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Abstract We present here a formal foundation for an iterative andeimemtal
approach to constructing and evaluating preference queBar main focus is
guery modificationa query transformation approach which works by revisirgy th
preference relation in the query. We provide a detailedyasigmbf the cases where
the order-theoretic properties of the preference relati@npreserved in the re-
vision. We consider a number of different revision operstamion, prioritized
and Pareto composition. We also formulate algebraic laatsgthable incremental
evaluation of preference queries. Finally, we consideryagations of the basic
framework: finite restrictions of preference relations avehk-order extensions
of strict partial order preference relations.

Keywords preference queriespreference revisionquery evaluation strict
partial order weak order interval order

1 Introduction

The notion ofpreferenceis common in various contexts involving decision or
choice. Classical utility theory (Fis70) views preferenasbinary relations This
view has recently been adopted in database research (Cbb0@3; Kie02; KK02),
where preference relations are used in formulatingference queriesin Al,
various approaches to compact specification of preferehnaes been explored
(BBD'04). The semantics underlying such approaches typicdigsren prefer-
ence relations between worlds.
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Preferences can be embedded into database query langnaggeeral dif-
ferent ways. First, (Cho02; Cho03; Kie02; KK02) proposertindduce a special
operator‘find all the most preferred tuples according to a given prefece rela-
tion.” This operator is calledinnowin (Cho02; Cho03). Second, (AWO00; HP04)
assume that preference relations are defined using nuntéiti fuinctions and
queries return tuples ordered by the values of a supplidiyutinction. It is
well-known that numeric utility functions cannot represai strict partial or-
ders (Fis70), not even those that occur in database apphisan a natural way
(Cho03). For example, utility functions cannot capturdisies (see below). Also,
ordered relations go beyond the classical relational mofighta. The evaluation
and optimization of queries over such relations requiraiant changes to re-
lational query processors and optimizers (ISWGAO04). Orother hand, winnow
can be seamlessly combined with any relational operators.

We adopt here the first approach, based on winnow, within teéepnce
query framework of (Cho03) (a similar model was describe(Kiie02)). In this
framework, preference relations between tuples are defipduist-order logical
formulas.

Example 1Consider the relatio€ar(Make Year) and the following preference
relation’-c, betweerCar tuples:

within each make, prefer a more recent car,

which can be defined as follows:
(My) =c, (M,Y)=m=nmlAy>Yy.

The winnow operatoux, returns for every make the most recent car available.
Consider the instanag of Car in Figure 1a. The set of tuplesc, (r1) is shown
in Figure 1b.

Make | Year
t1 | VW 2002 Make | Year
to | VW 1997 t1 | VW 2002
t3 | Kia 1997 t3 | Kia 1997

@) (b)

Fig. 1 (a) The Car relation; (b) Winnow result

In this paper, we focus on preference queries of the f@axnR), consisting of
a single occurrence of winnow. Here,is a preference relation (typically defined
by a formula), andR is a database relation. The relati@mepresents the space of
possible choices. We also briefly discuss how our resultdeaapplied to more
general preference queries.

A special case of winnow is calleskyline(BKS01) and has been recently
extensively studied (PTFS03; BGZ04). A skyline query piantis all the attributes
of a relation into DIFF, MAX, and MIN attributes. Only tuplegith identical



values of all DIFF attributes are comparable; among thogeX Mttribute values
are maximized and MIN values are minimized. The query in Eplant is a very
simple skyline query (BKS01), withlakeas a DIFF an&earas a MAX attribute.

Past work on preference queries has made the assumpti@réfetences are
static However, this assumption is often not satisfied. User peefses change,
sometimes as a direct consequence of evaluating a preéecgreey. Therefore,
we view preference querying agdgnamic, iterative proces3he user submits a
query and inspects the result. The result may be satisfaétowhich case the
querying process terminates. Or, the result may be too kargrmo small, contain
unexpected answers, or fail to contain expected answermdpgcting the query
answer, the user may realize some previously unnoticedtspiher preferences.
It is also possible that not all the relevant data was indudethe database over
which the preference query was originally evaluated.

So if the user is not satisfied with the preference query teslé has several
further options:

Modify and resubmithe query. This is appropriate if the user decides to refine
or change her preferences. For example, the user may hatexistath a partial or
vague concept of her preferences (PFT03). We consider luery gnodification
consisting ofrevisingthe preference relation, although, of course, more general
transformations may also be contemplated.

Updatethe database. This is appropriate if the user discoverstiiea¢ are
more (or fewer) possible choices than originally envisthrieor example, in com-
parison shopping the user may have discovered a new soureleeént data.

In this work we consider three dimensions of preferencesremi order ax-
ioms, composition operators, and minimality. We requite #nrevisiorpreserve
the order axioms satisfied by the original and the revisimggrence relations and
containthe result of composing those relations. We also postulatgmal change
to the original preference relation. We discuss each of bmwe dimensions in
turn.

Order axioms.We claim that revisions should preserve the order-theoreti
properties of the original preference relations. For examib we start with a
preference relation which is a strict partial order, thaged relation should also
have those properties. This motivates, among others,itikehg closing prefer-
ence relations to guarantee transitivity. Preserving retttieoretic properties of
preference relations is particularly important in view loé titerative construction
of preference queries where the output of a revision caresss\the input to an-
other revision. We study both necessary and sufficient ¢tiondi on the original
and revising preference relations that yield the presiemwaff their order-theoretic
properties. Necessary conditions are connected with teerale of preference
conflicts. However, such conditions are typically not sidfi¢ and stronger as-
sumptions about the preference relations need to be maohev@tat surprisingly,
a special class of strict partial ordemsterval orders(Fis85), plays an important
role in this context. The conditional preservation resulésestablish in this pa-
per supplement those in (Cho03; Kie02) and may be used im otimtexts where
preference relations are composed, for example in the mmgaation of prefer-
ence query languages.

Composition operatord/Ve study different composition operators: union, and
prioritized and Pareto composition. Those operators sgmrteseveral basic ways



of combining preferences and have already been incormbiiate preference

query languages (Cho03; Kie02). The operators reflectrdifteuser attitudes to-
wardspreference conflict§A conflict is, intuitively, a situation in which two pref-
erence relations order the same pair of tuples differgntigion ignores conflicts

(and thus such conflicts need to be prevented if we want toroatareference re-

lation which is a strict partial order). Prioritized comfiam resolves preference
conflicts by consistently giving priority to one of the praface relations. Pareto
composition resolves conflicts in a symmetric way. Cledhlg,revision repertoire

that we study in this paper does not exhaust all meaningtnaios. One can
also imagine approaches where axiomatic properties oépmete revisions are
studied, as in belief revision (GR95).

Minimality. We define minimality in terms of symmetric difference of mnef
ence relations.

Preference revision leads to iterative query modificaff@make the process-
ing of such queries more efficient, we stuidigremental evaluatiotechniques.
At each point of the interaction with the user, the resultewdluatingprevious
versions of the given preference query are available. Thexrethey can be used
to make the evaluation of theurrentquery more efficient. For both the preference
revision and database update scenarios, we formulateralgddws that validate
new query evaluation plans that use materialized resufiastffquery evaluations.
The laws use order-theoretic properties of preferencéioaksin an essential way.

Example 2Consider Example 1. Seeing the result of the quety(r1), a user
may realize that the preference relatieg, is not quite what she had in mind.
The result of the query may contain some unexpected or umdaniples, for
examplets. Thus the preference relation needs to be modified, for ebaimp
revising it with the following preference relatiorc,:

(my) =c, (M,y)=m="VW" A £"VW' ry=Y.

As there are no conflicts betweerg, and ~c,, the user chooses union as the
composition operator. However, to guarantee transitioftthe resulting prefer-
ence relationy-¢, U ¢, has to be transitively closed. So the revised relation is
>~c+= TC(>c, U >c,). (The explicit definition of-c, is given in Example 7.) The
tuplets is now dominated b (i.e.,t >c. t3) and will not be returned to the user.

The plan of the paper is as follows. In Section 2, we define #séctnotions.
In Section 3, we introduce preference revision. In Sectiameddiscuss preference
revision and query modification. In Section 5, we discussanental evaluation
of preference queries in the context of query modificatioth database updates.
Subsequently, we consider two variations of our basic fraonke: (finite) restric-
tions of preference relations (Section 6) and weak-ordereskons of strict partial
order preference relations (Section 7). We briefly discakgted work in Section
8 and conclude in Section 9.

