON -edges, and the stratum index i. It returns a formula which
represents the set of the end nodes of CON -edges of stratum i , or undefined
if the corresponding set is empty. That formula is computed according to
the definition of a stratum.
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Algorithm 1 minContr(F�, FCON)

1: i = 0
2: FP−−1

(x, y) := false

3: FKCON
(y) := QE(∃x . FCON(x, y))

4: F�CON
(x, y) := FCON(x, y) ∧ FKCON

(x) ∧ FKCON
(y)

5: FLi
(y) := getStratum(F�CON

, FKCON
, i)

6: while FLi
is defined do

7: FEi
(x, y) := QE(∃v . FLi

(v) ∧ FCON(x, v) ∧ F�(x, y)∧
(y = v ∨ F�(y, v) ∧ ¬(FP−i−1

(y, v) ∨ FCON(y, v))))

8: FP−i
(x, y) := FP−i−1

(x, y) ∨ FEi
(x, y)

9: i := i + 1;
10: FLi

(y) := getStratum(F�CON
, FKCON

, i)
11: end while
12: return FP−i

Algorithm 2 getStratum(F�CON
, FKCON

, i)

Require: i ≥ 0
1: if i = 0 then
2: FLi

(y) := QE( FKCON
(y) ∧ ¬∃x1(F�CON

(y, x1)))
3: else
4: FLi

(y) := QE( ∃x1, . . . , xi . F�CON
(y, x1) ∧ F�CON

(x1, x2) ∧ . . .
∧ F�CON

(xi−1, xi))∧ ¬∃x1, . . . , xi+1 . F�CON
(y, x1)

∧ F�CON
(x1, x2) ∧ . . . ∧ F�CON

(xi, xi+1)))
5: end if
6: if QE(∃y . FLi

(y)) then
7: return FLi

8: else
9: return undefined

10: end if

Proposition 3 Let CON be a finitely stratifiable base contractor of a pref-
erence relation �. Then Algorithm 1 terminates and computes the prefix full
contractor of � by CON .

Proposition 3 holds because Algorithm 1 uses the construction from The-
orem 2. Below we show an example of computing the prefix full contractor
for a finitely representable preference relation.
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Figure 11: Example 16

Example 16 Let a preference relation � be defined by the following formula

F�(o, o′) ≡ o.price < o′.price

and a base contractor CON (Figure 11) be defined by

FCON(o, o′) ≡ (11000 ≤ o.price ≤ 13000 ∧ o′.price = 15000)∨
(10000 ≤ o.price ≤ 12000 ∧ o′.price = 14000)

where price is a Q -attribute. Then FKCON
(o) ≡ o.price = 14000∨ o.price =

15000 and F�CON
(o, o′) ≡ F�(o, o′)∧FKCON

(o)∧FKCON
(o′) (Figure 11). The

end nodes of the CON strata are defined by the following formulas:

FL0(o) ≡ o.price = 15000
FL1(o) ≡ o.price = 14000

The relations contracting all CON strata are defined by the following formu-
las

FE0(o, o
′) ≡ 11000 ≤ o.price ≤ 13000 ∧ 13000 < o′.price ≤ 15000

FE1(o, o
′) ≡ 10000 ≤ o.price ≤ 11000 ∧ 13000 < o′.price ≤ 14000

Finally, a full contractor P− of � by CON is defined by FP−(o, o′) ≡
FE1(o, o

′) ∨ FE2(o, o
′).

The finite stratifiability property of CON is crucial for the termination
of the algorithm: the algorithm does not terminate for relations which are
not finitely stratifiable. Hence, given a base contractor relation, it is useful
to know if it is finitely stratifiable or not. Let us consider the formula F�CON

.
Without loss of generality, we assume it is represented in DNF. By definition,
CON is a finitely stratifiable relation iff there is a constant k such that all
�CON paths are of length at most k. In the next theorem, we show that this
property can be checked by a single evaluation of the quantifier elimination
operator.
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Theorem 3 (Checking finite stratifiability property). Let FR be an
ERO-formula, representing an SPO relation R, in the following form

FR(o, o′) = FR1(o, o
′) ∨ . . . ∨ FRl

(o, o′),

where FRi
is a conjunction of atomic formulas. Then checking if there is a

constant k such that the length of all R-paths is at most k can be done by a
single evaluation of QE over a formula of size linear in |FR|.

In Theorem 3, we assume that each atomic formula using the operators
≤,≥ is transformed to a disjunction of two formulas, one which uses the
strict comparison operator and the other using the equality operator. The
proof of Theorem 3 and the details of the corresponding finite stratifiability
property test are provided in Appendix B.

5.2. Computing prefix full contractor: finite relations

In this section, we consider finite relations � and CON . We assume that
the relations are stored in separate tables: the preference relation table R and
the base contractor table C, each having two columns X and Y . Every tuple
in a table corresponds to an element of the corresponding binary relation.
Hence, R has to be an SPO and C ⊆ R. Here we present an algorithm,
Algorithm 3, for computing the prefix full contractor of a preference relation
� by CON represented by such tables. Essentially, the algorithm is an
adaptation of Theorem 2.

The function minContrFinite takes two arguments: R and C. The func-
tion is implemented in terms of relational algebra operators. First, it con-
structs the table K with one column Y storing the end nodes of all C-edges.
K corresponds to KCON (Definition 8) and is computed analogously. Sec-
ond, it computes the table RC storing a restriction of the original preference
relation R to K (as �CON in Definition 8). These two tables are needed for
obtaining the strata of C. After that, the function picks all strata of C one
by one and contracts the original preference relation by each stratum in turn,
as shown in Theorem 2. In every iteration of the while-loop, it computes
the end nodes E of the current stratum (line 8), removes them from K (line
10) and removes the C-edges of the current stratum from RC, to prepare
them for the next iteration. In line 13, we compute the table P with two
columns X and Y , which represents the minimal full contractor computed
so far. The while-loop terminates when the table K is exhausted (i.e., all
strata have been processed).
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The extraction of the strata of CON in the order of the stratum index is
performed as follows. It is clear that the nodes ending CON -edges of stratum
0 do not start any edge in RC. The set E computed in line 8 is the difference
of the set K of nodes ending C-edges and the set of nodes starting some edges
in RC. Hence, the initial value of E contains all the nodes ending C-edges
of stratum 0. To get the end nodes of the next stratum of C, we need to
remove all the edges from RC which end in members of E, and remove E
from K. After the stratum with the highest index is obtained, the relation
K becomes empty.

Algorithm 3 uses two renamings of K (K1 and K2) and two renamings
of R (R1 and R1).

Algorithm 3 minContrFinite(R, C)

Require: R is transitive, C ⊆ R
1: P ← C
2: /* Get the end nodes of all C-edges */
3: K ← πY (C)
4: /* RC is related to R as �CON to � in Definition 8 */
5: RC ← πR.X, R.Y (K1 ./

K1.Y =R.X
R ./
K2.Y =R.Y

K2)

6: while K not empty do
7: /* Get the end nodes of the next stratum C-edges */
8: E ← K − πX(RC)
9: /* Prepare K and RC for the next iteration */

10: K ← K − E
11: RC ← RC − RC ./

RC .Y =E.Y
E

12: /* Add to P the R-edges contracting the current stratum of C*/
13: P ← P ∪ πR1.X, R1.Y (R1 ./

R1.Y = R2.X
(R2 − P ) ./

R1.X = C.X, R2.Y = C.Y

(C ./
C.Y = E.Y

E))

14: end while
15: return P

Proposition 4 Algorithm 3 computes the prefix full contractor of R by C.
It can be implemented in O(|C|2 · |R| · log|R|) time.

