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Abstract. We study here fundamental issues involved in toguery evalua-
tion in probabilistic databases. We considgmple probabilistic databases in
which probabilities are associated with individual tupkasdgeneralprobabilis-

tic databases in which, additionally, exclusivity relasbips between tuples can
be represented. In contrast to other recent research imautsés we do not limit
ourselves to injective scoring functions. We formulatee¢hintuitive postulates
that the semantics of top-queries in probabilistic databases should satisfy, and
introduce a new semantics, Global-Fgphat satisfies those postulates to a large
degree. We also show how to evaluate queries under the Glopalsemantics.
For simple databases we design dynamic-programming bégadtlams, and for
general databases we show polynomial-time reductionsetgsithple cases. For
example, we demonstrate that for a fixedhe time complexity of tope query
evaluation is as low as linear, under the assumption thdtgitstic databases
are simple and scoring functions are injective.

1 Introduction

The study of incompleteness and uncertainty in database$ohg been an interest
of the database community [2—8]. Recently, this interestlieen rekindled by an in-
creasing demand for managing rich data, often incompleteusntertain, emerging
from scientific data management, sensor data managemémtldaning, information
extraction etc. [9] focuses on query evaluation in tradiiloprobabilistic databases;
ULDB [10] supports uncertain data and data lineage in Trij;[MayBMS [12] uses
the vertical World-Set representation of uncertain da@].[The standard semantics
adopted in most works is thmossible worldsemantics [2, 6, 7,10, 9, 13].

On the other hand, since the seminal papers of Fagin [14tHSlpp4 problem has
been extensively studied in multimedia databases [16]dleidare systems [17], data
cleaning [18], core technology in relational databasesZ@Petc. In the topt problem,
each tuple is given score and users are interestedkruples with the highest scores.

More recently, the tog problem has been studied in probabilistic databases [21,
22]. Those papers, however, are solving two essentialfgraifit topx problems. Soli-
man et al. [21] assumes the existence of a scoring functicertotuples. Probabilities
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provide information on how likely tuples will appear in thatdbase. In contrast, in
[22], the ranking criterion for tog: is the probability associated with each query an-
swer. In many applications, it is necessary to deal witheypbbabilities and scores
at the same time. Thus, in this paper, we use the model of R4n in this model,
different semantics for tog-queries are possible, so a part of the challenge is to define
a reasonable semantics.

As a motivating example, let us consider the following gi@ewadmission example.

Example 1.A graduate admission committee need to select two winnegsfellow-
ship. They narrow the candidates down to the following shtrt

NameOverall Scor¢ Prob. of Coming
Aidan 0.65 0.3

Bob 0.55 0.9

Chris 0.45 0.4

where theoverall scoreis the normalized score of each candidate based on their qual
fications, and th@robability of acceptances derived from historical statistics on can-
didates with similar qualifications and background.

The committee want to make offers to the best two candidateswill take the
offer. This decision problem can be formulated as akaptery over the above proba-
bilistic relation, wheré: = 2.

In Example 1, each tuple is associated witheaent which is that the candidate
will accept the offer. The probability of the event is showexhto each tuple. In this
example, all the events of tuples are independent, andsgke therefore said to be
independentSuch a relation is said to l@mple In contrast, Example 2 illustrates a
more general case.

Example 2.In a sensor network deployed in a habitat, each sensor geadines with
a confidence valuBrob, which is the probability that the reading is valid. The éoling
table shows the temperature sensor readings at a givenisgrtipie. These data are
from two sensors, Sensor 1 and Sensor 2, which corresponw feetrts of the relation,
markedC; andC5 respectively. Each sensor has only done reading at a given time,
therefore tuples from the same part of the relation cornedpo exclusive events.

Temp®F (Score) Prob
22 0.6
= 10 0.4
25 0.1
Ct 15 0.6

Our question is:

“What's the temperature of the warmest spot?”

The question can be formulated as a foguery, wherek = 1, over a probabilistic
relation containing the above data. The scoring functichéstemperature. However,
we must take into consideration that the tuples in each@ait= 1, 2, are exclusive.



Our contributions in this paper are the following:

o We formulate three intuitive semantic postulates and usatto analyze and com-
pare different topk semantics in probabilistic databases (Section 3.1);

e We propose a new semantics for tbpjueries in probabilistic databases, called
Global-Topk, which satisfies the above postulates to a large degreddB8&ce);

¢ We exhibit efficient algorithms for evaluating tdpgueries under the Global-Tép
semantics irsimpleprobabilistic databases (Section 4.1) and general prbs@bi
databases, under injective scoring functions (Section 4.3

e We generalize Global-Tdpsemantics to general scoring functions, where ties are
allowed, by introducing the notion @flocation policy We propose dynamic pro-
gramming based algorithms for query evaluation undeEtipgalallocation policy
(Section 5).

2 Background

2.1 Probabilistic Relations

To simplify the discussion in this paper, we assume that daiiistic database con-
tains a singleorobabilistic relation We refer to a traditional database relation atea
terministic relation A deterministic relatiorR is a set of tuples. Avartition C of Ris a
collection of non-empty subsets &fsuch that every tuple belongs to one and only one
of the subsets. That i§,= {C1,Cs,...,Cy} suchthaC; UCy U ... U C,, = Rand
CinC; =0,1<i# j<m.Eachsubsef;,i=1,2,...,mis apart of the partition
C. A probabilistic relationR? has three componentssapport (deterministic) relation
R, a probability functiorp and a partitiorC of the support relatior. The probability
functionp maps every tuple iR to a probability value ir{0, 1]. The partitionC divides
R into subsets such that the tuples within each subset arasaxeland therefore their
probabilities sum up to at most In the graphical presentation & we use horizontal
lines to separate tuples from different parts.

Definition 1 (Probabilistic Relation). A probabilistic relationR? is a triplet (R, p, C),
whereR is a support deterministic relatiom, is a probability functiorp : R — (0, 1]
andc is a partition of R such thatvC; € C, >, ., p(t) < 1.

In addition, we make the assumption that tuples from difiepgarts of ofC are
independent, and tuples within the same part are excluSgnition 1 is equivalent
to the model used in Soliman et al. [21] with exclusive tupbmgration rules. Ré et
al. [22] proposes a more general model, however only a céstiimodel equivalent to
Definition 1 is used in topg query evaluation.

Example 2 shows an example of a probabilistic relation whasstition has two
parts. Generally, each part corresponds to a real worldyeirti this case, a sensor.
Since there is only one true state of an entity, tuples froenstime part are exclusive.
Moreover, the probabilities of all possible states of antgrstum up to at most. In
Example 2, the sum of probabilities of tuples from Serisisrl, while that from Sensor
21is0.7. This can happen for various reasons. In the above examelmight encounter
a physical difficulty in collecting the sensor data, and epavith partial data.



Definition 2 (Simple Probabilistic Relation). A probabilistic relationk? = (R, p,C)
is simple iff the partitiorC contains only singleton sets.

The probabilistic relation in Example 1 gmple(individual parts not illustrated).
Note that in this caséR| = |C].

We adopt the well-knowpossible worldssemantics for probabilistic relations [2,
6,7,10,9,13].