2 Basic notions

We are working in the context of the relational model of d&alation schemas
consist of finite sets of attributes. For concreteness, wesider two infinite,



countable domains? (uninterpreted constants, for readability shown as s$)ing
and2 (rational numbers), but our results, except where expligiticated, hold
also for finite or discrete domains. We assume that datalbasanices are finite
sets of tuples. Additionally, we have the standard builiedicates.

2.1 Preference relations

We adopt here the framework of (Cho03).

Definition 1 Given a relation schem@(A; - - - Ay) such that;, 1 <i <Kk, is the
domain (eitherz or 2) of the attributeA;, a relation- is a preference relation
over Rif itis a subset of Uy x --- x Ug) x (Ug x - -+ x Uy).

Although we assume that database instances are finite, présence of infi-
nite domains preference relations can be infinite.
Typical properties of a preference relatierinclude (Fis70):

irreflexivity: Vx. X 3 X;

transitivity. Yx,y,z. (X = YAY = 2) = X > Z

negative transitivityvx,y, z. (X £ YAY # 2) = X ¥ Z,

connectivity vx,y. X = yVy = xVx=y;

strict partial order(SPO) if - is irreflexive and transitive;

interval order(I0) (Fis85) if - is an SPO and satisfies the condition

VXY, ZW. (X = YAZ > W) = (X =WV Z>-Y);

weak order(WO) if > is a negatively transitive SPO;
— total orderif - is a connected SPO.

Every total order is a WO; every WO is an |O.

SPOs are well established, so we do not discuss them'h&#v®©s are prac-
tically important because they capture the situation whieeedomain can be de-
composed into layers such that the layers are totally oddend all the elementsin
one layer are mutually indifferent. This is the case, fomegke, if a preference re-
lation can be represented using a numeric utility functi@n,x - y = u(x) > u(y).
IOs are orders that are isomorphic to some set of intervalee@neal line ordered
by left-to-right precedence.

We will also use the term “SPO” to denote the set of axioms defistrict
partial orders, i.e., the irreflexivity and transitivityiars; similarly with “10”
and “WO”. By “ORD” we will denote some set of order axioms.

Definition 2 A preference formula (pf) @,t») is a first-order formula defining a
preference relatiorc in the standard sense, namely

ty ¢ t2 iff C(ty,t2).

An intrinsic preference formula (ipfy a preference formula that uses only built-in
predicates.

1 In Section 4, however, we will show that SPO properties aneoirrant for the evaluation
and optimization of preference queries.



By using the notatior-¢ for a preference relation, we assume that there is an
underlying pfC. Occasionally, we will limit our attention to ipfs consisg of the
following two kinds of atomic formulas (assuming we have timds of variables:
2-variables and2-variables):

— equality constraintsx =y, X # Yy, X = C, Or X # ¢, wherex andy are -
variables, ana is an uninterpreted constant;

— rational-order constraintsxAy or xAc, whereA € {=,#,<,>,<, >}, xand
y are 2-variables, and is a rational number.

An ipf all of whose atomic formulas are equality (resp. ratiborder) constraints
will be called anequality(resp.rational-order) ipf. If both equality and rational-
order constraints are allowed in a formula, the formula bélicalledERQ Clearly,
ipfs are a special case of general constraints (KLP0O; KKR&&d defindixed
although possibly infinite, relations.

Proposition 1 Satisfiability of quantifier-free ERO formulas is in NP.

Proof Satisfiability of conjunctions of atomic ERO constraints ée checked in
linear time (GSW96). In an arbitrary quantifier-free EROnfioita negation can
be eliminated with at most polynomial increase in formulagh. Then in every
disjunction one needs to nondeterministically select dagidct, ultimately ob-
taining a conjunction of atomic constraints. a

Proposition 1 implies that all the properties that can bgmamially reduced
to validity of ERO formulas, for example all the order-thetic properties listed
above, can be decided in co-NP.

Every preference relatior generates an indifference relatien two tuples
t; andty areindifferent(t; ~ to) if neither is preferred to the other one, ifg.;~ to
andt, ¥ t;. We denote by-¢ the indifference relation generated by.

Composite preference relations are defined from simples aiseng logical
connectives. We focus on the following basic ways of comqupgireference rela-
tions over the same schema:

—union: g (=1U>2) toiff tg =1ta Vg >2 ty;
— prioritized composition: (>1 > =2) to iff t1 =112V (t2 1 t1 Aty =2 12);
— Pareto composition:

11 (>—1® >—2) to iff (tl =1t Ats ¥2 tl) vV (tl ot Ata 1 tl).

We will use the above composition operators to construdsi@vs of given prefer-
ence relations. Note that the result of a composition is ydvegpreference relation
over the same schema as the argument relatiqrend .

We also consider transitive closure:

Definition 3 The transitive closureof a preference relatios over a relation
schemaRis a preference relatioRC(>) overR defined as:

(t1,t2) € TC(=) iff t ="t for somen > O,

where:
t1-ltho=t1 -t

21 =Nl to = 3t3. tg = ta Aty ="to.



Clearly, in general Definition 3 leads to infinite formulasowtver, in the
cases that we consider in this paper the preference relt¢r ) will in fact be
defined by a finite formula.

Proposition 2 Transitive closure of every preference relation defined i§ERO
ipf is definable using an ERO ipf of at most exponential siréclwcan be com-
puted in exponential time.

Proof This is because transitive closure can be expressed indgedal the eval-
uation of Datalog programs over equality and rational-ocd@straints terminates
in exponential time (combined complexity) (KKR95). a

In the cases mentioned above, transitive closure of a gikefegnce relation
is a relation definable in the vocabulary of the prefereneemita. But clearly
transitive closure itself, unlike union and prioritizedrareto composition, is not
a first-order definable operator.

2.2 Winnow

We define now an algebraic operator that picks from a giveaticel the set of the
most preferred tuplesccording to a given preference relation.

Definition 4 (Cho03) IfR is a relation schema and a preference relation over
R, then thewinnow operatoiis written asw. (R), and for every instanceof R:

w- (r={ter|-3t ert' -t}

If a preference relation is defined using &pfve write simplywc instead ofw. ..
A preference queris a relational algebra query containing at least one oecog
of the winnow operator.

3 Preference revisions

The basic setting is as follows:

We have aroriginal preference relatios- and minimally revise it with a
revisingpreference relatior-( to obtain arevisedpreference relatios-'.
We also calt-' arevisionof ».

We assume that, =g, and -’ are preference relations over the same schema.
Additionally, revisions will be parameterized by the ordgiroms ORD to be pre-
served and the operatBrused to compose the given preference relations.

To define minimality, we order revisions using the symmadifference ().

Definition 5 Assume-; and>; are two preference relations over the same schema
as a given preference relatisn We say that-1 is closerthan>, to > if =1A> C
oA\,

We now defingevisions.



Definition 6 Let = and>q be preference relations over the same schema, both
satisfying order axioms ORD where ORD is either SPO or WO A .ef{U,>,®}

be a preference composition operator. Then a revised preferrelation-' is an
ORD 8-revision of = with =g if:

1. ~'is over the same schemaasand—q;
2. >/ satisfies the axioms ORD;
3. =00 ~C".

Such a revision-' is calledminimalif there is no preference relatiod’ which is
an ORD@-revision of = with ¢ and is closer thas-’ to .

Typically, a minimal@-revision=" of = with =¢ turns out to be~q 6 > (if
this relation is already transitive) GiC(>o 0 ).

To further describe the behavior of revisions, we define rsdwénds of pref-
erence conflictsThe intuition here is to characterize those conflicts thdign
eliminated by prioritized or Pareto composition, reappétre resulting prefer-
ence relation is closed by transitivity.

Definition 7 A 0-conflict between a preference relation and a preference re-
lation ¢ is a pair(t1,t2) such that; >ty andty > t;. A 1-conflict between -
and =g is a pair(ty,t2) such thaty =qt, and there exis$, ... s, k> 1, such that
tr =9 = -+ = S >ty andty o S o -+ o St #ote. A 2-conflictbetween:- and
>0 is a pair(ty,tp) such that there exist, ..., s, k> 1andw,...,wm, m>1, such
thatty = s - -+ =S¢ - t1, t1 oSk o #o St #ota i =oWi -0+ =0 Wm - ta,
andty W i -+ # W1 # t

A 1-conflict is a O-conflict if- is an SPO, but not necessarily vice versa. A 2-
conflictis a 1-conflict if~q is an SPO. The different kinds of conflicts are pictured
in Figures 2 and 3.