The correctness of Proposition 4 holds because Algorithm 3 follows from
Theorem 2. To compute the running time, we assume that the cost of binary
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operation (join, union, difference) of two relations T and S to be O(|T + S|)
if both arguments are sorted on the same key, and O(|T | · log|S|) otherwise.
That cost can be clearly reduced with an appropriate use of indexing and
hashing. All the input arguments and the intermediate relations used in
Algorithm 3 are kept sorted. The relation P , containing the intermediate
full contractor edges, and the relation R are stored as a single relation, in
which edges belonging to P are marked.

In line 1, the relation C is sorted on (X, Y ) and copied to P . In line 3,
the projection of C is computed, the result is sorted on Y and copied to K.
The relation RC computed in line 5 is sorted on (X, Y ). The processing of
lines 1-5 takes time O(|R · log|R|) (given that |C| ≤ |R|). The running time
of the body of the while-loop is clearly dominated by the running time of
line 13, which is O(|C| · |R| · log|R|). Finally, since the size of K is O(|C|),
the running time of the algorithm is as stated in Proposition 4.

6. Preference-protecting contraction

Here we propose an operator of preference-protecting contraction. In
addition to a base contractor CON , a subset P+ of the original preference
relation to be protected from removal in the contracted preference relation
may also be specified. Such a relation is complementary with respect to
the base contractor: the relation CON defines the preferences to discard,
whereas the relation P+ defines the preferences to protect.

Definition 10 Let � be a preference relation and CON be a base contractor
of �. Let a relation P+ be such that P+ ⊆�. A full contractor P− of � by
CON such that P+∩P− = ∅ is called a P+-protecting full contractor of � by
CON . A minimal full contractor P− of � by CON such that P+ ∩ P− = ∅
is called a P+-protecting minimal full contractor of � by CON .

Given any full contractor P− of � by CON , by Lemma 1, P− must
contain at least one edge from every CON -detour. Thus, if P+ contains
an entire CON -detour, protecting P+ while contracting � by CON is not
possible.

Theorem 4 Let CON be a stratifiable base contractor relation of a prefer-
ence relation � such that P+ ⊂�. There exists a minimal full contractor of
� by CON that protects P+ iff P+

TC ∩ CON = ∅, where P+
TC is the transitive

closure of P+.
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As we noted, the necessary condition of the theorem above follows from
Lemma 1. The sufficient condition follows from Theorem 5 that we prove
further.

A naive way of computing a preference-protecting minimal full contractor
is by finding a minimal full contractor P− of (� − P+) and then adding P+

to P−. However, (� − P+) is not an SPO in general, thus obtaining SPO
of � − (P− ∪ P+) becomes problematic.

The solution we propose here uses the following idea. First, we find a base
contractor CON ′ such that minimal contraction of � by CON ′ is equivalent
to minimal contraction of � by CON with protected P+. After that, we
compute a minimal full contractor of � by CON ′ using Theorem 2.

Recall the full contractor P− constructed using Theorem 2. The prefix
property of P− implies that if edges of P+ do not start CON -detours in
�, then P− ∩ P+ = ∅. Otherwise, assume that an edge xy ∈ P+ starts
a CON -detour in �. By Lemma 1, any P+-protecting full contractor P−

has to contain an edge (different from xy) which belongs to a CON -detour
started by xy. For a CON -detour of length two started by xy, P− has to
contain the edge ending the CON-detour. The set of all such edges can be
defined as follows:

Q = {xy | ∃u : u � x � y ∧ uy ∈ CON ∧ ux ∈ P+}.

It turns out that the set Q has a very useful property: it is not only
contained in any P+-protecting full contractor, but it can also be used to
construct a P+-protecting minimal full contractor as shown in the next the-
orem.

Theorem 5 Let � be a preference relation, and CON be a stratifiable base
contractor of �. Let also P+ be a transitive relation such that P+ ⊆� and
P+ ∩ CON = ∅. Then the prefix full contractor of � by CON ∪ Q is a
P+-protecting minimal full contractor of � by CON .

Proof. Let P− be the prefix full contractor of � by CON ′ = CON∪Q. We
prove that P−∩P+ = ∅, i.e., P− protects P+. For the sake of contradiction,
assume there is xy ∈ P+ ∩ P−. We show that this contradicts the prefix
property of P−. Since P− is the prefix full contractor, there is a CON ′-
detour from x to some v in �, started by xy and having only the edge xy in
P−. We have two choices: either it is a CON -detour or a Q-detour. Consider
the first case. Clearly, y 6= v, otherwise P+ ∩ CON 6= ∅. Thus, xv ∈ CON
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Figure 12: Proof of Theorem 5

and x � y � v (Figure 12(a)). yv ∈ Q follows from xy ∈ P+, xv ∈ CON
and the construction of Q. Note that every path from y to v in � contains
a P−-edge because P− is a full contractor of � by CON ∪Q. That implies
that no CON -detour from x to v started by xy has only xy in P−, which
contradicts the initial assumption.

Consider the second case, i.e., there is a Q-detour from x to some v
started by xy and having only the edge xy in P−. Since xv ∈ Q, there is
uv ∈ CON such that ux ∈ P+ (Figure 12(b)). ux, xy ∈ P+ imply uy ∈ P+

by transitivity of P+. uy ∈ P+ and uv ∈ CON imply yv ∈ Q. That along
with the fact that P− is a full contractor of � by CON ∪ Q implies that
every path in � from y to v contains a P−-edge. Hence, there is no Q-detour
from x to v started by xy and having only xy in P−. That contradicts the
initial assumption about xy.

Now we prove that P− is a minimal full contractor of � by CON . The
fact that it is a full contractor of � by CON follows from the fact that it
is a full contractor of � by a superset CON ′ of CON . We prove now its
minimality. Since P− is the prefix full contractor of � by CON ′, for every
xy ∈ P−, there is xv ∈ CON ′ such that there is a corresponding detour T
in which xy is the only P−-edge. If it is a CON -detour, then xy satisfies the
minimality condition from Theorem 1. If it is a Q-detour, then there is a
CON -edge uv such that ux ∈ P+. We showed above that P− protects P+.
Hence, the CON -detour obtained by joining the edge ux and T has only xy
in P−. Therefore, P− is a minimal full contractor of � by CON . �

Note that the sets of the end nodes of (CON∪Q)-edges and the end nodes
of CON -edges coincide by the construction of Q. Therefore, (CON ∪Q) is
stratifiable or finitely stratifiable iff CON is stratifiable or finitely stratifiable,
correspondingly. Hence, if CON is a finitely stratifiable relation, Algorithms
1 and 3 can be used to compute a preference-protecting minimal full con-
tractor of � by CON . If the relations � and CON are finite, then Q can
be constructed in polynomial time in the size of � and CON by a relational
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algebra expression constructed from its definition. If the relations are finitely
representable, then Q may be computed using the quantifier elimination op-
erator QE.