Definition 3 (Possible World).Given a probabilistic relatiorR? = (R, p,C), a deter-
ministic relationlV is a possible worldf R iff

1. W is a subset of the support relation, i}, C R;

2. For every pariC; in the partitionC, at most one tuple fror@; is in W, i.e.VC; €
C,|C;NnW|<1;

3. The probability ofV (defined by Equation 1) is positive, iBr(1W) > 0.

prow) =] p) JT @ =D p®) (1)

teW c;ec’ teC;
whereC’ = {C; € C|W N C; = 0}.

Denote bypwd(RP) the set of all possible worldsf RP.

2.2 Total order v.s. Weak order

A binary relation> is

irreflexive:Vz. x # x,

asymmetriciz, y. x >~y = y ¥ x,

transitivevz, y, z. (x =y Ay = 2) = = > 2,

— negatively transitivevz, y, z. (x £ y Ay ¥ 2) = x ¥ 2,
connectedvz,y. z - yVy =z Ve =y.

A strict partial orderis an irreflexive, transitive ( and thus symmetric ) binary re
lation. A weak orderis a negatively transitive strict partial order. tdtal orderis a
connected strict partial order.

2.3 Scoring function

A scoring function over a deterministic relatiddis a function fromR to real numbers,
i.e.s : R — R. The functions induces gpreference relation-, and anindifference
relation ~, on R. For any two distinct tupleg andt; from R,

ti s 5 0 s(t) > s(t));
ti ~Ng tj iff S(tz) = S(tj).

A scoring function over a probabilistic relatioR? = (R, p, C) is a scoring function
s over its support relatiorR. In general, a scoring function establishew@ak order
over R, where tuples fronR? can tie in score. However, when the scoring functias
injective -, is atotal order. In such a case, no two tuples tie in score.



2.4 Top-k Queries

Definition 4 (Top-k Answer Set over Deterministic Relation) Given a deterministic
relation R, a non-negative integdr and a scoring functions over R, a top+ answer in
R unders is a setl” of tuples such that

1.TCR;

s 2. If|R| < k, T = R, otherwisgT| = k;

3AVteTV' eR-T.t =t ort~gt.

According to Definition 4, givert ands, there can be more than one tb@nswer
set in a deterministic relatioR. The evaluation of a tog-query overR returns one of
them nondeterministically, say. However, if the scoring functios is injective,S is
unique, denoted bopy, s (R).

3 Semantics of Top-k Queries

In the following two sections, we restrict our discussiorirjectivescoring functions.
We will discuss the generalization to general scoring fiomstin Section 5.

3.1 Semantic Postulates for Tope Answers

Probability opens the gate for various possible semantictop+ queries. As the se-
mantics of a probabilistic relation involves a set of worlitlss to be expected that there
may be more than one tdpanswer, even under an injective scoring function. The an-
swer to a topk query over a probabilistic relatioR? = (R, p,C) should clearly be a
set of tuples from its support relatidh We formulate below three desiralgestulates
which serve as a benchmark to compare different semantics.

In the following discussion, denote bins, ;(R?) the collection of all topk answer
sets of R? under the functiors.

Postul ates

— Static Postulates
1. Exactk: WhenR? is sufficiently large|C| > k), the cardinality of every top-

setS is exactlyk;
Cl = k= [VS € Ansys(RP). |S| = k].

2. FaithfulnessFor every topk setS and any two tuples;, t2 € R, if both the
score and the probability df, are higher than those of andt, € S, then
t1 €5,

VS € Anskys(Rp) Viti,ts € R. S(tl) > S(tQ)/\p(tl) > p(tg)/\tz €cS=1t €8

— Dynamic Postulate
U Ansy, s(RP) denotes the union of all top-answer sets oR? = (R, p,C)
under the function. For anyt € R,

tis awinneriff ¢ € U Ansy, s(RP)
tis aloseriff t € R — U Ansy, s(RP)



3. Stability.
e Raising the score/probability of a winner will not turn itara loser;

(a) If a scoring functions’ is such thats’(t) > s(t) and for everyt’ €
R —{t}, §'(t) = s(t), then

t € U Ansy s(RP) =t € U Ansy, ¢ (RP).

(b) If a probability functionp’ is such that'(¢t) > p(t) and for every
t' e R—{t},p'(t) = p(t), then

t € U Ansy s(RP) =t € U Ansy s((RP)'),

where(RP) = (R, p’,C).
e Lowering the score/probability of a loser will not turn itna winner.

(a) If a scoring functions’ is such thats’(t) < s(t) and for everyt’ €
R —{t},s'(t) = s(t), then

t € R—UAnss(RP)=te R—U Ansy o (RP).

(b) If a probability functionp’ is such that’(¢t) < p(t) and for every
t'e R—{t},p'(t) =p(t), then

t € R—U Ansy s(RP) =t € R—U Ansy s((RP)"),
where(R?)' = (R,p’,C).

All of those postulates reflect basic intuitions about topaswers.

Exactk expresses user expectations about the size of the respltally, a user
issues a topk query in order to restrict the size of the result and get aetutfscardi-
nality k (cf. Example 1). Thereforg; is a crucial parameter specified by the user that
should be complied with.

Faithfulnessreflects the significance of score and probability in a statigiron-
ment. It plays an important role in designing efficient quevglution algorithms. The
satisfaction ofraithfulnessallows the application of a set of pruning techniques based
onmonotonicity

Stabilityreflects the significance of score and probability in a dyraniironment.

In a dynamic world, it is common that user might update squodyability on-the-fly.
Stabilityrequires that the consequences of such changes should coaberintuitive.

3.2 Global-Topk Semantics

We propose here a new tdpanswer semantics in probabilistic relations, nan@iybal-
Topk, which satisfies the postulates formulated in Section 3dllawge degree:

e Global-Topk: returnk highest-ranked tuples according to their probability ahige
in the top% answers in possible worlds.



Considering a probabilistic relatiaR? = (R, p, C) under an injective scoring func-
tion s, anyW € pwd(RP) has a unique tof-answer setopy, (). Each tuple from
the support relatiol® can be in the tog: answer (in the sense of Definition 4) in zero,
one or more possible worlds dt?. Therefore, the sum of the probabilities of those
possible worlds provides a global ranking criterion.

Definition 5 (Global-Topk Probability). Assume a probabilistic relatioR? = (R, p, C),
a non-negative integet and an injective scoring functionover RP. For any tuplet in
R, the Global-Top probability of¢, denoted b)P,QRSp (t), is the sum of the probabilities
of all possible worlds of? whose topk answer contains.

PRt =Y  Pr(w). (2)
W epwd(RP)
tetopy,s (W)

For simplicity, we skip the superscript iﬁ,f: (t), i.e. Py 5(t), when the context is
unambiguous.

Definition 6 (Global-Topk Answer Set over Probabilistic Relation).Given a prob-
abilistic relation R? = (R, p,C), a non-negative integet and an injective scoring
functions over R?, a top+ answer inR? unders is a setl” of tuples such that

1.T C R;

2.If|R| < k, T = R, otherwiseT| = k;

3VteT,Vt' € R—T, Py s(t) > Py s(t').

Notice the similarity between Definition 6 and Definition A.fact, the probabilis-
tic version only changes the last condition, which restétespreferred relationship
between two tuples by taking probability into account. Tégsnantics preserves the
nondeterministic nature of Definition 4. For example, if ttuples are of the same
Global-Top: probability, and there ark — 1 tuples with higher Global-Tdpprobabil-
ity, Definition 4 allows one of the two tuples to be added totthek answer nondeter-
ministically. Example 3 gives an example of the Global-#epmantics.