Example 3If =¢= {(a,b)} and>= {(b,a)}, then(a,b) is a 0-conflict which is
not a 1-conflict. If we addb,c) and(c,a) to >, then the conflict becomes a 1-
conflict (s; = c). If we further add(c, b) or (a,c) to >¢, then the conflict is not a
1-conflict anymore. On the other hand, if we a@dd) and(d,b) to ¢ instead,
then we obtain a 2-conflict.

~0
=0
T /\
t1e oty e ol
\—/ xo o<—/
~ Yoo~ % s o

@ (b)

Fig. 2 (a) O-conflict; (b) 1-conflict
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Fig. 3 2-conflict

We assume here that the preference relatienand - are SPOs. If~'=
TC(>U>0), then for every 0-conflictty,t;) between- and g, we still obvi-
ously havet; ~'t; andt, =’ t;. Therefore, we say that the union does not resolve
any conflicts. On the other hand, #'= TC(>~¢> >), then for each 0-conflict
(t1,t2), t1 =o> > tp and—(tz =9 > > t1). In the case of 1-conflicts, we get again
t; =’ t, andt, =’ t;. But in the case where a 0-conflict is not a 1-conflict, we get
only t; =’ to. Thus we say that prioritized composition resolves thosertfticts
that are not 1-conflicts. Finally, if'= TC(> ® =¢), then for each 1-conflict
(t1,t2), =(t1 = @ =0 t2) and—(t2 = ® =0 t1). We gett; =’ t, andty = t; if the
conflict is a 2-conflict, but if it is not, we obtain onty =’ t;. Thus we say that
Pareto composition resolves those 1-conflicts that are-osonflicts. (Pareto com-
position resolves also conflicts that are symmetric vessifnl-conflicts — with
>0 and> interchanged — which are not 2-conflicts.)

We now characterize those combinations-ofand ¢ that avoid different
kinds of conflicts.

Definition 8 A preference relatios isi-compatibléi = 0, 1, 2) with a preference
relationg over the same schema if there are ywwownflicts betweern- and .

0- and 2-compatibility are symmetric. 1-compatibility istmecessarily symmet-
ric. For SPOs, 0-compatibility implies 1-compatibility cari-compatibility im-
plies 2-compatibility. Examples 1 and 2 show a pair of O-catiiple relations.
0-compatibility of>- and>q does not requir¢he acyclicity of- U ¢ or that one
of the following hold:> C =g, =9 C =, 0r = N>o= 0.

Example 4Consider the Euclidean spagéx #, and the following orders:

(%Y) =1 (X,Y) =x>X,

(xY) =2 (X,Y)=y>Y,
The order-1 is 1-compatible (but not 0-compatible) withp, and vice versa. Both
=1 and>» are WOs.

Propositions 1 and 2 imply that all the variants of compétibdefined above
are decidable for ERO ipfs. For example, 1-compatibilitgdipressed by the con-
dition =5 NTC(~ —=,*) = 0 where~;* is the inverse of the preference rela-
tion =o.
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0-compatibility of = and g is a necessaryondition forTC(> U =) to be
irreflexive, and thus an SPO. Similar considerations applyG(>~or>>) and 1-
compatibility, andT C(>- ® »o) and 2-compatibility. In the next section, we will
see that those conditions are muoffficient further restrictions on the preference
relations will be introduced.

We conclude by noting the relationships between the thréemsof prefer-
ence composition introduced above.

Lemma 1 For every preference relations and g over the same schema
=0®>=C o> > C >oU>,
and if =g and > are O-compatible

—0® = = =g = = =oU>.

4 Query modification

In this section, we study preference query modificatioBiven that the original
preference relatios and the revising preference relatisp satisfy some order
axioms ORD, the preference quesy. (R) is transformed to the querg. . (R)
where>’ is a minimal ORD®-revision of = with ~o. To guarantee the existence
of that revision, we impose additional conditions:erand .

For ORD we consider SPO and WO. Those orders are the most tiampor
from the point of view of potential applications. Moreoviris unclear how to
guarantee the existence of Eyrevisions.

We discuss different classes of revisions in the followingeo:

. SPQU-revisions (Theorem 1);
SPOr-revisions (Theorems 2 and 3);
SPOR-revisions (Theorem 4);

WO U- and®-revisions (Theorems 5 and 6);
. WO >-revisions (Proposition 4).

GEAFNNS

4.1 Strict partial orders

SPOs have several important properties from the user's pbinview, and thus
their preservation is desirable. For instance, all theguegfce relations defined
in (Kie02) and in the language Preference SQL (KK02) are SR@seover, if
> is an SPO, then the winnow._(r) is nonempty if (a finitey is nonempty. The
fundamental algorithms for computing winnow require thatpreference relation
be an SPO (Cho03). Also, in that case incremental evaluatipreference queries
becomes possible (Proposition 5 and Theorem 7).

2 The termquery modificatiorwas used in early relational systems like INGRES to denote
a technique that produced a changed version of a query seldrbiy a user. The changes were
meant to incorporate view definitions, integrity consttsjror security specifications. We feel
that it is justified to use the same term in the context of cosimgpa preference relation in a
query with some other preference relation to produce a nesyqu
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Fig. 4 A cycle for 0-compatible relations that are not 10s.

Theorem 1 For every0-compatible preference relations and g over the same
schema such that one is an interval order (I0) and the otheBRO, the prefer-
ence relation-"=TC(>-¢ 0 ), whereb € {U,>,®}, is the unique minimal SPO
6-revision of- with . If the 10 is a WO, then-' = TC(>=0 8 =) =00 ~.

Proof We first prove the irreflexivity of-’. By Lemma 1, 0-compatibility implies
that=qU = = =g> = = =9 ® . Thus, WLOG we consider only union. Assume
o is an 10. If TC(> U o) is not irreflexive, then- U =q has a cycle. Consider
such cycle of minimum length. It consists of edges that aesrzhtely labeled-o
(only) and:- (only). (Otherwise the cycle can be shortened). If thereasanthan
one non-consecutiveg-edge in the cycle, therg being an 10 implies that the
cycle can be shortened. So the cycle consists of two ediges:t, andt, = t.
But this is a 0-conflict violating 0-compatibility of ando.

Transitivity (in the WO case) is proved by case analysisd@yaatibility is
essential). Note that’ is contained in any SP®-revision of = with >, which
implies uniqueness and minimality. ad

As can be seen from the above proof, the fact that one of tHerprece re-
lations is an interval order makes it possible to elimin&igse paths (and thus
also cycles) inT C(> U =) that interleave- and>q more than once. In this way
acyclicity reduces to the lack of 0-conflicts.

It seems that the interval order (I0) requirement in Thecoterannot be weak-
ened without needing to strengthen the remaining assumgptitneither of- and
o is an IO, then we can find such elemexisy1, z1, Wi, X2, Y2, 22, W» that

X1 = V1,20 = W1, X1 5 Wi, 21 5 Y1,%X2 =0 Y2, 22 =0 W2, X2 /-0 W2, 22 0 Y2.
If we choosey; = X2, 1 = Y2, Wy = Zp, andx; = Wy, then we get a cycle in U =o.
Note that in this case and:- are still 0-compatible. The situation is pictured in
Figure 4.

Example 5Consider again the preference relatiog

(my) ¢, (M,y)=m=mAy>Y.
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Suppose that the new preference information is captureecasvhich is an 10
but not a WO:

(Myy) ¢, (M,Y) =m="VW" Ay = 1999 m ="Kia" Ay = 1999

ThenTC(>c, Uc;,), which properly contains-c, U-c;, is defined as the SPO
~Cy-

(my) =c, (M,y) =m=nmAy>YyV
m="VW" Ay > 1999Am = "Kia” Ay < 1999

Theorem 1 implies that if and>~q are 0-compatible and one of them contains
only one pair, the C(>- U >¢) is an SPO. So what will happen if we break up
the preference relation from Figure 4 into two one-element relatiorg and
=2 and attempt to apply Theorem 1 twice? Unfortunately, sucstiategy” does
not work. The second step is not possible because the pneerelation-; is
not 0-compatible with the revision of with > 1.