For Theorem 5 to apply, the relation P+ has to be transitive. Non-
transitivity of P+ implies that there are two edges xy, yz ∈ P+ which should
be protected while transitive edge xz is not critical. However, a relation ob-
tained as a result of preference-protecting contraction is a preference relation
(i.e., SPO). Hence, the edge xz will also be protected in the resulting pref-
erence relation. This fact implies that protecting any relation is equivalent
to protecting its minimal transitive extension: its transitive closure. There-
fore, if P+ is not transitive, one needs to compute its transitive closure to
use Theorem 5. For finite relations, transitive closure can be computed in
polynomial time [13]. For finitely representable relations, Constraint Datalog
[21] can be used to compute transitive closure.

x1 x2 x3 x4 x5

(a) �, CON , and P+

x1 x2 x3 x4 x5

(b) � and CON ′

x1 x2 x3 x4 x5

(c) P−0

x1 x2 x3 x4 x5

(d) P−1

Figure 13: Using Theorem 5 to compute a preference-protecting minimal full contractor

Another important observation here is that the P+-protecting minimal
full contractor of � by CON computed according to Theorem 5 is not nec-
essarily a prefix full contractor of � by CON . This fact is illustrated in the
following example.

Example 17 Let a preference relation � be a total order of {x1, . . . , x5}
(Figure 13(a), the transitive edges are omitted for clarity). Let a base con-
tractor CON be {x1x4, x2x5}, and P+ = {x1x3, x2x3, x4x5}.

The existence of a minimal P+-protecting full contractor of � by CON
follows from Theorem 4. We use Theorem 5 to construct it. The set Q is
equal to {x3x4, x3x5} and CON ′ = {x1x4, x2x5, x3x4, x3x5}. We construct the
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prefix full contractor of � by CON ′. The relation CON ′ has two strata whose
end nodes are L0 = {x5}, L1 = {x4}. Then E0 = {x2x4, x3x4, x2x5, x3x5},
P−0 = E0, E1 = {x1x4}, P−1 = E0 ∪ E1, and P− = P−1 . By Theorem 5, P−

is a P+-protecting minimal full contractor of � by CON . However, P− is
not a prefix full contractor of � by CON , because the edges x3x4, x3x5 do
not start any CON-detour.

0 . n . 1

Figure 14: � (transitive edges omitted), CON , and P+
n

In conclusion of this section, we formally show that the number of mini-
mal full contractors by stratifiable base contractor can be infinite. We have
mentioned that fact several times above, but (even though it seems reason-
able) we have not proved it yet. To do that, we use Theorem 5. Take a
preference relation t � t′ ≡ t.p < t′.p (for a Q -domain attribute p) and a
base contractor CON(t, t′) = t.p = 0 ∧ t′.p = 1. Take a subset P+

b of �,
defined as

P+
b (t, t′) ≡ t.p = 0 ∧ t′.p > 0 ∧ t′.p < 1 ∧ t′.p 6= n ∨ t.p = n ∧ t′.p = 1,

for some b such that 0 < b < 1 (Figure 14). It is easy to check that P+
b

is transitive and does not intersect �. Hence by Theorem 5, there is a P+
b -

protecting minimal full contractor of � by CON . Denote it as P−b and the
set of P−b for all b as P . Since the number of rational numbers b between 0
and 1 is infinite, the set P is of infinite size. By Lemma 1, P−b ∈ P contains
the edge (0, b) that is not in P−a ∈ P for a 6= b, because (0, b) ∈ P+

a . Hence,
P contains an infinite number of different minimal full contractors.

7. Meet preference contraction

In this section, we consider the operation of meet preference contraction.
In contrast to the preceding sections, where the main focus was the min-
imality of preference relation change, the contraction operation considered
here changes a preference relation not necessarily in a minimal way. A full
meet contractor of a preference relation is the union of all minimal full con-
tractors. When a certain set of preferences is required to be protected while
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Figure 15: Example 18

contracting a preference relation, the operation of preference-protecting meet
contraction may be used.

Definition 11 Let � be a preference relation, CON a base contractor of
�, and P+ ⊆�. The relation Pmeet is a full meet contractor of � by CON
iff

Pmeet =
⋃

P−∈Pmeet

P−,

for the set Pmeet of all minimal full contractors of � by CON . The relation
Pmeet
P+ is a full P+-protecting meet contractor of � by CON iff

Pmeet
P+ =

⋃
P−∈Pmeet

P+

P−,

for the set Pmeet
P+ of all P+-protecting minimal full contractors of � of CON .

Note that the relations (� −Pmeet) and (� −Pmeet
P+ ) can be represented

as intersections of preference (i.e., SPO) relations and thus are also preference
(i.e., SPO) relations. Let us first consider the problem of constructing full
meet contractors.

By the definition above, an edge xy is in the full meet contractor of a
preference relation � by CON if there is a minimal full contractor of �
by CON which contains xy. Theorem 1 implies that if there is no CON -
detour in � containing xy, then xy is not in the corresponding full meet
contractor. However, the fact that xy belongs to a CON -detour is not a
sufficient condition for xy to be in the corresponding full meet contractor.

Example 18 Let a preference relation � be a total order of {u, x, y, v}. Let
also CON1 = {uv} (Figure 15(a)) and CON2 = {uv, yv} (Figure 15(b)).
There is only one CON1- and CON2-detour containing xy: u � x � y � v.
There is also a minimal full contractor of � by CON1 which contains xy:
P−1 = {uy, xv, xy, uv}. However, there is no minimal full contractor of � by
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CON2 which contains xy because the edge yv of the CON2-detour u � x �
y � v is in CON2.

In Theorem 6, we show how full meet contractors can be constructed in
the case of finitely stratifiable base contractors . According to that theorem,
a �-edge xy is in the full meet contractor of � by CON iff there is a full
contractor P− of � by CON such that xy is the only P−-edge in some CON -
detour. We use Theorem 4 to show that there is a minimal full contractor
of � by CON which contains xy while the other edges of the detour are
protected.

Theorem 6 Let CON be a finitely stratifiable base contractor of a preference
relation �. Then the full meet contractor Pmeet of � by CON is

Rmeet = {xy | ∃uv ∈ CON . u � x � y � v ∧ (ux ∈ (� −CON) ∨ u = x)∧
(yv ∈ (� −CON) ∨ y = v)}

Proof. By Corollary 1, an edge xy is in a minimal full contractor P− of �
by CON , iff there is a CON -detour of at most three edges in � in which xy
is the only P−-edge. Hence any minimal full contractor is a subset of Rmeet.
Now take every edge xy of Rmeet and show there is a minimal full contractor
of � by CON which contains xy. Let u � x � y � v for uv ∈ CON . Let us
construct a set P ′ as follows:

P ′ =


{ux, yv} if u � x ∧ y � v
{ux} if u � x ∧ y = v
{yv} if u = x ∧ y � v
∅ if u = x ∧ y = v

P ′ is transitive, P ′∩CON = ∅, and P ′ ⊆�. Theorem 4 implies that there is
a P ′-protecting minimal full contractor P− of � by CON . Since P− protects
P ′, there is a CON -detour in � from u to v in which xy is the only P−-edge.
This implies that xy ∈ P−. �

Now consider the case of P+-protecting full meet contractors. A naive
solution is to construct it as the difference of Pmeet defined above and P+.
However, in the next example we show that such solution does not work in
general.
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u x y v

Figure 16: �, CON , and P+ from Example 19

Example 19 Let a preference relation � be a total order of {u, x, y, v} (Fig-
ure 16). Let also CON = {uy, xv} and P+ = {ux}. Note that yv 6∈ P+,
and by Theorem 6, yv ∈ Pmeet. Hence, yv ∈ (Pmeet − P+). However, note
that ux ∈ P+ implies that xy must be a member of every P+-protecting full
contractor in order to disconnect the path from u to y. Hence, there is no
CON-detour in which yv is the only edge of the full contractor, and yv is
not a member of any P+-protecting minimal full contractor.