Example 3.Consider the tog2-query in Example 1. Clearly, the scoring function here
is the Overall Scorefunction. The following table shows all the possible workdsd
their probabilities. For each world, the names of the peaptee top2 answer set of
that world are underlined.

Possible World Prob
Wy =10 0.042
Wy = {Aidan} 0.018
W; = {Bob} 0.378
W, = {Chris} 0.028
W5 = {Aidan, Bob} 0.162
Ws = {Aidan, Chris} 0.012
W7 = {Bob, Chris} 0.252

Ws = {Aidan, Bob, Chris} 0.108




Chris is in the top2 answer ofiW,, Ws, W7, so the top2 probability of Chris is
0.028 + 0.012 + 0.252 = 0.292. Similarly, the top2 probability of Aidan and Bob
are0.9 and 0.3 respectively0.9 > 0.3 > 0.292, therefore Global-Top will return
{Aidan, Bob}.

Note that topk answer sets may be of cardinality less thafor some possible
worlds. We refer to such possible worldssasallworlds. In Example 3W; . 4 are all
small worlds.

3.3 Other Semantics
Soliman et al. [21] proposes two semantics for fogueries in probabilistic relations.

e U-Topk: return the most probable tapanswer set that belongs to possible world(s);
e U-kRanksfori = 1,2, ..., k, return the most probabl&*-ranked tuples across all
possible worlds.

Hua et al. [23] independently proposes P Ta semantics based on Global-Fop
probability as well. PTk takes an additional parameter: probability threshelde
(0, 1].

e PT+:return every tuple whose probability of being in the tophswers in possible
worlds is at leasp..

Example 4.Continuing Example 3, under U-Tapsemantics, the probability of top-
2 answer sef Bob} is 0.378, and that of{ Aidan, Bob} is 0.162 + 0.108 = 0.27.
Therefore{Bob} is more probable thafiAidan, Bob} under U-Tog. In fact, { Bob}
is the most probable topanswer set in this case, and will be returned by U#Top
Under U4Ranks semantics, Aidan is irf? place in the to® answer ofiV,, W,
We, Wg, therefore the probability of Aidan being irf place in the to® answers in
possible worlds i9.018 4+ 0.162 + 0.012 + 0.108 = 0.3. However, Aidan is not in
274 place in the to2 answer of any possible world, therefore the probability afak
being in2"? place is0. In fact, we can construct the following table.

Aidan Bob Chris
Rank 1 0.3 0.63 0.028
Rank2 0 0.270.264

U-kRanks selects the tuple with the highest probability at eack (underlined)
and takes the union of them. In this example, Bob wins at bathkRL and Rank 2.
Thus, the tof2 answer returned by BRanks is{ Bob}.

PT-k returns every tuple with Global-Tépprobability above the user specified
thresholdp,., therefore the answer depends pn Sayp, = 0.6, then PTk return
{Aidan}, as it is the only tuple with Global-Tdpprobability at leasb.6.

The postulates introduced in Section 3.1 lay the ground éonparing different
semantics. In Table 1, a single’” (resp. “x”) indicates that postulate is (resp. is not)
satisfied under that semantics//x” indicates that, the postulate is satisfied by that
semantics irsimpleprobabilistic relations, but not in the general case.



Semantics |Exactk|FaithfulnessStability|
Global-Topg:| v VIx v
PT-% X VIx v
U-Topk X VIx v
U-kRanks X X X

Table 1. Postulate Satisfaction for Different
Semantics

ForExact k Global-Topk is the only semantics that satisfies this postulate. Example
4 illustrates the case where U-TigJ-kRanks and Pk violate this postulate. It is not
satisfied by U-Top because amallpossible world with high probability could domi-
nate other worlds. In that case, the dominating possiblédamight not have enough
tuples. Itis also violated by WRanks because a single tuple can win at multiple ranks
in U-kRanks. In PTk, if the threshold parameter. is set too high, then less thartu-
ples will be returned (as in Example 4). Asdecreases, PF+eturn more tuples. In the
extreme case whem approaches, any tuple with a positive Global-Taégprobability
will be returned.

For Faithfulness Global-Topk violates it when exclusion rules lead to a highly re-
stricted distribution of possible worlds, and are combingtth an unfavorable scoring
function. PT% violatesFaithfulnessfor the same reason. U-TeiolatesFaithfulness
since it requires all tuples in a topanswer set to be compatible, this postulate can be
violated when a high-score/probability tuple could be dedydown arbitrarily by its
compatible tuples if they are not very likely to appearkRanks violates botFkaith-
fulnessand Stability. Under U%4Ranks, instead of a set, a tépanswer is an ordered
vector, where ranks are significant. A change in a tuple’®ahdity/score might have
unpredictable consequence on ranks, therefore those tstalates are not guaranteed
to hold.

Faithfulnesdss a postulate which can lead to significant pruning in pcactEven
though it is not fully satisfied by any of the four semantiasng degree of satisfaction
is still desirable, as it will help us find pruning rules. Foraeple, our optimization in
Section 4.2 explores tHeaithfulnessof Global-Topk in simple probabilistic databases.
Another example is that one of the pruning techniques in §®Jores thd-aithfulness
of exclusive tuples in general probabilistic databaseseds w

Proofs of the results in Table 1 are in Appendix.

4 Query Evaluation under Global-Topk

4.1 Simple Probabilistic Relations

We first consider aimpleprobabilistic relation?? = (R, p,C) under an injective scor-
ing functions.

Proposition 1. Given a simple probabilistic relatio®” = (R, p,C) and an injective
scoring functions over R?, if R = {t1, ta, ..., tp} andty =5 ta =5 ... =4 t,, the
following recursion on Global-Tdpqueries holds:
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0 k=0

N ) Pt 1<i<k
q(ka Z) ( . p(tifl) B . . . (3)

q(k,i—1)——=+q(k — 1,71 —1))p(t;) otherwise

p(ti-1)
Whereq(k, Z) = Pk,s(ti) and]ﬁ(ti_l) =1- p(ti—l)-

Proof. SeeAppendix.
Notice that Equation 3 involves probabilities only, whiteetscores are used to de-
termine the order of computation.

Example 5.Consider a simple probabilistic relatidt? = (R, p,C), whereR = {t,
to, ts, ta}, p(ti) = pi, 1 < i <4,C = {{t1}, {t2}, {ts}, {t4}} and an injective scoring
functions such that; >~ t5 > t3 =5 t4. The following table shows the Global-Thp
probability oft;, where0 < k < 2.

Kt 12 13 i

00 0 0 0

lip1 p1p2 P1D2p3 P1D2D3P4

2lp1 P2 (P2 + P1P2)Ps ((P2 + P1P2)P3
+P1DP2P3)P4

Row 2 (bold) is eacly;’s Global-Tog® probability. Now, if we are interested in tap-
answer inR?, we only need to pick the two tuples with the highest value amR2.

Theorem 1 (Correctness of Algorithm 1).Given a simple probabilistic relatioR? =
(R, p, C), a non-negative integet and an injective scoring functios, Algorithm 1
correctly computes a Global-Témnswer set o2 under the scoring functios.