For dealing withprioritized composition0-compatibility can be replaced by a
less restrictive condition, 1-compatibility, becaus®ptized composition already
provides a way of resolving some conflicts.

Theorem 2 For every preference relations and g over the same schema such
that >¢ is an 10, = is an SPO and- is 1-compatible with>q, the preference
relation -'=TC(>o > >) is the unique minimal SPO-revision of>- with .

Proof We assume that'=TC(>o > >) is not irreflexive and consider a cycle of
minimum length in>q > . If the cycle has two non-consecutive edges labeled
(not necessarily exclusively) by, then it can be shortened, becausgis an 10.
The cycle has to consist of an edge-q t; and a sequence of edges (labeled only
by =) to - t3,...,th_1 > th,th > t1 SUch thah > 2. andt; ¥otn %o ... ¥ot3 Fot2.

(We cannot shorten sequences of consecuthagiges because is not necessar-
ily preserved in-q > >.) Thus(ty,t2) is a 1-conflict violating 1-compatibility of

with . For unigueness and minimality e, observe again that’ is contained

in every SPQ>-revision of - with >q. O

Violating any of the conditions of Theorem 2 may lead to aatitan in which
no SPO>-revision of = with ¢ exists.

If =0 is a WO, the requirement of 1-compatibility and the compatabf
transitive closure are unnecessary. We first recall somie pasperties of weak
orders.

Proposition 3 Let - be a WO preference relation over a schema R anthe
indifference relation generated by. If x -y, y~ z and z- w, then also % z and
y - W.

Theorem 3 For every preference relationsp and > over the same schema such
that =g is a WO and~ an SPO, the preference relatiory > > is an SPO, and
thus the unique minimal SP&-revision of- with .
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Proof Clearly, ~'= =¢> >, as a subset ofqU >, is irreflexive. To show tran-
sitivity, considert; - t, andt, =’ t3. There are four possibilities: (1) tf ~q to
andt, ¢ t3, thent; =gtz andt; =" ta. (2) If t; =o to, t3 %o t2 andt, > ts, then
alsot, =g t3 orty ~q t3 (Where~q is the indifference relation generated:by). In
either casety otz andt; =’ t3 (the second case requires using Proposition 3). (3)
to ¥ot1, t1 = tp andty ¢ t3: symmetric to (2). (4) Ity o t1, t1 = to, t3 #otz and
to = t3, thents oty (by the negative transitivity afo) andt; > t3. Thust; >’ ta.

O

Let’s turn now toPareto compositionThere does not seem to be any simple
way toweakerthe assumptions in Theorem 1 using the notion of 2-compidyibi
Assuming that-, >, or even both are I0s does not sufficiently restrict the possi
ble interleavings of- and ¢ in TC(>o® ) because neither of those two pref-
erence relations is guaranteed to be preservadddf-o ® ). However, we can
establish a weaker version of Theorem 3.

Theorem 4 For every preference relations-o and - over the same schema such
that both are WOs, the preference relatiep® > is an SPO, and thus the unique
minimal SPO-revision of- with .

Proof Similar to the proof of Theorem 3.

We also note that there are no analogues of Theorems 1 andQ (oterval
order) revisions. It seems that preserving the IO conditiannot be achieved
using only transitive closure.

Proposition 2 implies that for all preference relationsmedi using ERO ipfs,
the computation of the preference relatiohS(~U =q), TC(>~o > >), as well
asTC(> ® o) terminates. The computation of transitive closure is dosiagu
Constraint Datalog in a completely database-independant w

Example 6Consider Examples 1 and 5. We can infer that
t1 = ("VW”,2002 >, ("Kia",1997) =ts,

becausg”VW" 2002 ¢, ("VW”,1999, ("VW”",1999 >c, ("Kia”,1999, and
("Kia”,1999 >~¢, ("Kia”,1997). The tupleg”VW” 1999 and(”Kia”, 1999 are
notin the database.

Proposition 2 also implies that for ERO ipfs the computatbi C(>- U o),
TC(>o>>) and TC(- ® =) Yyields some finite ipfC(t1,t2). Thus the irreflex-
ivity of the resulting preference relation reduces to thsatisfiability of C(t,t),
which by Proposition 1 is a decidable problem for ERO ipfs.cOfirse, the re-
lation, being a transitive closure, is already transitiMeus, we can establish the
existence of the unique minimal SP®revision even if the conditions of Theo-
rems 1 and 2 are not satisfied.

Example 7Consider Examples 1 and 2. Neither of the preference rektig,
and>-c, is an interval order. Therefore, the results establishédean this sec-
tion do not apply. The preference relatieg,.= TC(>c, U~c,) is defined as fol-
lows (this definition is obtained using Constraint Dataloghputation):

(My) =c. (M,y) =m=mAy>yV
m="VW" Anl £"VW" Ay > Y.
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The preference relationc. is irreflexive (this can be effectively checked). It
also properly containsc, U ~c,, because; ~c, tz butty /¢, tz andty ¢, t3. The
queryax, (Car) evaluated in the instance (Figure 1) returns only the tupte.

4.2 \Weak orders

We have earlier argued that weak orders are important be¢hag occur when-
ever the preferences are given by numeric functions. We merte that if a pref-
erence relation is a WO, a particularly efficient (esselytgihgle pass) algorithm
for computing winnow is applicable (Cho04; ChoQ7).

We will see that for weak orders the transitive closure caiapon is unnec-
essary and minimal revisions are directly definable in teofrthe preference re-
lations involved.

Theorem 5 For everyO-compatible WO preference relatiorsand g over the
same schema, the preference relation - (resp.> ® o) is a WO, and thus the
unique minimal WQu-revision (resp. W@-revision) of> with >q.

Proof In view of Lemma 1, we can consider only= > U .

Irreflexivity is obvious. For transitivity, assume =" t, andt, =’ t3. If t; =
to = t3 (resp.ty otz =0 t3), thenty = t3 (resp.ty =ot3) andty =" t3. If t1 =0 t2
andt, > t3, we need 0-compatibility to infer that 3 t; and thud; >ty orty ~t
(where~ is the indifference relation generated bYy. In both cases, we can infer
t; > t3 and thug; =’ t3. The last case is symmetric to the previous one.

For negative transitivity, consideér 2’ t, andt, ' t3. Thenty oty to #ots,
t1 # to, andt, i t3. Consequentlyty ¥ ts, t1 # t3, and thugy #/ ts. O

Note that without the 0-compatibility assumption, WOs ao¢ closed with
respect to union and Pareto composition (Cho03).

For prioritized composition, we can relax the 0-compaitipassumption. This
immediately follows from the fact that WOs are closed witbpect to prioritized
composition (Cho03).

Proposition 4 For every WO preference relationsand =g over the same schema,
the preference relation-q > > is a WO, and thus also the unigue minimal \#©
revision of= with .

A basic notion in utility theory is that ofepresentabilityof preference rela-
tions using numeric utility functions:

Definition 9 A real-valued functioru over a schem® representa preference
relation:- overRiff

Vi, to [t > ta iff u(ty) > u(tz)].
Such a preference relation is calletlity-based

Being a WO is a necessary condition for the existence of a rnamepresen-
tation for a preference relation. However, it is not sufiitifor uncountable orders
(Fis70). It is natural to ask whether the existence of numespresentations for
the preference relations and>q implies the existence of such a representation
for the preference relation’= (¢ 6 ) wheref € {U,>,®}. This is indeed the
case.
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Theorem 6 Assume that- and g are WO preference relations over the same
schema such that

1. > and g are 0-compatible,
2. > can be represented using a real-valued function u,
3. >p can be represented using a real-valued functign u

Then>'=3>¢ 6 >, wheref € {U,>,®}, is a WO preference relation that can be
represented using any real-valued functidrsuch that for all x

u'(x) =a-u(x) +b-up(x) +c
where a> 0, b > 0 and c are arbitrary real numbers.

Proof Assumex~'y. Thusx =gy orx > y. If x =gy, thenup(x) > up(y). Also, in
this casey ¥ x because of 0-compatibility. This implie$x) > u(y). Consequently,
u'(x) > U'(y). The other case is symmetric.

Assumeu/(x) > U (y). Thusug(x) > up(y) or u(x) > u(y). In the first case, we
getx - Y; in the secondx = y. Consequentlyx ~'y. ad

Surprisingly, the 0-compatibility requirement cannot engral be replaced by
1-compatibility if we replaceJ by > in Theorem 6.