The next theorem shows how a P+-protecting full contractor may be
constructed. The idea is similar to Theorem 6. However, to construct a full
meet contractor, we used the set CON as a common part of all minimal full
contractors. In the case of P+-protecting full meet contractor, a superset
CP+ of CON is contained in all of them. Such a set CP+ may be viewed as
a union of CON and the set of all edges of � that must be discarded due to
the protection of P+.

Theorem 7 Let CON be a finitely stratifiable base contractor of a preference
relation �, and P+ a transitive relation such that P+ ⊆� and P+∩CON =
∅. Then the P+-protecting full meet contractor Pmeet

P+ of � by CON is

Rmeet
P+ = {xy | xy 6∈ P+ ∧ ∃uv ∈ CON . u � x � y � v ∧

(ux ∈ (� −CP+) ∨ u = x) ∧ (yv ∈ (� −CP+) ∨ y = v)},

where

CP+ = {xy | ∃uv ∈ CON . u � x � y � v ∧ (ux ∈ P+ ∨ u = x)∧
(yv ∈ P+ ∨ y = v)}

Proof. First, it is easy to observe that CP+ is a subset of any P+-protecting
full contractor of � by CON . It is constructed from the edges xy which
participate in CON -detours of length at most three where all the other edges
have to be protected. Since every CON -detour has to have at least one edge
in a full contractor, xy has to be a member of every full contractor.
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Second, we show that every P+-protecting minimal full contractor P− of
� by CON is a subset of Rmeet

P+ . If some xy ∈ P−, then by Corollary 1 there
is an edge uv ∈ CON such that u � x � y � v and ux, yv 6∈ P−. We show
that xy ∈ Rmeet

P+ . That holds if xy 6∈ P+ (which holds for P− by definition)
and

(ux ∈ (� −CP+) ∨ u = x) ∧ (yv ∈ (� −CP+) ∨ y = v)

If both u = x and y = v hold then the expression above holds. Assume u � x
(the case y � v is similar). If ux ∈ CP+ then, as we showed above, ux ∈ P−
which is a contradiction. Hence, ux ∈ (� − CP+) and xy ∈ Rmeet

P+ . Finally,
P− ⊆ Rmeet

P+ .
Third, we show that every xy ∈ Rmeet

P+ is contained in some P+-protecting
minimal full contractor of � by CON . The proof is similar to the proof of
Theorem 6. By definition of Rmeet

P+ , xy is such that u � x � y � v. Construct
the set P ′ for xy as in the proof of Theorem 6. We show that for the set P ′′

which is the transitive closure of (P+ ∪ P ′) we have P ′′ ∩ CON = ∅. For
the sake of contradiction, assume P ′′ ∩ CON 6= ∅. This implies that there
is a CON -detour consisting of P+ and P ′ edges. Having only P+-edges in
the detour contradicts the initial assumption that P+ ∩ CON = ∅. Having
a single edge of P ′ in the detour implies that the edge (either ux or yv) is in
CP+ , which contradicts the definition of Rmeet

P+ . Having both ux and yv in the
detour implies that xy ∈ P+ which also contradicts the definition of Rmeet

P+ .
Hence, P ′′ ∩CON = ∅, and by Theorem 5, there is a P ′′-protecting minimal
full contractor P− of � by CON which is also a P+-protecting minimal full
contractor. Since there is a CON -detour in which xy is unprotected by P−,
xy ∈ P−. �

We note that given the expressions for the meet and P+-protecting full
meet contractors in Theorems 6 and 7, one can easily obtain such contractors
for finite and finitely representable relations: by evaluation of a relational
algebra query in the former case and by quantifier elimination in the latter
case.

Example 20 Let a preference relation � be a total order of {x1, . . . , x5}
(Figure 17(a), the transitive edges are omitted for clarity). Let a base con-
tractor CON be {x1x3, x2x3, x2x5}, and P+ = {x2x4}.

A full meet contractor Pmeet of � by CON is {x1x3, x2x3, x2x5, x2x4,
x3x4, x4x5}. The resulting contracted preference relation is shown in Figure
17(b). A P+-protecting full meet contractor of � by CON is {x1x3, x2x3,
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x1 x2 x3 x4 x5

(a) � and CON

x1 x2 x3 x4 x5

(b) � −Pmeet

x1 x2 x3 x4 x5

(c) �, CON , and P+

x1 x2 x3 x4 x5

(d) � −Pmeet
P+

Figure 17: Computing full meet contractor and P+-protecting full meet contractor

x2x5, x4x5}. The resulting contracted preference relation is shown in Figure
17(d). Note that CP+ here is CON ∪ {x4x5}.

8. Binary preference relations vs. preference states

The topic of the current paper is preference contraction in the binary pref-
erence relation framework. However, our paper is not the only one touching
the subject of contracting preferences. Some relevant papers are considered
in Section 9. One of the most fundamental works in this area is [18], where
Hansson introduced the preference state framework, which is based on the
belief revision theory. Even though the preference state and the binary pref-
erence relation frameworks are quite different, the fundamental principles of
preference change operators in both are similar. Below we present some con-
nections between the frameworks. In particular, we show an adaptation of
the preference state framework to the preference relation framework. As a
result, we obtain a framework that encompasses preference contraction and
restricted preference revision.

User preferences in [18] are represented as preference states. A preference
state is a logically closed set of sentences describing the preferences of an
agent. Every preference state has an underlying set of preference relations.
The connection between states and relations is as follows. A preference re-
lation (which is an order on tuples) is an unambiguous description of the
preferences of an agent. A preference relation induces a set of logical sen-
tences which describe the relations. However, it is not always the case that
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the preferences of an agent are unambiguous. Hence, every preference state
is associated with a set of possible preference relations.

Definition 12 An alternative is an element of U (the universe of tuples).
Nonempty subsets of U are called sets of alternatives. The language LU of
sentences is defined as

• if A,B ∈ U then A > B ∈ LU ,

• if A > B ∈ LU then ¬(A > B) ∈ LU ,

• no other sentence is in LU .

A subset of LU is called a restricted preference set. The language defined
above is a very restricted version of the language in [18] since the only Boolean
operator allowed is negation. Throughout the discussion, we assume that the
set of alternatives is fixed to be a nonempty subset Ur of U .