Proof. Algorithm 1 maintains a priority queue to select theuples with the highest
Global-Topk value. Notice that the nondeterminism is reflected in Lines @éh& algo-
rithm for maintaining the priority queue in the presenceyarfig elements. As long as
Line 2 in Algorithm 1 correctly computes the Global-Toprobability of each tuple in
R, Algorithm 1 returns a valid Global-Tépanswer set. By Proposition 1, Algorithm 2
correctly computes the Global-Teprobability of tuples inR.

Algorithm 1 is a one-pass computation on the probabilisgtlation, which can be
easily implemented even if secondary storage is used. Téehead is the initial sort-
ing cost (not shown in Algorithm 1), which would be amortizey the workload of
consecutive togs queries.

Algorithm 2 takesO(kn) to compute the DP table. In addition, Algorithm 1 uses
a priority queue to maintain the highest values, which take3(n log k). Altogether,
Algorithm 1 takesO(kn).

4.2 Threshold Algorithm Optimization

Fagin [15] propose§hreshold Algorithm (TAfpr processing top: queries in a middle-
ware scenario. In a middleware system,adnjecthasm attributes. For each attribute,
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Algorithm 1 (Ind _Topk) Evaluate Global-Top Queries in a Simple Probabilistic Re-
lation under an Injective Scoring Function
Require: R? = (R, p,C),k
Ensure: tuplesinR are sorted in the decreasing order based on the scoringdanct
1: Initialize a fixed cardinality(k + 1) priority queueAns of (¢, prob) pairs, which compares
pairs onprob, i.e. the Global-Top probability of¢;
2: Calculate Global-Tapprobabilities using Algorithm 2, i.e.

q(0...k,1...|R|) = Ind_Topk Sul(R?, k);

. fori=1to|R|do
Add (t;, q(k, 1)) to Ans;
if |Ans| > k then
remove the pair with the smallestob value fromAns;
end if
end for
return {t;|(ti,q(k,1)) € Ans};

©oNO W

Algorithm 2 (Ind _Topk_Sub) Compute Global-Top Probabilities in a Simple Proba-
bilistic Relation under an Injective Scoring Function
Require: R? = (R,p,C),k
Ensure: tuples inR are sorted in the decreasing order based on
1 ¢q(0,1) =0;
cfor k' =1tokdo

q(k',1) = p(t1);
end for
: for i = 2to|R| do
for k¥ = 0tok do

if ¥ = 0then

Q(klv 7‘) = 0;

else ~

10: q(k',i) = p(t:)(q(k' i — l)igl*li +q(k' —1,i—1));
1—1

11: end if
12:  end for
13: end for
14: return ¢(0...k,1...|R|);

©CoNORr®NE
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there is a sorted list ranking objects in the decreasingrafiés score on that attribute.

An aggregation functiory combines the individual attribute scores i=1,2,...,m
to obtain the overall object scoféx, z2, . . ., z,,). An aggregation function isiono-
toniciff f(z1,x2,...,2m) < f(z),25,...,2,,) wheneverr; < z/ for everyi. Fagin

[15] shows that TA is cost-optimal in finding the tdpebjects in such a system.

TA is guaranteed to work as long as the aggregation functiananotonic. For a
simple probabilistic relation, if we regasdoreandprobabilityas two special attributes,
Global-Top: probability P s is an aggregation function storeandprobability. The
Faithfulnesgostulate in Section 3.1 implies the monotonicity of Glebapk probabil-
ity. Consequently, assuming that we have an index on prébtyadss well, we can guide
the dynamic programming (DP) in Algorithm 2 by TA. Now, inateof computing all
kn entries for DP, where. = |R|, the algorithm can be stopped as early as possible.
A subtlety is that Global-Top probability Py,  is only well-defined fort € R, unlike
in [15], where an aggregation function is well-defined over tlomain of all possible
attribute values. Therefore, compared to the original TA,nged to achieve the same
behavior without referring to virtual tuples which are nofA.

U-Topk satisfiesFaithfulnessn simple probabilistic relations. An adaption of the
TA algorithm in this case is available in [21]. TA is not apalble to UkRanks. Even
though we can define an aggregation functiomperk, rank = 1,2,. .., k, for tuples
under UxRanks, the violation ofaithfulnessn Table 1 suggests a violation of mono-
tonicity of thosek aggregation functions. PF-computes Global-Tap probability as
well, and is therefore a natural candidate for TA in simplelyabilistic relations.

Denotel” andP for the list of tuples in the decreasing order of score antalpdity
respectively. Following the convention in [13]andp are the last value seenihand
P respectively. B

Algorithm 1’ (TA _Ind__Topk)

(1) Godownr list, and fill in entries in the DP table. Specifically, for= ¢;,
compute the entries in thg”" column up to thek!" row. Add¢; to the
top-k answer setdns, if any of the following conditions holds:

(a) Ans has less thah tuples, i.e]Ans| < k;

(b) The Global-Tog probability of ¢;, i.e. g(k,j), is greater tha
the lower bound of Ans, i.e. LBa,s, Where LBy,s =
mintieAns Q(ka 7’)

In the second case, we also need to drop the tuple with thestaBlebal-

Topk probability in order to preserve the cardinality 4f.s.

(2) After we have seen at leakttuples inT', we go downP list to find
the firstp whose tuple has not been seen. Let= p, and we can usge
p to estimate theéhreshold i.e. upper boundl(P) of the Global-Top
probability of any unseen tuple. Assurhe- t;,

p(ti)
p(t:)

(3) If UP > LBuans, We can expectins will be updated in the future, so
go back to (1). Otherwise, we can safely stop and repoxt.

=]

UP = (q(k,i) +q(k —1,))p.




13

Theorem 2 (Correctness of Algorithm 17).Given a simple probabilistic relatioR? =
(R, p,C), a non-negative integek and an injective scoring function over R?, the
above TA-based algorithm correctly find a tb@nswer under Global-Tdpsemantics.

Proof. SeeAppendix.

The optimization above aims at an early stop. Bruno et al.¢2#ies out an exten-
sive experimental study on the effectiveness of applyingfTRDMBS. They consider
various aspects of query processing. One of their conaigssthat if at least one of the
indices available for the attributeis acovering indexthat s, it is defined over all other
attributes and we can get the values of all other attribuiresitly without performing
a primary index lookup, then the improvement by TA can be upvtmorders of mag-
nitude. The cost of building a useful set of indices once wdod amortized by a large
number of topk queries that subsequently benefit form such indices. Evémeitack
of covering indices, if the data is highly correlated, in case, that means high-score
tuples having high probabilities, TA would still be effaai

4.3 Arbitrary Probabilistic Relations

Induced Event Relation In the general case of probabilistic relation, each parhef t
partitionC can contain more than one tuple. The crudai@ependencassumption in
Algorithm 1 no longer holds. However, even though tuplesnia part of the partitiod
are not independent, tuples in different parts are. In theving definition, we assume
an identifier functionid. For any tuple, id(¢) identifies the part wherebelongs.

Definition 7 (Induced Event Relation).Given a probabilistic relatiorkR? = (R, p, C),
an injective scoring functios over R” and a tuplet € Cjq(;) € C, the event relation
induced byt, denoted by=? = (E, p¥,CF), is a probabilistic relation whose support
relation £ has only one attributevent. The relationE and the probability function
pP are defined by the following two generation rules:

— Rulel: ¢, € Eandpf(t.,) = p(t);
~ Rule2: VYC; €CAC; # Cigy-

(3t € Ci At' =4 t) = (te, € E) andp®(te.,) = p(t').