Example 8In Example 4 we considered the Euclidean sp#ce #, and the fol-
lowing orders:

(xy) =1 (X,y) =x>X,
xy) =2 (X,y)=y>Y.

It is well known that the prioritized composition ef; and:-» is not representable
using a utility function (Fis70).

Thus, preservation akpresentabilityis possible only under 0-compatibility,
in which case-gU> = >o> > = >o® > (Lemma 1). (The results (Fis70) indicate
that for countable domains considered in this paper, thegifried composition of
WOs, being a WO, is representable using a utility functioowiver, that utility
function is not definable in terms of the utility functiongresenting the given
orders.)

We conclude this section by showing a general scenario inlwie union of
orders occurs in a natural way. Assume that we have a numidifg function u
representing a (WO) preference relatienThe indifference relatior- generated
by > is defined as:

X~y = uX) =u(y).
Suppose that the user discovers thas too coarse and needs to be further refined.
This may occur, for example, wherandy are tuples and the functiantakes into
account only some of their components. Another functigmay be defined to
take into account other componentskaindy (such components are callbiiden
attributes(PFTO03)). The revising preference relatieg is now:

X0y = U(X) = u(y) Auo(x) > Uo(y).

It is easy to see that( is an SPO 0-compatible witlk (but not necessarily a
WO). Therefore, by Theorem 1 the preference relation ¢ is an SPO.
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5 Incremental evaluation
5.1 Query modification

We show here how the already computed result of the origirefepence query
can be reused to make the evaluation of the modified query efficent. We will
use the following result.

Proposition 5 (Cho03)If 1 and 2 are preference relations over a relation
schema R and-1 C >, then for all instances r of R:

—W,(n) Cw (),
— w,(w,(r)) = w,(r)if =1 and >, are SPOs.

Consider the scenario in which we iteratively modify a gipeeference query
by revising the preference relation using only union in saetay that the revised
preference relation is an SPO (for example, if the assumptid Theorem 1 are
satisfied). We obtain a sequence of preference relatians ., > such that-, C
- C >n.

In this scenario, the sequence of query results is:

ro=rri=w,(r),ro=w,(r),....,m=w(r).
Proposition 5 implies that the sequengery, ...,y is decreasing:
ro2r12---2rn
and that it can be computed incrementally:

ri= O‘)fl(ro)’rz = @2(r1),...,rn = O')%n(rnfl)'

To computeri, there is no need to look at the tuplesia rj_1, nor to recompute
winnow from scratch. The sets of tuples. .., r, are likely to have much smaller
cardinality tharrg =r.

It is easy to see that the above comments apply to all case®wherevised
preference relation is a superset of the original prefereakation. Unfortunately,
this is not the case for revisions that use prioritized oeRacomposition. How-
ever, given a specific pair of preference relatienand o, one can still effec-
tively check whethem C(>-g > =) or TC(~o® >) contains> if the validity of
preference formulas is decidable, as is the case for ERQulas{Proposition 1).

5.2 Database update

In the previous section we studied query modification: trergis modified, while
the database remains unchanged. Here we reverse thewitilat query remains
the same and the database is updated.

We consider first updates that are insertions of sets of supler a database
relationr, we denote byA 'r the set of inserted tuples. We show how the previous
result of a given preference query can be reused to make Hieation of the
same query in an updated database more efficient.

We first establish the following result.
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Theorem 7 For every preference relatior over R which is an SPO and every
instance r of R:

W (rud™n) =aw (W (r)ud™r).

Proof Assumet ¢ w.(w-(r)UA™r). Then eithet € w._(r) UA™r or there exists
t' € w (r)UA™r such that’ >~ t. In the first case, ¢ w.(r) andt Z A r. If t &1
andt ¢ A'r, thent ¢ . (rUA™T). If there existg’ € w.(r) such that’ > t, then
alsot ¢ w._(rUA™r). Inthe second cas€,c rUA'r and thug ¢ w_(rUA™T).
Assumet € w. (rUA™r). Then eithet ¢ r UA™r or there exist$’ e rUA"r
such that’ - t. In the first case, ¢ w. (w- (r) UA™r). In the second case,tif
Afr,thent € w_(w.-(r)UA*r). Soconsidet er—A"r.Ifter butt £ A*r, then
t¢w (r)UATrandt € w (w-(r)UATT).If t € A'r, then there exists € w. (r)
such that” = t. (t” may bet’ or some element dominatiri§y) Therefore, in this
case alst € w. (w-(r)UA™T). O

Consider now the scenario in which we have a preferencaaelat which is
an SPO, and a sequence of relations

ro=rri=roUA"ro,ro=riUA"ry,....tn=rn_1UA r,_1.

Theorem 7 shows that

. (r1) = w-(w-(ro) UA™rg)
W (rz2) = w (- (r1)UA™ry)

W (rn) = w- (W (rn-1) UA*rn_1).

Therefore, each subsequent evaluation of winnow can réeseesult of the
previous one. This is advantageous because winnow retigmisst of the given
relation and this subset is often much smaller than theioaléself.

Clearly, the algebraic law, stated in Theorem 7, can be wggather with other,
well-known laws of relational algebra and the laws spectfipreference queries
(Cho03; KHO03) to produce a variety of rewritings of a giveefprence query. To
see how a more complex preference query can be handled;desider the query
consisting of winnow and selectiom, (g4 (R)). We have

@ (0a(rUA™T)) = @ (0 (1)U 0a(A7T)) = @ (w-(0a(r)) Uoa(A7T))

for every instance of R. Here again, one can use the previous result of the query,
w-(0q(r)), to make its current evaluation more efficient. Other omesathat
distribute through union, for example projection, can bedhad in the same way.

Next, we consider updates that are deletions of sets ofsupler a database
relationr, we denote byd ~r the set of deleted tuples.

Theorem 8 For every preference relation over R and every instance r of R:

w-(N=-ATrCw(r—A47r).
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Theorem 8 gives an incremental way to compute an approxamafiwinnow
from below. It seems that in the case of deletion there cahacdn exact law
along the lines of Theorem 7. This is because the deletioaragguples from the
original database may promote some originally dominatad (hscarded) tuples
into the result of winnow over the updated database.

Example 9Consider the following preference relation= {(a,by),...,(a,bn)}
and the database= {a,by,...,bn}. Thenw.(r) = {a} but

w.(r—{a}) ={b,...,bn}.

6 Finite restrictions of preference relations
6.1 Restriction

It is natural to considerestrictionsof preference relations to given database in-
stances (TC02).

Definition 10 Let r be an instance of a relation schefRand > a preference
relation overR. The restriction [~], of > to r is a preference relation ove,
defined as

[~]r =>=nN(rxr).

We write (x,y) € [~]r instead of[>-]y for greater readability.

The advantage of using-]; instead of >~ comes from the fact that the for-
mer depends on the database contents and can have stroogertips than the
latter. For examplel~], may be an SPO, while- is not. Similarly,[>], may be
i-compatible with[>-g];, while - is noti-compatible with>q. Therefore, restric-
tions could be used instead of preference relations in thisioa process.

The following is a basic property of restriction. It saystttize restriction to
an instance does not affect the result of winnover the same instanceo the
restriction can be used in place of the original preferertaion.

Theorem 9 Let r be an instance of a relation schema R and preference rela-
tion over R. Then

@y, (1) = @ (1)

Proof We have[~], C - and thusw.(r) C @, (r). In the other direction, as-
sumet ¢ w.(r). IftZr,t & ay. (r). If t € r and there exists € r such that” - t,
then alsqt’,t) € [~]r andt ¢ w, ), (r). 0

We also establish that restriction distributes over théepemce composition
operators.