Definition 13 Let R be a subset of Ur × Ur. The set [R] of sentences is
defined as follows:

• A > B ∈ [R] iff AB ∈ R

• ¬(A > B) ∈ [R] iff A,B ∈ Ur and A > B 6∈ [R]

Definition 14 A binary relation R ⊆ Ur × Ur is a restricted preference
model iff it is a strict partial order. Given a restricted preference model R,
the corresponding [R] is called a restricted preference state.

A relation RS is a minimal representation of a restricted preference state
S iff RS is a minimal relation such that S ⊆ [RS].

In contrast to the definition above, the preference model in [18] is defined
as a set of SPO relations, and a preference state is an intersection of [R] for
all members R of the corresponding preference model.

We define two operators of change of restricted preference states: revision
and contraction. Restricted states are changed by sets of sentences. In
[18], a change of a preference state by a set of sentences is defined as the
corresponding change by the conjunction of the corresponding statements.
Moreover, a change by any set of sentences is allowed. In the adaptation
of that framework that we define here, conjunctions of statements are not
a part of the language. Moreover, preference revision [11] only allows for
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adding new preferences, and preference contraction we have proposed in this
paper allows only discarding existing preferences. Here we aim to define the
operator of restricted preference set revision which captures the semantics of
those two operators.

Definition 15 A restricted preference set S is called positive iff it contains
only sentences of the form A > B for some A,B ∈ Ur. Analogously, S
is negative iff it contains only sentences of the form ¬(A > B) for some
A,B ∈ Ur.

A restricted preference set is a complement of S (denoted as S) if for all
A,B ∈ Ur, A > B ∈ S iff ¬(A > B) ∈ S and ¬(A > B) ∈ S iff A > B ∈ S.

Positive and negative restricted preference sets are used to change re-
stricted preference states. Intuitively, a positive preference set represents the
existence of preferences while a negative set represents a lack of preferences.

Definition 16 Let R be a restricted preference model. Then the operator ∗
on R is a restricted preference revision on R iff for all positive or negative
restricted preference sets S, R ∗ S = ∩{R′} for all R′ such that

1. S ⊆ [R′]

2. R′ is an SPO

3. there is no SPO R′′ with S ⊆ [R′′] such that R ⊆ R′′ ( R′ (if S is
positive) or R′ ( R′′ ⊆ R (if S is negative).

The last condition in the definition above expresses the minimality of
restricted preference state change. This condition is different for positive
and negative sets: when we add positive statements, we do not want to
discard any existing positive sentences, and when negative statements are
added, no new positive sentences should be added. The restricted preference
revision operator defined above is different from preference state revision in
[18]. First, preference state revision allows for revision by (finite) sets of
arbitrary sentences, not only positive or negative sets of sentences, as here.
Second, the minimality condition here is defined using set containment while
in [18] it is defined as a function of symmetric set difference of the original
preference relations and R′. The last difference is due to the preference
state representation: the result of preference revision in [18] is the union of
relations R′ while in our case it is the intersection.

Below we define the operator of contraction for restricted preference states
which is similar to the contraction of preference states.
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Definition 17 Let R be a restricted preference model. Then the operator ÷
on R is restricted preference contraction on R iff for all positive or negative
restricted preference sets S, R÷ S = R ∗ S.

Given the operators on restricted preference states we have defined here,
their relationships with the preference change framework are straightforward.

Proposition 5 Let R be a restricted preference model, S be a positive or
negative restricted preference set, and RS be a minimal representation of S.
Then R ∗ S is

1. ∅, if S is a positive restricted preference set and R ∪ RS has a cyclic
path,

2. TC(R∪RS), if S is a positive restricted preference set and R∪RS has
no cyclic paths,

3. ∩{R−P− | P− is a minimal full contractor of R by RS}, if S is a neg-
ative restricted preference set,

where TC is the transitive closure operator.

Proof. When a restricted preference model is revised by a positive prefer-
ence set, the resulting relation R ∗ S is the intersection of all minimal SPO
extensions R′ of R and RS (i.e., R′ has to contain an edge from A to B if
A > B ∈ S). Such an extension R′ does not exist if there is a cyclic path
in R ∪ RS. However, if no cyclic paths exist, then there is only one such
a minimal extension R′ which is equal to the transitive closure of R ∪ RS.
Hence, R ∗ S = TC(R ∪ RS). We note that this result is equivalent to the
result of the union preference revision [11].

When a restricted preference model is revised by a negative preference
set, the resulting relation R ∗ S has to be a subset of R. Moreover, for all
¬(A > B) ∈ S, the pair (A,B) should not be in R ∗ S. Hence, R ∗ S is the
intersection of minimal contractions of R by RS, which is the result of the
full meet contraction of R by RS. �

Below we list some properties of the revision and contraction operators
of restricted preference states.

Proposition 6 Let R be a restricted preference model and S be a positive
or negative restricted preference set. Then

1. R ∗ S is an SPO (closure)
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2. S ⊆ [R ∗ S] unless S is positive and RS ∪ R has a cyclic path (limited
success)

3. If S ⊆ [R], then R = R ∗ S (vacuity)

Proof. All the properties here follow from Proposition 5. Namely, property
1 follows from the fact that the result of R ∗ S is an SPO in every case of
Proposition 5. Property 2 follows from Proposition 5 and the definition of
[R ∗ S]. Property 3 follows from Proposition 5 and 1) S ⊆ [R] implies RS ⊆ R
(if S is positive), and 2) a minimally contracted preference relation is equal
to itself if contracted by non-existent edges (if S is negative). �

Proposition 7 Let R be a restricted preference model and S be a restricted
positive or negative preference set. Then

1. R÷ S is an SPO (closure)

2. S ⊆ [R÷ S] unless S is negative and RS ∪R has a cyclic path (limited
success)

3. If S ∩ [R] = ∅, then R = R÷ S (vacuity)

4. R ∗ S = (R÷ S) ∗ S unless S is positive and RS ∪R has a cyclic path
(limited Levi identity)

5. R÷ S = R ∗ S (Harper identity, by definition)

Proof. Properties 1, 2, and 3 follow from Proposition 6. Property 4 follows
from the fact that R ÷ S = R ∗ S by definition, and Proposition 6 implies
R ∗ S = (R ∗ S) ∗ S when either S is negative or S is positive but RS ∪ R
has no cyclic path. �

An important difference between the restricted preference-set change op-
erators and the corresponding change operators from [18] is that the re-
stricted versions are not always successful (property 2 in Proposition 5), and
Levi identity holds for a certain class of restricted preference sets. In addition
to that, the operator of preference set contraction in [18] has the property of
inclusion (R ⊆ R÷ S) and recovery (if S ⊆ [R], then R = (R÷ S) ∗ S). As
for the restricted framework defined here, inclusion does not hold due to the
representation of a preference model as a single SPO relation. Recovery does
not hold here due to the restrictions on the language (namely, not allowing
disjunctions of sentences).

We note that one of the main targets of our current work was the develop-
ment of an efficient and practical approach to contracting preference relations
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in the binary relation framework for the finite and the finitely representable
cases. In addition to defining the semantics of the preference contraction
operators, we have also developed a set of algorithms which can be used to
compute contractions. We have tested them on real-life data and demon-
strated their efficiency. In contrast, [18] focuses more on semantical aspects
of preference change and does not address computational issues of preference
change operators. In particular, finite representability is not addressed.