No other tuples belong t&. The partitionC” is defined as the collection of single-
ton subsets of.

Except for one special tuple generatedRwle 1 each tuple in the induced event
relation (generated bRRule 2 represents an event, associated with a paft; € C.
Given the tuple, theeventec, is defined as “some tuple from the pétthas the score
higher than the score af. The probability of this event, denoted byt ), is the
probability thate, occurs.

The role of the special tuple, and its probabilityp(¢) will become clear in Propo-
sition 3. Let us first look at an example of an induced eveiatiaah.

! Probability is typically supported as a special attribm®BMS.
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Example 6.Given R? as in Example 2, we would like to construct the induced event
relation E? = (E, p¥,CF) for tuplet=(Temp:15) from C». By Rule 1, we have,, €

E, p¥(t,) = 0.6. By Rule 2, sincet € C,, we havet,., € E andp”(te,, ) =

> ovec, P(t') = p((Temp:22)) = 0.6. Therefore,

t' -t
E:  pE:
Event Pro
te, | 0.6
tec, | 0.6

Proposition 2. An induced event relation in Definition 7 is a simple probihii rela-
tion.

Evaluating Global-Topk Queries With the help ofinduced event relatignwe can
reduce Global-Topin the general case to Global-Tom simple probabilistic relations.

Lemma 1. Let R? = (R, p,C) be a probabilistic relations an injective scoring func-
tion,t € R, and EP = (E,p¥ CF) the event relation induced hy DefineQ? =
(B — {te,},p",C¥ — {{t.,}}). Then, the Global-Tdp probability of ¢ satisfies the
following:

PE () =pt) Y  Pr(W.).

We Epwd(QP)
[We|<k

Proposition 3. Given a probabilistic relation?? = (R, p,C) and an injective scor-
ing functions, for anyt € RP, the Global-Tog probability of ¢ equals the Global-
Topk probability of ¢., when evaluating tog- in the induced event relatio’? =
(E,p”,CP) under the injective scoring functios” : E — R,s®(t,) = % and
§P(tee,) = it

Plfsp (t) = PIE:E (tez)-

Proof. SeeAppendix.

In Proposition 3, the choice of the functiefi is rather arbitrary. In fact, any injec-
tive functioin givingt., the lowest score will do. Every tuple other thiain the induced
event relation corresponds to the event that a tuple witloeedugher than that afoc-
curs. We want to track the case that at miostl such events happen. Since any induced
event relation is simple (Proposition 2), Proposition @strates how we can reduce the
computation ofP,fg (t) in the original probabilistic relation to a topeomputation in a
simple probabilistic relation, where we can apply the DPiteégue described in Section
4.1. The complete algorithms are shown as Algorithm 3 ana#étigm 4.

In Algorithm 4, we first find the pait’;;,) wheret belongs. In Line 4, we initialize
the support relatiorfZ of the induced event relation by the tuple generated by Rule 1
in Definition 7. For any parC; other thanC;,;), we compute the probability of the
eventeq, according to Definition 7 (Line 4), and add it # if its probability is non-
zero (Line 5-7). Since all the tuples from the same part actueive, this probability is
the sum of the probabilities of all tuples that qualify intipart. Note that if no tuple
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Algorithm 3 (IndEx _Topk) Evaluate Global-Top Queries in a General Probabilistic
Relation under an Injective Scoring Function
Require: R? = (R,p,C),k,s
1: Initialize a fixed cardinalityk + 1 priority queueAns of (¢, prob) pairs, which compares
pairs onprob, i.e. the Global-Top probability oft;
2: fort € Rdo
3:  CalculateP[; (t) using Algorithm 4, i.e.

P (t) = INdEX Topk SU(R?, k, 5, 1);

4: Add(t, PF(t)) to Ans;

5:  if |[Ans| > kthen

6: remove the pair with the smallestob value fromAns;
7. endif

8: end for

9: return {t|(t, P, (1)) € Ans};

Algorithm 4 (IndEx _Topk_Sub) CalculateP,fg (t) using an induced event relation
Require: R? = (R,p,C),k,s,t € R

1. Find the parCq;) € C such that € C;q);
2: E = {t., }, wherep® (t.,) = p(t);
3. for C; € C andC; # Ciqr) do
4: plec,) = Yvec, p(t);
t -t
5:  if p(ec,) > 0then
6: E = EU {tec, }, wherep®(t.. ) = p(ec,);
7. endif
8: end for
9: Use Algorithm 2 to compute Global-Teprobabilities inE? = (E,p”,C"), i.e.

q(0...k,1...|E|) = Ind_Topk SUb(E? k)

10: P (t) = Pls(te,) = a(k, |E);
11: return P (1);
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from C; qualifies, this probability is zero. In this case, we do noeaghether any tuple
from C; will be in the possible world or not, since it does not have arflpence on
whethert will be in top-k or not. The corresponding event tuple is therefore excluded
from E. By default, any probabilistic database assumes that qobg twt in the support
relation is with probability zero. Line 4 uses Algorithm 2d¢omputePF" (t.,). Note
that Algorithm 2 requires all tuples be sorted on score, bistis not a problem for
us. Since we already know the scoring functidn we simply need to organize tuples
based o when generating. No extra sorting is necessary.

Theorem 3 (Correctness of Algorithm 3).Given a probabilistic relatiorR? = (R, p,
C), a non-negative integeét and an injective scoring functiosy Algorithm 3 correctly
computes a Global-Tdpanswer set of? under the scoring functios.

Proof. The top-level structure with the priority queue in Algorit3 resemble those
in Algorithm 1. Therefore, as long as Line 3 in Algorithm 3 mamtly computes the
Global-Top: probability of each tuple iR, Algorithm 3 returns a valid Global-Tap
answer set. Line 1-8 in Algorithm 4 computes the event reteitiduced by tuple. By
Proposition 3, Line 9-10in Algorithm 4 correctly computes Global-Tog: probability
of tuplet.

In Algorithm 4, Line 4-4 take®(n) to build E (we need to scan all tuples within
each part). The call to Algorithm 2 in Line 4 takégk|E|), where|E| is no more than
the number of parts in partitio, which is in turn no more than. So Algorithm 4
takesO(kn). Algorithm 3 maken calls to Algorithm 4 to comput@/®. (¢) for every
tuplet € R. Again, Algorithm 3 uses a priority queue to select the firaweer set,
which takesO(n log k). The entire algorithm take8(kn? + nlogk) = O(kn?).

5 Global-Topk under General Scoring Functions

5.1 Semantics and Postulates

Global-Topk Semantics with Allocation Policy Under a general scoring function,
the Global-Tog semantics remains the same. However, the definition of Glbdyak
probability in Definition 5 needs to be generalized to hatigie

Recall that under an injective scoring functigrthere is a unique top-answer set
S'in every possible world”. When the scoring functiosis non-injective, there may be
multiple top# answer set$', ..., Sy, each of which is returned nondeterministically.
Therefore, for any tuple € NS;,i =1, ..., d, the worldW contributesPr(W) to the
Global-Top: probability oft. One the other hand, for any tuple= (US; — NS;),7 =
1...,d, the worldWW contributes only draction of Pr(W) to the Global-Top proba-
bility of ¢. Theallocation policydetermines the value of this fraction, i.e. tilkbocation
coefficientDenote by (¢, W) the allocation coefficient of a tuptein a world V. Let
all, (W) =US;,i=1,....d.