Theorem 10 If ris an instance of a relation schema &¢ {U,>,®}, and>- and
=0 are preference relations over R, then

[>~06 >]r =[>0]r O[]
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Proof We prove this result fo® = t>. The other cases are similar.
We have the following equivalences:
(%,y) € [olr > [~]r =
(%,Y) € [olr V (¥,X) & [=o]r A (%,Y) € [-]r =
X=0YAXETAYETV (YHAoXVXLTIVYEZI)AX=YAXETAYET =
X=0YAXETAYETVYFoXAX=YAXETAYET =
(X=0YVYH#oXAX>=Y)AXETAYET =
(Xy) € [=0> ~]r.
O

The preference revision studied earlier in this paper glpicinvolved the
computation of the of the revised preference relation ddfatethe transitive clo-
sureTC(>o 8 >), wheref € {U,>,®}, - is the original preference relation, and
>0 is the revising preference relation. We study several diffeways of impos-
ing the restriction of preferences to a relation instance cdhsider the following
preference relations:

=1=TC(>08 ),

=2 =[TC(>0 6 >)]r,
=3 =TC([~00 >]),
4= TC([=0l:6[-]r).

We note that (TC02) consider the relatiog. We establish now some fundamental
relationships between the preference relatiens-», >3, and>-4.

Theorem 11 Let 6 € {U,>,®}, and = and =q be preference relations over a
schema R. Then for every instance r of R:

—4=r3C m2C -1,
and there are relation instances for which the containmargsstrict.

Proof The equality of-4 and =3 follows from Theorem 10. For3 C >, we
have that
[-060>]r C>00 >,

and
(=00 >] Crxr.
Thus
=3= TC([~00 >]r) C rxr,
and

=3C TC(0 0 =)Nrxr =»5.
The containment-, C =, follows from the definition of the restriction.

An example where-3 C = C > is as follows. Let-= {(a,b)}, »o0=
{(b,c)},r={a,c}. Then[>]; = [>o], = 0. Thus alsd>¢ 6 >|; = [>~o]r 6 [~]r =
0, and>-3= 0. On the other hand;1= {(a,b), (b,c),(a,c)} and>»= {(a,c)}.

O
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Corollary 1 Let 6 € {U,>,®}, and > and o be preference relations over a
schema R. Then for every instance r of a R:

@1(r) = a;z(r) c @3(r) = a)>4(r)7
and for some cases the containment is strict.

Proof Follows from Theorem 9 and Theorem 11. In the example givethén
proof of Theorem 11, we obtaiw. ,(r) = {a} andw.,(r) = {a,c}. O

We study now the order-theoretic properties of restriction

Theorem 12 Let 6 € {U,>,®}, and > and ¢ be preference relations over a
schema R. Then for every instance r of-R,is an SPO implies that , is an SPO,
which implies that-3 is an SPO. There are cases in which the reverse implication
does not hold.

Proof Because-, C =1, = is irreflexive. Assume that -, y andy =, z. Then
X=1Y,Y>=1Z XEr,yer,andzer. Thereforex =1 ZAXErAzer, andx =» z

The preference relation;= {(a,a)} is not an SPO (and can be obtained from
some SPO preference relationg and - using any composition operator and
transitive closure). However, its restrictiorp= [>~1], for r = {b} is empty, and
thus an SPO.

Assume now-o= {(a,b)} and == {(b,a)}. Consider@ = U andr = {b}.
Thus, 1= {(a,b),(b,a),(a,a), (b,b)} and >»= {(b,b)} (so it is not an SPO).
On the other hand-¢ U -], = 0 and>3= 0, too. Similar examples can be con-
structed for the other composition operators. ad

Unfortunately, for weak orders there is no property analsgo Theorem 12.
Subsequently, we examine the impact of restriction on caitipity.

Theorem 13 Let = and ¢ be preference relations over a schema R. Then for
every instance r of a relation schema R and evesyQ, 1,2 if - is i-compatible
with o, then[-]; is i-compatible with~¢|;. There are cases in which the reverse
implications do not hold.

Proof For 0-compatibility the situation is clear. If there are rodhflicts between
>~ and —q, then there are no 0-conflicts betwelr, and [~o];. However, for
higher-level conflicts, the situation is more complicated.

Assume now that is 1-compatible with-g and consider a 1-conflict between
[>]r and[>o]r. Then there are elemertisty, s, ..., of r such that

(tu,t2) € [=ar, (t2,;s1) € []r, .-+, (S t2) € [F]rs

and
(ti, ) & [=olr, -+, (S1,t2) & [=0lr-

Consider now any two elememsandy amongty, tz, S, ..., S such that(x,y) €
[>]r (resp(x,y) € [>o]r). Clearly then alsx > y (resp.,X ¢ Y). Assume(X,y) €
[>]r and(y,X) & [>o]r. Thusy %o X. So we obtain a 1-conflict between the prefer-
ence relations- and>-(. 2-conflicts are analyzed in the same fashion.
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To see that the lack of 1-conflicts betweleri, and[>g], does not imply the
lack of 1-conflicts betweer and>~q, consider

~o={(c,a)}

—= {(av b)v (bv C)v (av C)},
andr = {(a,c)}. Then[~]; = {(a,c)} and [~o], = {(c,a)}. There are no 1-
conflicts betweef-], and[>¢]; but there is a 1-conflict betweenand-q. Anal-
ogous examples can be constructed for other kinds of canflict a

Finally, we compare the computational properties-gf —» and>-3. The pref-
erence relatior-; is recomputed only after preference revisions. The ralatip
is recomputed after every revision and every database eiptiaeé recomputation
after an update uses; as a selection condition applied to< r (wherer is the
current relation instance). The relatien is also recomputed after every revision
and every database update. However, in the latter caseigutation is more in-
volved than for—5, because transitive closure of a finite binary relation seedte
computed. Overall-1 represents the most stable and comprehensive preference
information. Even if- is stored,~1 needs to be kept up-to-date after preference
revisions, since it is used in the recomputation-gfafter an update. The prefer-
ence relation-3 can be stored, revised, and updated without any referenee.to
However, in this case some preference information is lokt,@orollary 1.

6.2 Non-intrinsic preferences

Non-intrinsic preference relations are defined using fdasithat refer not only to
built-in predicates.

Example 10The following preference relation is not intrinsic:
X ~pref Y = (X,Y) € Pref

wherePre f is a database relation. One can think of such a relation asgepting
storedpreferences.

Revising non-intrinsic preference relations looks prafdgic. First, it is typi-
cally not possible to establish the simplest order-théombperties of such rela-
tions. For instance, in Example 10 it is not possible to detee the irreflexivity
or transitivity of =pret On the basis of its definition. Whether such properties are
satisfied depends on the contents of the database reRdidn Second, the tran-
sitive closure of a non-intrinsic preference relation maiy to be expressed as a
finite formula. Again, Example 10 can be used to illustratg pioint.

However, it seems that restriction may be able to alleviaebove problems.
Suppose- is the original and-( the revising preference relations. Computing
TC(>0 U >) may be infeasible, as indicated above. But compufi@g[-o U >])
is not difficult, as[>~o U >], is computed by the first-order query

(X=oYyVX>=Yy)AXERAYER

For other composition operators, the same approach alds\because they are,
like union, defined in a first-order way.



22

7 Weak-order extensions

Theorems 3 and 5, and Proposition 4 demonstrate that for wehdts one can
prove stronger properties about revisions than for gerpadlal orders. The O-
compatibility or the interval order requirements may baxel, and the transitive
closure computation may no longer be necessary.

So it would be advantageous to work with weak orders. Suchrsrdan, for
example, be obtained a&xtension®f the given SPOs. We show here how to ex-
press the construction of weak order extensions using @gtaiules (AHV95)
and the Rule Algebra (IN88). Although not much can be shovthamframework
about WO extensions of arbitrary SPOs, the construction 6f tensions of
interval orders (I0s) can be guaranteed to terminate.

7.1 Rules

We define thapplication n(X) of a ruler to an input set of factX in the standard
way.

Definition 11 Assumer is of the form
A«— Bl,...,Bn,—\Cl,...,—\Cm.

Thenr(X) consists of all the facts(A) such thatr(Bj) € X, i =1,...,n, and
1(Cj) € X, j=1,...,m, wherert is a ground substitution. In anflationary appli-
cationr(X) is added toX.

In this paper, we are dealing with infinite sets of facts repréed by con-
straints. However, the above definition of rule applicastith applies. From this
definition, we can obtain a more operational definition thdt &Il us how to
construct the constraints in the head of the ruleom the constraints in the body
(KLPOO).