9. Related work

9.1. Other operators of preference relation change

A number of operators of preference relation change have been proposed
in the literature. An operator of preference revision is defined in [11]. A
preference relation there is revised by another preference relation called the
revising relation. The result of revision is still another preference relation.
[11] defines three versions of preference revision – union, prioritized, and
Pareto – which are different in the way the original and the revising prefer-
ence relations are composed. For all of these semantics, [11] identifies cases
(called 0-, 1-, and 2-conflicts) when the revision fails, i.e., when there is no
SPO preference relation satisfying the operator semantics. This work con-
siders revising preference relations only by preference relations. Although it
does not address the problem of discarding subsets of preference relations
explicitly, revising a preference relation using Pareto and prioritized revision
operators may result in discarding a subset of the original preference rela-
tion. It has been shown in [11] that the revised relation is an SPO for limited
classes of the composed relations.

Another operator of preference relation change is defined in [5]. This work
deals with a special class of preference relations called skylines [6]. (A tuple
t is preferred to another tuple t′ according to a skyline preference relation iff
t is not worse that t′ w.r.t. every attribute and better than t′ w.r.t. to at
least one attribute.) Preference relations in [5] are changed by equivalence
relations. In particular, the modified preference relation is an extension of
the original relation in which pairs of equivalent or incompatible tuples are
ordered according to the new preferences. This preference change operator
only adds new edges to the original preference relation, and thus, preference
relation contraction cannot be expressed using this operator.

In [23], we introduced the operation of minimal preference contraction for
preference relations. We studied properties of this operation and proposed
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algorithms for computing full contractors and preference-protecting full con-
tractors for finitely stratifiable base contractors. In the current paper, we
generalize this approach and we develop a method of checking the finite
stratifiability property for finitely representable base contractors. We in-
troduce the operations of meet and meet preference-protecting contraction,
and propose methods for computing them. We also provide experimental
evaluation of the framework and a comprehensive discussion of related work.

9.2. Belief revision and contraction

Preferences can be considered as a special form of human beliefs, and
thus their change may be modeled in the context of belief change theory.
The approach is to represent beliefs as truth-functional logical sentences. A
belief set is the set of sentences believed by an agent. A common assumption
is that belief sets are closed under logical consequence. The most common
operators of belief set change are revision and contraction [3]. A number
of versions of those operators have been proposed [19] to capture various
real-life scenarios.

This approach is quite different from the preference relation approach.
First, the language of truth functional sentences is rich and allows for rather
complex statements about preferences: conditional preferences (a > b→ c >
d), indefinite (a > b ∨ c > d) etc. In contrast, preferences in the preference
relation framework used in this paper are certain: given a preference relation
�, it is only possible to check if a tuple is preferred (or not) to another
tuple. In addition, belief revision is generally restricted to finite domains. We
have proposed here algorithms for contracting finite and infinite preference
relations.

9.3. Other frameworks

An approach to preference change is proposed in [9]. Preferences are
changed via interactive example critiques. This paper identified three types
of common critique models: similarity-based, quality-based, and quantity-
based. However, no formal framework is provided. [17] describes revision
of rational preference relations over propositional formulas. The proposed
revision operator satisfies the postulates of success and minimal change. The
author shows that the proposed techniques work in case of revision by a single
statement and can be extended to allow revisions by multiple statements.

[14] proposes algorithms of incremental maintenance of the transitive clo-
sure of graphs using relational algebra. The graph modification operations
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are edge insertion and deletion. Transitive graphs in [14] consist of two kinds
of edges: the edges of the original graph and the edges induced by its tran-
sitive closure. When an edge xy of the original graph is contracted, the
algorithm also deletes all the transitive edges uv such that all the paths from
u to v in the original graph go through xy. As a result, such contraction is not
minimal according to our definition of minimality. Moreover, [14] considers
only finite graphs, whereas our algorithms can work with infinite relations.

10. Conclusions and future work

In this paper, we have presented an approach to contracting preference re-
lations. We have considered several operators of preference contraction: min-
imal preference contraction, minimal preference-protecting contraction, and
(preference-protecting) meet contraction, inspired by different scenarios of
preference change. We have proposed algorithms and techniques for comput-
ing contracted preference relations given finitely stratifiable base contractors.
We have also evaluated the proposed algorithms experimentally (Appendix
A) and showed that they can be used in real-life database applications.

One of the areas of future work is to relax the finite stratifiability property
property and consider more general base contractors.

Another interesting direction of future work is to design an operator of
generalized preference relation change that allows to change preference rela-
tions by discarding existing as well as adding new preferences at the same
time. The current approaches of preference relation change are restricted to
only one type of change.

As we showed in the discussion of related work, the existing preference
revision approach [11] fails to work in the presence of conflicts (cycles). A
promising direction here is to use the preference contraction operators pre-
sented here to resolve such conflicts.

In this paper, we assume that the relations defining the preferences to
discard are explicitly formulated by the user. However, such an assumption
hardly works in practical scenarios of preference change: formulating such a
relation requires a full knowledge of his or her preferences, which may not be
the case. Hence, a promising direction is to perform interactive preference
contraction or change.
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Appendix A. Experimental evaluation

In this section, we present the results of an experimental evaluation of
the preference contraction framework proposed here. We implemented the
following operators of preference contraction: prefix contraction (denoted as
PREFIX), preference-protecting minimal contraction (P+-MIN), meet con-
traction (MEET), and preference-protecting meet contraction (P+-MEET).
PREFIX was implemented using Algorithm 3, P+-MIN according to Theo-
rem 5, MEET according to Theorem 6, and P+-MEET according to Theorem
7. We used these operators to contract finite preference relations stored in
a database table R(X, Y ). The preference relations used in the experiments
were finite skyline preference relations [6], defined in Section 9. Skyline pref-
erence relations are often used in database applications. We note that such
relations are generally not materialized (as database tables) when querying
databases with skylines. However, they may be materialized in scenarios of
preference elicitation [4]. To generate such relations, we used the NHL 2008
Player Stats dataset [2]. Each tuple has 18 different attributes out of which
we used 5. All algorithms used in the experiments were implemented in Java
6. We ran the experiments on Intel Core 2 Duo CPU 2.1 GHz with 2.0 GB
RAM. All tables were stored in a PostgreSQL 8.3 database.

We have carried out two sets of experiments with the preference contrac-
tion algorithms. In the first set, we model the scenario where base contractors
are manually constructed by user. Thus, we assume that such base contrac-
tors are of comparatively small size. In the second set of experiments, we
assume that base contractors are constructed automatically and hence may
be of larger size.

10.1. Small base contractors

The aim of the experiments shown here is twofold. First, they demon-
strate that the algorithms of preference contraction we have proposed have
good performance (given base contractors of small size). Second, they show
that the difference between the sizes of full contractors computed by differ-
ent algorithms may be significant. It implies that in real-life applications, an
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Figure 18: Contraction performance. Small base contractors

appropriate contraction algorithm needs to be selected carefully depending
on the required semantics.

The skyline preference relations we use here consist of 51887, 80612, and
116411 edges. To generate them, we used 400, 500, and 600 tuples, respec-
tively, out of 852 tuples in [2].