Definition 8 (Global-Topk Probability under a General Scoring Function). Assume
a probabilistic relationR? = (R, p,C), a non-negative integérand a scoring function
s overRP. For any tuplet in R, the Global-Tog probability of¢, denoted byP,fSp (t),is
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the sum of the (partial) probabilities of all possible waldf R whose topk answer
may contairr.

PR =Y at,W)Pr(W). (4)
W epwd(RP)
teally,s (W)
With no prior bias towards any tuple, it is natural to assunaé eéach of5, ..., 54

is returned nondeterministically wiqualprobability. Notice that this probability has
nothing to do with tuple probabilities. Rather, it is the etetined by the number of
equally qualified tops answer sets. Hence, we have the followlagual allocation

policy.

Definition 9 (Equal Allocation Policy). Assume a probabilistic relatioR? = (R, p,C),
a non-negative integet and a scoring functiors over RP. For a possible worldV €
pwd(RP) and atuplet € W, leta = |[{t/ € W|t' =, t}| andb = |{t' € W|t' ~; t}|

1 ifa<kanda+b <k
alt,W)=<k—a
b

ifa <kanda+b >k

Satisfaction of PostulatesThe semantic postulates in Section 3.1 are directly appli-
cable to Global-Top with allocation policy. In the Appendix, we show that tEqual
allocation policy preserves the semantic postulates ob&@tdopk.

5.2 Query Evaluation in Simple Probabilistic Relations

Definition 10. Let R? = (R, p,C) be a probabilistic relationk a non-negative integer

and s a general scoring function oveR?. Assume thak = {t1,ta,...,t,}, t1 =5
to =g ... =g tn. LetT,f[pi], k < i, be the sum of the probabilities of all possible worlds
of exactlyk tuples from{t4, ..., ¢;}:
¥4
T = > Pr(w)
W epwd(RP)

‘Wﬁ{tl ..... t1}|:k

As usual, we omit the superscript Iﬂfﬁ] i.e. Ty, (i, Wwhen the context is unam-
biguous. Remark 1 shows that in a simple probabilistic i@tdf;, ; can be computed
efficiently.

Remark 1.Let R? = (R, p,C) be a simple probabilistic relatiof,a non-negative in-
teger ands a general scoring function ovét?. Assume thatR = {t1,t2,...,tn},

t1 msto =g ... =5 ty. FOranyi, 1 <i <n-—1, T,f’; can be computed using the
DP table for computing the Global-Tégrobabilities inR” under an order-preserving
injective scoring function’ such that, = to =4 ... =4 tn.

Proof. We show by case study.
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— Casel: 1k =0,1<i<n-1,then

RP
P (ti1)
p(tit1)

T = 11 o) =

1<j<i

— Case 2: Forevery < k <i < n — 1, by the definition oﬂ“,f[’;], we have

Ly= > kW= > Pr(W)
W epwd(RP) W epwd(RP)
‘Wﬂ{tl,...,ti}‘gk ‘Wﬁ{tl,...,ti}‘gkfl

In the DP table computing the Global-Toprobabilities inR? under functions’,
we have

P o (tin) = > Pr(W) (s is injective)
W epwd(RP)
tit1€topy 1 o (W)

= Z Pr(W)
W epwd(RP)
[Wn{ts,....t: }[<k
tiy1EW

= p(tit1) Z Pr(W) (tuples are independent)
W epwd(RP)
‘Wﬁ{tl ..... t; } | <k
Therefore,

po PEL (i) B (i)
wli p(ti+1) p(ti+1)

Sincel < k<i<n-1, bothP,;f"fLS/ (tit1) andP,fz/ (t;+1) can be computed
using the DP table used to compute the GlobalfTpmbabilities of tuples inkR?
under the injective scoring function.

Remark 2 shows that we can compute Global&gpobability under a general
scoring function in polynomial time for an extreme case, rgtibe probabilistic relation
is simple and all tuples tie in scores. As we will see shottlis special case plays an
important role in our major result Proposition 4.

Remark 2.Let R? = (R, p,C) be a simple probabilistic relatiof,a non-negative in-
teger ands a general scoring function ovét?. Assume thatR = {¢4,...,t,} and
t) ~g tg ~g ...~ ty,. FOrany tuple,;, 1 < i < m, the Global-Tog probability of¢;,
ie. P,fz (t;), can be computed using Remark 1.

Proof. If k& > m, itis trivial thatP,f: (t;) = p(t;). Therefore, we only prove the case
whenk < m. According to Equation 4, forany 1 < i < m,
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at;, W)Pr(W)

=
Il
s

1 Wepwd(RP)
ti€ally, o (W),|W|=j

a(t;, W)Pr(W)  (Since all tuple tig ally s(W) = W)

IP”13

1 Wepwd(RP)
L, EW,|W|=j
k
=> alty, W)Pr(W Z > ati, W)Pr(W)
j=1 Wepwd(RP) j=k+1 Wepwd(RP)
L, eEW,|W|=j t,eW,|W|=j
k m k
= 2 Pm+ > = > (W)
j=1 Wepwd(RP) i=k+1 ) wepwa(r?)
t, EW,|W|=j t EW,|W|=j

With out loss of generality, assumie= m, then the above equation becomes

:i > (W Z > Pr(W)

Jj=1 Wepwd(RP) Jj= k+1 W epwd(RP)
tm EW,|W =3 tm EW,|W =3
k
:p(ti)(z i Jm-1 1 Z Tprl (m—1) (5)
j=1 j= k+1
By Remark 1, ever;TR 1,jm—1) Can be computed using the DP table computing

Global-Topk probab|I|t|es in&? under an order preserving injective scoring function
s’. Therefore, Equation 5 can be computed using Remark 1.

Based on Remark 1 and Remark 2, we design Algorithm 5 and jiiogerrectness
in Theorem 4 using Proposition 4.

AssumeR? = (R, p,C) whereR = {t1,ta,...,t,} @andty > to = ... = tn.
For anyt; € R, 4, is the largest index such thgf > ¢;, andy; is the largest index such
thatt;, =5 ;.

Intuitively, Algorithm 5 and Proposition 4 convey the iddet, in a simple proba-
bilistic relation, the computation of Global-Thunder theEqualallocation policy can
be simulated by the following procedure:

(S1) Independently flip a biased coin with probability¢;) for each tuplet; € R =
{t1,ta,...,tn}, which gives us a possible world" € pwd(RP);

(S2) Return a togs answer setS of W nondeterministically (with equal probability
in the presence of multiple top-sets). The Global-Tdpprobability of¢; is the
probability thatt; € S.

The above Step (S1) can be further refined into:
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(S1.1) Independently flip a biased coin with probability;) for each tuple; € R4 =
{t1,t2...,t; }, which gives us a collection of tuplé¥y;

(S1.2) Independently flip a biased coin with probabifity;) for each tuple; € Rp =
{ti,+1,--.,tn}, Which gives us a collection of tuplé¥s. W = W, U Wy is a
possible world fronpwd(RP);

In order for¢; to be inS, W4 can have at most — 1 tuples. LetjiW,4| = ¥/, then
k' < k. Every top4 answer sef5 of W contains allt’ tuples fromWW,, plus the top-
(k — k') tuples fromWp. Fort; to be inS, it has to be in the togk — £’) set of W.
Consequently, the probability of € S, i.e. the Global-Top probability of¢;, is the
joint probability that| W4 | = &' < k andt; belongs to the tofjk — &) set ofW. The
former isT}. ;,) and the latter |5Pk 1 s(t1) , whereRY is RP restricted toR 5. Again,
due to the independence among tuples, Step (S1.1) and Ste®d) éBe independent,
and their joint probability is simply the product of the two.