Assume that each goBl,i = 1,...,nis described by a constraifit and each
goalCj, j =1,...,mby a constrainy;. Also denote by the set of variables that
occur only in the body of. ThenA is described by the formula

from which negation and quantifiers have been eliminated.
(IN88) present a language called Rule Algebra (RA) whicbvedl rule com-
position. The syntax of RA expressions is defined as follows:

Expr::=r|Expr; Expr|Expru Expr]| Exprk|Expr+,

wherer is a single rule. The symbol “;” denotes sequential ang parallel com-
position. The superscripk® denotes repetition, and+,” unbounded iteration.
The application of RA expressions is defined as follows (IN88

— for a single rule it is defined as in Definition 11,
= (FuR2)(X) = Ry(Fy(X)),
- (RUR)(X) = F(X) UR(X),
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_ Fk(X) =(F;...;F)(X),

k
= FT(X) = Ui=oF'(X).

Like rule application, the application of RA expressionses in two different
variants: inflationary and non-inflationary.

Rule Algebra can be implemented directly. However, (IN8&ws also how
to map Rule Algebra expressions to a classooflly-stratifiedlogic programs
(Prz88). This class requires a limited use of function sylsibmimplement coun-
ters.

7.2 Strict partial orders

(Fis85) presents a construction of a WO extensionfafite SPO. It is based on a
very simple intuition.

Assume we are given that-y andy ~ z, or x ~y andy > z In a weak
order one needs to be able to have alsez in both cases (see Proposition 3).
Therefore, one could produce a WO extensidmf a given SPG- by supporting
the derivationof the implied order relationships. Clearly, such derimatshould
avoid contradictionX >’ y andy >’ x).

Example 11Consider the following order= {(a,c),(b,d)}. Thusa ~ d and
b ~ c. So we can deriva -’ b andb >’ a, a contradiction.

We construct an extension’ of a given SPO- using a set of rules. Unfortu-
nately, for infinite orders the construction does not alwaysluce a weak order.
The input preference relation is described using a set of facts of the relafion
of arity 2n wheren is the arity of the database relation over whiehis defined.
The output preference relatiod is also described as a set of facts of the relation
T but those facts are computed using rule application.

First, we have two ruleB;; andPy, for deriving new order relationships:

Pii: T(X,2) — T(XY)A-T(2y) A=T(Y,2).
Pia: T(X,2) — T(y, 2 A=T(X,Y) A=T(y,X).
Second, we have the conflict removal rie
P T(Xy) < T(X,y) A=T (Y, X).

We note that the rule 1, P12, P> need to be applied in a specific order. We use
the following Rule Algebra expressidfy (IN88; AHV95)

E1=((P1U Po); P)7,

applied to the input preference relation. In the rleand the expressiol;, the
desired semantics is non-inflationary because we wantnareie conflicts. For
the rulesP; 1 andPy,, inflationary and non-inflationary semantics coincide lisea
X C P1(X) andX C P»(X) under the assumption of irreflexivity.
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Example 12Consider the preference relation= {(a,c), (b,d)} from Example
11. Applying the rule$;1 andP;» we obtain the relation

T(x,y)=x=aAy#aVXx=DbAy#bVvx#cAy=cVx#dAy=d.

This is not an SPO because, for example, we Haigeb) andT (b, a). Applying
the ruleP,, the conflict is removed, yielding

T(xy) =x=aAy#aAy#bvx=bAy#bAy+#a
VX#CAX#AAYy=CVX#CAX#dAy=d.

which is a weak order. Thus, no further iterations are nesgss

Denote byT; the preference relation obtained at the end ofi thestage in the
computation ofg;. Clearly, if T; is a weak order, then nothing new is produced
at the next stage, i.€T;. 1 = T;. However, the reverse implication does not have
to hold for arbitrary SPOs. Therefore, in each stagk needs to be separately
checked for the weak order property (Proposition 1 implied the appropriate
properties are decidable under the assumption that thé meference relation is
described by an ERO preference formula).

Example 13Consider the following rational-order preference relatioadapted
from (Fis85):

X=y=X>YAX#OAYy#0.

The corresponding indifference relatienis defined as
X~y=Xx=yvx=0vy=0.

The relation= is not a weak order but even the first iteration of the abovesrul
fails to produce anything new. Consider any rational nuntbes 0. There are
numbersa andc such thata > b, b > ¢, a~ 0 andc ~ 0. So on the one hand
we have initiallyT (b,c), =T (c,0) and—T(0,c), and applying the rul®;; we get
T(b,0). But on the other hand we haWda, b), =T (a,0) and—T(0,a). Applying
the ruleP;, we getT (0,b). Therefore, the rul®; does not derivd (b,0), T(0,b),

or any other new fact.

Itis an open question what kind of properties a prefereniegioa should sat-
isfy so that the conditiofij. ; = T implies the weak order property. (Fis85) shows
that such an implication holds for SPOs over finite domaireeréfore, it also
holds for finite restrictions of arbitrary SPOs (SectionB)r a finite restriction
[~]r a different way for constructing a weak order extensiorfi-gf is available
through the use afanking (Cho03). The “best” tuples — those i (r) — receive
rank 1, the “second-best” rank 2 etc. Then the weak ordensidar:-' is defined
as

x ="y = rank(x) < rank(y).
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7.3 Interval orders

For interval orders (10s), we can show stronger results abonstructing WO
extensions. We still use the DatataRule Algebra framework but instead of the
expressiore; we use the following expressidy:

Ex= (Pu1; P2)™.

We will see that forE; the inflationary and non-inflationary semantics coin-
cide.

For simplicity, we identify here a preference relation wiltle set of facts of
theT predicate describing it.

Example 14Consider Example 13. Applying the rulg; to the preference rela-
tion > from this example (which is an interval order) yields thddwling prefer-
ence relation-':

X='y=X>YyAX#OAYy#OVX#O0AYy=0.
This relation is a total order, and thus also a weak order.

Lemma 2 For every irreflexive preference relation X, X Pj;(X), X C Pi»(X),
and X C Pya(P11(X)).

Lemma 3 Assume X is a preference relation which is an 10. Ther>® and
Pi2(X) are also preference relations which are 10s.

Proof WLOG, considelf = P11(X). Clearly,Y is irreflexive. For transitivity, con-
siderT(x,y) € Y andT (y,z) € Y. Thenthereis @ such thafl (x,Z) € X, T(Z,y) &

X, andT (y,Z) ¢ X. Similarly, there is & such thafl (y,Z") e X, T(Z’,z) ¢ X, and
T(z,Z') ¢ X. Becaus& is an interval order, we have(x,Z’) € X or T(y,Z) € X.
Assume the former. Thefi(x,z) € Y. The preservation of the interval order con-
dition can be shown in a similar way. a

Lemma4 LetF = (Py1;P12) and Y be an SPO. Then¥) C Y iffY isa WO.
Proof If Y is a WO, then
Y =P11(Y) = Pia(P1a(Y)).

If Y is not a WO but an SPO, then there atey and z such thatT (x,y) € Y,
TX2) €Y, T(ZX) €Y, T(y,2) ¢Y andT(z)y) €Y. ThusT (x,2) € P11(Y) and by
Lemma 2,T(X, Z) € P]_z(Pll(Y)). ThUSP]_z(Pl]_(Y)) ZY. O

The following theorem shows that finite termination of thalesation ofE; is
equivalent to the weak order property.

Theorem 14 Let X be an I0. For every i 0, Ex(X) = (P11;Pi2) " (X) equals
(Pr1; Po) (X)) iff (Pry; Pr2) (X) is a WO.

Proof Follows from Lemmas 2, 3, and 4. Note that fpk i, (P11;P12)!(X) C

(P11; P12)' (X). Itis essential that the given preference relation be a®tBerwise,

an application of?;1; P> may produce preference relations which are not SPOs
and the equivalence in Lemma 4 may stop to hold. ad
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To explore the possible implementations of the Rule Algebaressiore,,
we note first that Lemma 2 implies that for the ruRs andPy; inflationary and
non-inflationary semantics coincide. Therefore, we caninf&tionary or non-
inflationary languages for the implementationaf (AHV95) indicate that Rule
Algebra expressions can be translated to Inflationary Dgta{(GS86), a variant
of Datalog that allows unstratified negation (necessarg because of the rules
P11 andPy») at the price of having inflationary semantics. It is cleattimflation-
ary Datalog~ programs terminate on finite inputs. However, preferentdions
are typically infinite. Still, they are finitely representalusing preference for-
mulas, and thus we are dealing with the problem of terminadibinflationary
Constraint Datalog programs. Fortunately, there are positive results estadi
in this area in (KKR95), which, together with Theorem 14, iynihe following:

Theorem 15 Every interval order preference relation, defined using an ERO
formula, has a weak order extensieri, defined using an ERO formula. The for-
mula defining-' can be computed in exponential time.