The size of base contractors ranges from 1 to 30 edges. We did not pick
more than 30 edges, assuming that in this scenario the user is unlikely to
provide a large set of preferences to be discarded. For every base contrac-
tor size, we randomly generated 10 different base contractors and computed
the average time spent to compute full contractors and their average size.
The relations P+, storing preferences to protect, were transitive relations
containing from 1% to 5% of edges of the corresponding preference relation.

Figure 18 shows how the running time of contraction operators depends
on the size of the preference relation to contract and the size of the base
contractor. Here, P+ contains 1% of �. As we can observe, the performance
of P+-MIN is slightly worse than the one of PREFIX, due to the need of
computing the set Q. Similarly, the running time of P+-MEET is worse
than the running time of MEET, due to the computation of CP+ .

Figure 19 shows the dependency of the minimal full contractor size on
the size of the preference relation and the size of the base contractor. For
every value of the base contractor size, the charts show the average size of
the corresponding full contractor. Notice that preference protection does not
much affect the size of the full contractors computed by PREFIX and P+-
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Figure 19: Full contractor size. Small base contractors

MIN – they almost always coincide. That is due to the fact that even though
the full contractors computed by these algorithms have different properties,
they are both minimal. The size of full contractors computed by MEET is
strictly less than the size of full contractors computed by P+-MEET. This is
justified by the semantics of those full contractors: a full meet contractor is a
union of all minimal full contractors of � by CON , while a full P+-protecting
meet contractor is a subset of full meet contractor.

Another important observation is that the size of minimal full contractors
(PREFIX and P+-MIN) and the size of full meet contractors (MEET and
P+-MEET) differ significantly. Hence, minimality has a significant effect on
the size of full contractors when base contractors are small.

Figure 20 shows how the algorithm performance and the size of computed
full contractors depend on the size of the protected preference set P+. As we
can observe in Figure 20(a), the size of P+ mostly affects the running time of
P+-MEET, while the running time of P+-MIN grows slowly. The reason is
that the computation of CP+ (used in P+-MEET) involves more joins of the
tables representing P+ and � than the computation of Q used in P+-MIN.
Figure 20(b) shows how the size of a full contractor varies with the size of P+.
As expected, the size of a P+-protecting minimal full contractor is almost
always the same. The size of the full P+-protecting meet contractor goes
down when P+ grows, because then fewer minimal full contractors protect
P+.
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10.2. Medium size base contractors

We notice that according to Figure 18, the time spent to compute a full
contractor using any algorithm does not exceed 3 seconds. In Figure 21(a),
we show the running time of the algorithms versus the relative size of CON ,
which is larger in this experiment than in the previous one. The size of the
preference relation here is 80612, the size of P+ is 1% of |� |, and the size
of CON varies from 1% (806 edges) to 5% of (4030 edges) of |� |. As we
can see, the running time grows quadratically with the size of CON , which
is consistent with Proposition 4. Figure 21(b) shows how the size of the
full contractors changes with |CON |. Notice that the size of the minimal
full contractors grows significantly slower with |CON |: when |CON | is 5%
of | � |, the size of the full meet contractor exceeds 40% of | � |, while the
size of the minimal full contractors is not greater than 10% of |� |. As in
the case of small CON , the sizes of minimal and meet full contractors differ
greatly. Hence, in real-life scenarios, it is important to know the semantics
of preference contraction the user intends, since that has a high effect on the
contraction result.

In the experiments above, we use a real-life data set of NHL player stats.
As preference relations, we used skylines. As we have observed, with CON of
small size, the time spent to compute any full contractor did not go beyond
a few seconds, regardless of the size of �. Hence, the algorithms we pro-
posed to contract finite relations can be used efficiently in such scenarios in
database applications. However, when CON is large, additional optimization
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Figure 21: Medium size base contractors

techniques are needed.

Appendix B. Proof of Theorem 3

Theorem 3. (Checking the finite stratifiability property). Let FR

be an ERO-formula in DNF, representing an SPO relation R, of the following
form

FR(o, o′) = FR1(o, o
′) ∨ . . . ∨ FRl

(o, o′),

where FRi
is a conjunction of atomic formulas. Then checking if there is a

constant k such that the length of all R-paths is at most k can be done by a
single evaluation of QE over a formula of size linear in |FR|.

Let Ri be a binary relation represented by the formula FRi
for all i ∈ [1, l].

We split the proof of Theorem 3 into several lemmas. In Lemma 4, we show
that the length of all R-paths is bounded by a constant iff the length of all
Ri-paths is bounded by a constant for every disjunct FRi

of FR. Lemma 5
shows that the length of all Ri-paths is bounded by a constant iff there is a
bound on the length of all paths in the graph of a binary relation represented
by at least one conjunct of FRi

. In Lemma 6, we show how to check if the
length of all paths in the graph represented by FRi

is bounded.
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To prove the first lemma, we use the following idea. Let a sequence
S = (o1, . . . , on) of n ≥ 2 tuples be an R-sequence, i.e.,

(o1, o2), . . . , (on−1, on) ∈ R (1)

The transitivity of R implies that there is an R-edge from o1 to all other
tuples in S, i.e.,

(o1, o2), . . . , (o1, on) ∈ R (2)

Note that (2) contains only edges started by o1. Since R = ∪l
i=1Ri, for every

R-edge in (2), there is i ∈ [1, l] such that it is also an Ri-edge. Let Rj (not
necessarily unique) for some j ∈ [1, l] be such that the number of Rj-edges in
(2) is maximum. Such Rj is called a major component of S. Let the sequence
S ′ consist of the end nodes of all these Rj-edges in the order they appear in
S. Such S ′ is called a major subsequence of S.

Observation 1 Let S be an R-sequence, Ri∗ a major component of S, and
S ′ the corresponding major subsequence of S. Then

1. S ′ is an R-sequence

2. if the length of S is n, then the length of S ′ is at least dn−1
l
e

The first fact of Observation 1 follows from transitivity of R, and the
second fact follows from the definition of major subsequence. Note that a
major subsequence is an R-sequence too. Hence, if it has at least two tuples,
we can construct its major subsequence.

Observation 2 Let S0, . . . , St be R-sequences such that for all i ∈ [1, t], Si

is a major subsequence of Si−1 with the corresponding major components Rji.
Let o0, ot be the first tuples of S0 and St correspondingly. Then Rj1(o0, ot).

Observation 2 follows from the definition of major subsequence.

Example 21 Let S0 = (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) be an R-
sequence. Figure 22 illustrates a possible construction of a major subsequence
S1 of S0, a major subsequence S2 of S1, and a major subsequence S3 of S2.
The edges on Figure 22 correspond to the major-component edges. In every
sequence, a node is dark if it is in the major subsequence of the sequence.
Note that S3 does not have a major subsequence because a subsequence has
to have at least two nodes.
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S0 : x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

S1 : x4 x6 x7 x9 x10 x12

S2 : x7 x9 x10 x12

S3 : x9 x12

Figure 22: Major subsequences

Lemma 4 There is a constant bounding the length of all R-paths iff for all
i ∈ [1, l], there is a constant bounding the length of all Ri-paths.