Further notice that sincg has the highest score iRp and all tuples are inde-
pendent inR g, any tuple with score lower than that fdoes not have influence on

Rp Rp _ pRL@) i ;
P, 5. ((t1). InotherwordspP, 5, ,(t1) = P~/ (1), whereRE(t;) is RP restricted to
all tuples tying witht; in R. Notice that the computation d?,fg,gffi(tl) is the extreme
case addressed in Remark 2.

Algorithm 5 elaborates the algorithm based on the idea ghadverem = j; — i; is
the number of tuples tying with (includingt;).

Furthermore, Algorithm 5 exploits the overlapping amongtBifles and makes the
following two optimizations:

1. Use a single DP table to collect the information neededotopute all7;, ;).
K=0,....,k—1,1=1,...,nandk’ <4 (Line 2).
Notice that forl < [ < n,1 <4 < n — 1. Itis easy to see that the DP table
computingT,_; [,,—1) subsumes all other DP tables.

2. Use a single DP table to computeEJf (, ), k' =0,. — 1, for a tuplet;
(Line 8-18).
For differentk’, the computation OP,ff,gfl)( t;) requires the computation of the
same set oﬂ“R (t2) ;- In Line 8-18, Pk kfl)( t;) is abbreviated a®;(k — k') to
emphasize the changlng paraméiter

Each DP table computation uses a call to Algorithm 2 (Line &lgorithm 5, Line
3 in Algorithm 6).
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Algorithm 5 (Ind _Topk_Gen) Evaluate Global-Top Queries in a Simple Probabilistic
Relation under a General Scoring Function
Require: R? = (R,p,C),k
Ensure: tuples inR are sorted in the non-increasing order based on
1: Initialize a fixed cardinalityk + 1) priority queueAns of (¢, prob) pairs, which compares
pairs onprob, i.e. the Global-Top probability of¢;
2: Get the DP table for computin@ ;. k' = 0,...k — 1,4 =1,...,n — 1, k" < i using
Algorithm 2, i.e.

q(0...k,1...|R|) = Ind_-Topk Sub(R?, k);
3: for I = 1to |R| do
4. m = jl — 1,
5. if m == 1then
6 Add (1, q(k, 1)) to Ans;
7
8

else
Get the DP table for computinB, ™™\ (t:), i.e. Pi(k — k'), k' = 0,...,k — 1

qtie(0...m,1...m) = Ind_Topk GenSub( R (t;), t, m);

9: P(0...max(m,k)) = 0;

10: for ¥ = 1tomin(k, m) do

11: Pi(k") = Pu(k" = 1) + guie (K", m);
12: end for

13: for k' =k +1tomdo

14: Pl(k") = Pl(k" -1+ %qtie(ku,m);
15: end for

16: for ¥ =m+1tokdo

17: Pi(k") = p(t);

18: end for

19: P () =0;
20: for ¥ =0tok —1do

21:
. q(k" + 1,4 + 1) - q(k’/,iz + 1)‘
Ty i) = ;
p(ti+1)
22:
P (t1) = P (t0) + T g - Pk = K);
23: end for
24: Add (t;, PR (1)) to Ans;
25:  endif
26: if |[Ans| > kthen
27: remove the pair with the smallestob value fromAns;
28: endif
29: end for

30: return {t;|(t;, prob) € Ans};
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Algorithm 6 (Ind _Topk_Gen_.Sub) Compute the DP table for Global-Thgprobabili-
ties in a Simple Probabilistic Relation under an All-Tie 8ng Function

Require: RE(tiarget) = (R,0,C), trarget, M

Ensure: |R| = m, ttarget € R

1: Rearrange tuples iR such thatR = {t1,...,tm—1,tm} andtm = tiarget;

2: Assume the injective scoring functighis such that, =,/ ... =g tm—1 =4 tiarget;

3: Getthe DP table

Gric(0...m,1...m) = Ind_Topk Sub( RE (tiarget), m);

4: return geie(0...m,1...m);

Proposition 4. Let R? = (R, p,C) be a simple probabilistic relation wher& =
{t1,...,tn}, t1 =s t2 =5 ... =5 t,, k @ non-negative integer anda scoring function.
For everyt; € R, the Global-Tog probability oft; can be computed by the following
equation:

k—1
P RP
PR (t) =Y Tw 'ijlgffi(tl) (6)
k’=0

whereRE (1) is RP restricted to{t € R|t ~ t;}.
Proof. SeeAppendix.

Theorem 4 (Correctness of Algorithm 5).Given a probabilistic relatiorR? = (R, p,
C), a non-negative integet and a general scoring functios, Algorithm 5 correctly
computes a Global-Tdpanswer set of?” under the scoring functios.

Proof. In Algorithm 5, by Remark 1, Line 2 and Line 9 correctly comgsif}. ;) for
0 <k <k-1,1 <i <n-1,kK < i InLine 8, each entryy.(k",m) =
p(tl)Tlfgftf)[mfl], 1 < k” < m. By Remark 2, Line 8 collects the information for

computingP,fg,gfli(tl), 1 < k—k' < m. Line 9-15 correctly compute those cases based

on the definition. Ifn < k — k' < k, then it is trivial thatP,* ") (1,) = p(t;) (Line 16-
18). By Proposition 4, Line 19-23 correctly computes thetlaieTopk probability oft;.
Also notice that in Line 6, the Global-Tégprobability of a tuple without tying tuples is
retrieved directly. It is an optimization as the code hamglthe general case (i.e1 >

1, Line 7-24) works for this special case as well. Again, the-level structure with
the priority queue in Algorithm 5 ensures that a Global-A@mswer set is correctly
computed.

In Algorithm 5, Line 2 takesD(kn), and for each tuple, there is one call to Algo-
rithm 6 in Line 8, which take®(m2 .. ), wherem,,., is the maximal number of tying
tuples. Therefore, Algorithm 5 takéy(n max(k, m?,,)) altogether.

max
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5.3 Query Evaluation in General Probabilistic Relations

Recall that under an injective scoring function, every ¢uph a general probabilistic
relation R? = (R, p,C) induces asimpleevent relationE?, and we reduce the com-
putation oft’s Global-Topgk probability in R? to the computation of.,’s Global-Togk
probability in EP.

In the case of general scoring functions, we use the sametiedudea. However,
now for each part’; € C,C; # Ciq), tuplet induces inEP two exclusivetuples
tec, . andt.. ., corresponding to theventec, . that “some tuple from the pact;
has the scortigher thanthat of¢” and theevente¢, .. that “some tuple from the part
C; has the scorequal tothat oft”, respectively. In addition, in Definition 11, we allow
the existence of tuples with probability in order to simplify the description of query
evaluation algorithms. This is an artifact whose purpodebgcome clear in Theorem
5.