8 Related work
8.1 Preference change

(Han95) presents a general framework for modeling changeeierences. Prefer-
ences are represented syntactically using sets of groferpnce formulas, and
their semantics is captured using sets of preferenceseiafi hanks to the syntac-
tic representation preference revision is treated sityjl#tough not identically,
to belief revision (GR95), and some axiomatic propertiepreference revisions
are identified. The result of a revision is supposed to bemafiy different from
the original preference relation (using a notion of miniityabased on symmetric
difference) and satisfy some additional background pates| for example spe-
cific order axioms. (Han95) does not address the issue ofrmting or defining
revised relations, nor does it study the properties of fijgerdasses of preference
relations. On the other hand, (Han95) discusses also prefercontraction, and
domain expansion and shrinking.

In our opinion, there are several fundamental differenea/ben belief and
preference revision. In belief revision, propositionadries are revised with propo-
sitional formulas, yielding new theories. In preferenocdgien, binary preference
relations are revised with other preference relationddiyig new preference re-
lations. Preference relations are single, finitely represge (though possibly in-
finite) first-order structures, satisfying order axiomsli&erevision focuses on
axiomatic properties of belief revision operators andoasinotions of revision
minimality. Preference revision focuses on axiomatic eottheoretic properties
of revised preference relations and the definability of swtations (though still
taking revision minimality into account).

(Wil97) considers revising a ranking (a WO) of a finite setwgfles with new
information, and shows that a new ranking, satisfying thavARelief revision
postulates (GR95), can be computed in a simple way. (Revés&ribes a number
of different revision operators for constraint databastmswyever, the emphasis
is on the axiomatic properties of the operators, not on tlimalality of revised
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databases. (PFT03) formulates various scenarios of preferrevision and does
not contain any formal framework. (Won94) studies revisionl contraction of
finite WO preference relations by single pairs-o t2. (Fre04) describes minimal
change revision afational preference relations between propositional formulas.

8.2 Preference queries

Two different approaches to preference queries have besogulin the literature:
qualitative and quantitative. In theualitativeapproach, preferences are specified
using binarypreference relationf.L87; GIJMO00; Cho02; Cho03; Kie02; KK02).
In the quantitativeutility-based approach, preferences are represented osin
meric utility functiond AW0O0; HP04), as shown in Section 4. The qualitative ap-
proach is strictly more general than the quantitative oneesone can define
preference relations in terms of utility functions. Howewanly WO preference
relations can be represented by numeric utility functidfis{0). Preferences that
are not WOs are common in database applications, c.f., Ebealnp

Example 15There is no utility function that captures the preferendatien de-
scribed in Example 1. Since there is no preference definedecest; andt; ort,

andts, the score of3 should be equal to the scores of bottandt,. But this im-
plies that the scores tf andt, are equal which is not possible sirtgés preferred
overts.

This lack of expressiveness of the quantitative approaebelsknown in utility
theory (Fis70). The paper (Cho03) contains an extensiveigiion of the prefer-
ence query literature.

In the earlier work on preference queries (Cho03; Kie02¢,@am find positive
and negative results about closure of different classesdars, including SPOs
and WOs, under various composition operators. The resulisel present paper
are, however, new. Restricting the relationsnd ¢ (for example, assuming the
interval order property and compatibility) and applyingrtsitive closure where
necessary make it possible to come up with positive couaterpf the negative
results in (Cho03). For example, (Cho03) shows that SPOS\éDslare in general
not closed w.r.t. union, which should be contrasted withdrams 1 and 5. In
(Kie02), Pareto and prioritized composition are definedeohat differently from
the present paper. The operators combine two preferenatored, each defined
over some database relation. The resulting preferencioreia defined over the
Cartesian product of the database relations. So such opgeat not useful in the
context of revision of preference relations. On the otherdhahe careful design
of the language in (Kie02) guarantees that every prefereglagéion that can be
defined is an SPO.

Various algorithms for evaluating qualitative prefereqceries are described
in (Cho03; TCO02), and for evaluating skyline queries, in @K.; PTFS03; BGZ04).
(BGO04) describes how to implement preference queries thatRareto compo-
sitions of utility-based preference relations. In Prefieee SQL (KK02) general
preference queries are implemented by a translation to 9QR04) describes
how materialized results of utility-based preference mseran be used to answer
other queries of the same kind.
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8.3 CP-nets

CP-nets (BBD 04) are an influential recent formalism for reasoning withdie
tional preference statements unaeteris paribussemantics (such semantics is
also adopted in other work (MD04; WD91)). We conjecture tBRtnets can be
expressed in the framework of preference relations of (Ghaed in the present
paper, by making the semantics explicit. If the conjectartelie, the results of the
present paper will be relevant to revision of CP-nets.

Example 16The CP-neM = {a> a,a: b~ b,a: b > b} whereaandb are Boo-
lean variables, captures the following preferences: (&lgoa to a, all else being
equal; (2) ifa, preferb to b; (3) if a, preferb to b. We construct a preference
relationc,, between worlds, i.e., Boolean valuationsacdndb:

(a,b) »¢, (@,bp)=a=1Aad =0Ab=1
va=1And =1Ab=1A0 =0
Vva=0/Anad =0 Ab=0Ab =1

Finally, the semantics of the CP-net is fully captured astthasitive closure
TC(>c, ). Such closure can be computed using Constraint DatalogBuitiean
constraints (KLP0O).

CP-nets and related formalisms cannot express preferefat@ns over infinite
domains which are essential in database applications.

9 Conclusions and future work

We have presented a formal foundation for an iterative aotmental approach
to constructing and evaluating preference queries. Oun fiogus isquery modi-
fication a query transformation approach which works by revisirgpteference
relation in the query. We have provided a detailed analyisiseocases where the
order-theoretic properties of the preference relatiorpaeserved in the revision.
We have considered a number of different revision operator®n, prioritized
and Pareto composition. We have also formulated algelaais that enable incre-
mental evaluation of preference queries. Finally, we hawdied the strengthening
of the properties of preference relations through finitériet®on and weak-order
extension.

Tables 1 and 2 summarize results about the existence of @ir@RD 6-
revisions for6 € {U,>}. There is no separate table for Pareto composition, be-
cause there are only few results specific to this kind of citiom.

Future work includes the integration of our results witmsi@d query opti-
mization techniques, both rewriting- and cost-based. $¢imquery optimization
techniques for preference queries (Cho04) can also beealiplihis context. An-
other possible direction could lead to the design ofdsion languagen which
richer classes of preference revisions can be specified @)IR

One should also consider possible courses of action if tiggnat preference
relation> and:-o lack the property of compatibility, for example # and >q



> SPO > 10 >~ WO
=0 SPO | no SPO if 0-compat.| SPO if 0-compat.
>0 10 SPO if 0-compat.| SPO if 0-compat.| SPO if 0O-compat.
o WO | SPOif 0-compat.| SPO if 0-compat.| WO if 0-compat.

Table 1 SPOuU-revision and WQU-revision

> SPO > 10 >~ WO
=0 SPO | no SPO if 0-compat.| SPO if 0-compat.
>0 10 SPO if 1-compat.| SPO if 1-compat.| SPO if 1-compat.
=o WO | SPO SPO \Ye}

Table 2 SPOr>-revision and WQ>-revision

are not 0-compatible in the case ofrevision. Then the target of the revision is
an SPO which is the closest to the preference relation>g. Such an SPO wiill
not be unique. Moreover, it is not clear how to obtain ipfsmiefj the revisions.
Similarly, one could studgontractionof preference relations. The need for con-
traction arises, for example, when a user realizes thatetbltrof a preference
guery does not contain some expected tuples.

Finally, one can consider preference query transformatwmch go beyond
preference revision, as well as more general classes ofrprefe queries that
involve, for example, ranking (Cho03). Also, languagesenmowerful than first-
order logic can be used to define preference relations. Fampbe, if the pref-
erences are defined using Constraint Datalog programstliledmasic properties
of such relations, for example irreflexivity or transitigican be captured using
Stratified Constraint Datalegprograms. For many classes of constraints such
programs terminate (KLPOO) providing the appropriate sieai procedures.
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