Proof. In the case when l = 1, the lemma trivially holds. Further we
assume l > 1.
⇒ If for some i ∈ [1, l], the length of Ri-paths cannot be bounded, neither
can the length of R-paths.
⇐ Assume that for all i ∈ [1, l], all Ri-paths are of length at most k. Show

that the length of all R-paths is not more than
∑(k+2)l+1

i=1 li− 2. For the sake

of contradiction, let there be an R-path of length
∑(k+2)l+1

i=1 li − 1. Let S0

be the corresponding R-sequence. The length of S0 is
∑(k+2)l+1

i=0 li. Let S1

be a major subsequence of S0. By Observation 1, S1 is also an R-sequence,
and its length is at least

∑(k+2)l
i=0 li. Following that logic, let St be a major

subsequence of St−1 with the corresponding major component Rjt−1 . The

size of St is at least
∑(k+2)l−t+1

i=0 li. Such computation may continue while
the size of St is greater than one, i.e., while t ≤ (k + 2)l. Let the major
components of S1, . . . , S(k+2)l be Rj1 , . . . , Rj(k+2)l

correspondingly. Note that
there are at most l possible different major components. Thus, at least k+ 2
major components in Rj1 , . . . , Rj(k+2)l

are the same. Let us denote the first
k+ 2 of them as Rt1 , . . . , Rtk+2

and the tuples which start the corresponding
major sequences as ot1 , . . . , otk+2

. By Observation 2,

Rt1(ot1 , ot2) ∧Rt2(ot2 , ot3) ∧ . . . ∧Rtk+1
(otk+1

, otk+2
)

Since all Rt1 , . . . , Rtk+2
are the same, the expression above implies that there

is an Ri-path of length k + 1 for some i ∈ [1, l] which is a contradiction. �
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In Lemma 4, we showed that the problem of checking the bounded-length
property of all R-paths can be reduced to the problem of testing the same
property for Ri-paths. Note that Ri is represented by a formula FRi

which
is a conjunction of atomic formulas. Let the set of all attributes which are
present in the formula FRi

be defined as AFRi
. Then FRi

can be represented
as

FRi
(o, o′) =

∧
A∈AFRi

λA(o, o′),

where λA(o, o′) is a conjunction of all atomic formulas in which the attribute
A is used. Note that the structure of the preference formula language implies
that every atomic formula belongs to exactly one λA.

Denote the relation represented by λA as ΛA. In the next lemma, we show
that the problem of checking the finite stratifiability property of all Ri-paths
can be reduced to the same problem for ΛA-paths.

Lemma 5 There is a constant bounding the length of all Ri-paths iff for
some A ∈ AFRi

, there is a constant bounding the length of all ΛA-paths.

Proof.
⇐ Let for every k, there be an Ri-path of length at least k

Ri(o1, o2) ∧Ri(o2, o3) ∧ . . . ∧Ri(ok, ok+1)

Then for all A ∈ AFRi
, we have a ΛA-path of length at least k

ΛA(o1, o2) ∧ ΛA(o2, o3) ∧ . . . ∧ ΛA(ok, ok+1)

⇒ Let for every k and A ∈ AFRi
, there be an ΛA-path of length at least k

ΛA(oA1 , o
A
2 ) ∧ ΛA(oA2 , o

A
3 ) ∧ . . . ∧ ΛA(oAk , o

A
k+1)

Construct a sequence of tuples (o1, o2, o3, . . .) as follows. Let oj.A = oAj .A
if A ∈ AFRi

. Otherwise, let oj.A be any value from the domain DA of A.
Clearly, the following Ri-path is of length at least k

Ri(o1, o2) ∧Ri(o2, o3) ∧ . . . ∧Ri(ok, ok+1).

�
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Lemma 6 There is a constant bounding the length of all ΛA-paths iff there
is no ΛA-path of length three, i.e.,

¬∃o1, o2, o3, o4 ∈ U . ΛA(o1, o2) ∧ ΛA(o2, o3) ∧ ΛA(o3, o4)

Proof.
⇐ If for every constant k, there is a ΛA-path of length at least k, then there
is a ΛA-path of length three.
⇒ If λA is unsatisfiable, then there are no ΛA-paths. Thus, we assume
that λA is satisfiable. Based on the preference formula language, the formula
λA(o, o′) can be split into at most three conjunctive formulas:

1. φL: a conjunction of all atomic formulas o.Aθc,

2. φR: a conjunction of all atomic formulas o′.Aθc,

3. φM : a conjunction of all atomic formulas o.Aθo′.A

for θ ∈ {=, 6=, <,>} and a C - or Q -constant c. Any of these three formulas
may be missing because λA may not contain atomic formulas of the specified
type. φL and φR capture the range of the left and the right argument in λA,
correspondingly, and φM constrains their relationship.

Here we assume that A is a Q -attribute, and the case of C -attributes
is similar. Note that if φL is defined, then the range rL of φL is 1) an open
rational number interval with a finite number of holes (due to possible atomic
formulas o.A 6= c), or 2) a single rational value (due to the formula o.A = c).
If φL is undefined, then rL is the entire set of rational numbers. Thus, the
number of distinct elements |rL| in rL is either ∞ or 1. The same holds for
the number of distinct elements |rR| in rR. Hence for our class of formulas,
|rL ∩ rR| ∈ {0, 1,∞}. Clearly, if |rL ∩ rR| = 0, then no ΛA-paths exist. So
we we assume that |rL ∩ rR| ∈ {1,∞}.

Consider the structure of φM . If φM is undefined, then |rL∩rR| > 0 implies
that there are ΛA-paths of length at least k for every k, consisting of tuples
whose A-values are arbitrary elements of rL∩rR. If “o.A = o′.A“ ∈ φM , then
no other atomic formula is in φM (otherwise, ΛA is unsatisfiable). Since |rL∩
rR| > 0, ΛA-paths of length at least k for every k can be constructed of tuples
with the value of A all equal to any member of rL ∩ rR. If “o.A > o′.A“ ∈
φM , then “o.A = o′.A“, “o.A < o′.A“ 6∈ φM (otherwise λA is unsatisfiable).
However, “o.A 6= o′.A“ may be in φM and is implied by “o.A > o′.A“ ∈ φM

so can be dropped. The existence of a ΛA-path of length three implies that
|rL ∩ rR| > 1 and thus |rL ∩ rR| = ∞. Hence there are ΛA-paths of length
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at least k for every k. The case of “o.A < o′.A“ ∈ φM is analogous. The last
case is when only “o.A 6= o′.A“. The existence of a ΛA-path of length three
implies that there are two different values c1, c2 ∈ rL ∩ rR. Hence, ΛA-paths
of length at least k for every k can be constructed by taking any sequence
of tuples in which the value of A of every even tuple is c1 and of every odd
tuple is c2. �

Proof of Theorem 3. Here we show how to construct a formula which is
true iff there is a constant k such that the length of all R-paths is bounded by
k. By Lemma 4, such a formula can be written as a conjunction of l formulas
each of which represents the fact that the length of all Ri-paths is bounded.
By Lemma 5, such a formula can be written as a disjunction of formulas
each of which represents the fact that the length of all ΛA-paths is bounded.
By Lemma 6, such formulas are of size linear in the size of ΛA. Hence,
the resulting formula is linear in the size of FR. Due to the construction in
Lemma 6, the formula has quantifiers. They can be eliminated using QE. �
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