Definition 11 (Induced Event Relation under General ScoringFunctions). Given

a probabilistic relationR? = (R,p,C), a scoring functions over R? and a tuple

t € Cig) € C, the event relation induced by denoted byE? = (E,p”,C¥), is a
probabilistic relation whose support relatiofi has only one attributefovent. The re-
lation E and the probability functiop” are defined by the following four generation
rules and the postprocess step:

- Rule1.1: ¢, € Eandp®(t., ) =pt);
- Rule1.2: ¢, € FEandpf(t, ) =0;
— Rule 2.1:

VC; € CANC; # Cid(t)-(t

€t~

e € B)andp®(te, ) = Xyec, p(t');
t'-st

— Rule 2.2:
VC; e CAC; 7é Cid(t)-(teci,~ € E) andpE(teci,N) = Zt/eCi p(t/).
t'~t
Postprocess step: only Wheﬁ(teci_}) and pE(teC“N) are both0, delete both
tupletacw> andtecww.

Proposition 5. Given a probabilistic relatiorR? = (R, p,C) and a scoring function,
for anyt € RP, the Global-Tog probability oft equals the Global- poprobability of
te,,~ When evaluating tog-in the |nduced event reIauoE” = (E p¥,CF) under the
scoring functions” : E — R, s"(t.,) = 3, s (te,.~) = 5 ands”(t.. ) =i

P (t) = PE e (te, ~)-
Proof. SeeAppendix.

Notice that the induced event relatid? in Definition 11, unlike its counterpart
under an injective scoring function, is not simple. Therefave cannot utilize the al-
gorithm in Proposition 4. Rather, the induced relatigh is a special general prob-
abilistic relation, where each part of the partition consaxactlytwo tuples. For this
special general probabilistic relation, the recursiontiedrem 5 (Equation 7,8) collects

enough information to compute the Global-Foprobability oft., . in E? (Equation
9).
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Definition 12 (Secondary Induced Event Relations)Let E? = (E,p”,CF) be the
event relation induced by tupleunder a general scoring function Without loss of
generality, assume

E = {tec] = tec] S~ tecm71,> ) tecm71,~ ) tet} ) tEg,N}

we can splitF into two non-overlapping subsefs. and E.. such that

E> = {tecl,>7 ey t60m711>7t5h>}
EN = {tecl,Nv R tecm71 y~ ) tet,N}

The twosecondary induced event relatiéif and E? are E? restricted toE? and
E? respectively. They are both mutually related and simpldabilistic relations. For
everyl <i < m — 1, tuplet; .. (t;~ resp.) refers ta.. . (tc, . resp.). The tuple
tm,- (tm,~ resp.) refersta,, _ (te, . resp.).

In spirit, the recursion in Theorem 5 is close to the recur&ioProposition 1, even
though they are not computing the same measure. The foliptaisle does a compari-
son between the measuré Proposition 1 and the measurén Theorem 5:

Measure |= > Pr(W) |j{z|:jtfz[jt}|
(k1) (1) W containgt; '_
A (2) W hasno more thark tuples from{ty,ts,...,t;}
. .+ | (1) W containg;
U/ (K, %,0) (2) W hasexactlyk tuples from{ty, to, ..., ¢;} b

Under the general scoring functiaff, a possible world of an induced relatid#?
may partially contribute to tuplg,, ..’s Global-Tog: probability. The allocation coeffi-
cient depends on the combination of two factors: the numbtdes that are strictly
better thart,, .. and the number of tuples tying with, .. Therefore, in the new mea-
sureu, first, we add one more dimension to keep tracl,afe. the number of tying
tuples of a subscript no more tham a world. Second, we keep track of distiriét b)
pairs. Furthermore, the recursion on measudéferentiates between two cases: a non-
tying tuple (handled by, ) and a tying tuple (handled hy. ), since those two types of
tuples have different influence on the valueg@ndb.

Formally, letu. (k’,14,b) (u~(k',i,b) resp.) be the sum of the probabilities of all the
possible world$V of EP such that

1t e W(t~ € Wresp.)
2. iis thek’th smallest tuple subscript in world
3. the worldW containg tuples fromE?, with subscript less than or equalto

Equation 7,8 resemble Equation 3, except that now, sincentseduce tuples with
probability 0 to ensure that each part 6f has exactly two tuples, we need to address
the special cases when divisor can be zero. Notice thatnfpf,d < i < m, at least
one ofpf(t; . ) andp®(¢; ..) is non-zero, otherwise, they are notfii# by definition.
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Theorem 5. Given a probabilistic relationR? = (R, p,C), a scoring functiors, t €
RP, and its induced event relatiofi” = (E, p¥ C¥), where|E| = 2m, the following
recursion oru, (k’,4,b) andu..(k’, i, b) holds, wheré,, .. is the number of tuples with
positive probability inE?..

Wheni = 1,0 < ¥ <mand0 < b < byax,

E !
/ D (t1,>-) k :1,b:O
u- (K, 1,0) = {0 otherwise
E !
’ _Jp (t1,~) K=1b=1
u~(k',1,0) = {O otherwise

Foreveryi,2 <i<m,0< k' <mand0 < b < by,

0 k=0
. 1—pP(tic) —pP(tic1n)
us (K',1—1,b J d 1<k <m
( F( ) pE(tz 1})
+ uy (K —1,1—1,b) andp®(t;—1.) >0
J’_UN(k/_ 171 7 )) ( )
U>.(k/,i,b) = an pE(tl 1 >) _pE(ti—l N)
uo(k'yi—1,0+1 : : b < bmax
(un~( ) PP (1)
+us (k' —1,1—1,b) andl < k' <m
+ uN(k/ - 171 17b)) ( i >) andpE(ti—l,F) =0
(ue (K" — 1,5 —1,b) otherwise
+u (k' — 1,4 —1,0))pF (t; )
(7
0 E=00rb=0
. 1—pP(tic) —pP(tic1n)
u~(k',1—1,b ’ : b>0
(un~( ) PPt
+u (K —1,i—1,b—1) andl <k'<m
u~ (k' i, b) = +u(k —1,i—1,b—1))pZ(t: ) andp®(t;_1 ) >0
, 1—pP(tim1y) = pP(ti1,0) -
us (K',i—1,b—1 ’ : otherwise
( F( ) pE(ti—17>-)
tus (K —1,i—1,b—1)
u (k' — 1,5 —1,b—1)pZ(t: )
(8)

The Global-Tog probability oft., .. in EP under the scoring functios” can be
computed by the following equation:

bmax k+b—1

S ey Y Pl o) (@

b=1 k’'=1 k'=k+1
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Proof. SeeAppendix.

Recall that we design Algorithm 1 based on the recursion ap&sition 1. Simi-
larly, a DP algorithm based on the mutual recursion in Thedsds available. We are
going skip the details. Instead, we show how the algorithrmkeraising the following
example.

The complexity of the recursion in Theorem 5 determines thepexity of the al-
gorithm. It takesO (b,axn?) for one tuple, and (m,.n?) for computing alk: tuples.
Recall thatm,.x is the maximal number of tying tuples iR. Again, the priority queue
takesO(n log k). Altogether, the algorithm take3(m,.xn?) time.

Example 7.When evaluating a tof-query inR? = (R, p,C), consider a tuple € R
and its induced event relatidé® = (E, p¥ C¥)

E_lt teoy o [tecs ||[E~[tecy ~[tecy ~ [tecy ~ [tern

(t1) | (ta) | (s) | (#7) (t2) | (ta) | (t6) |(ts)
pE 0.6 | 0.5 | 0.2 0 pE 0 0.25| 0.6 |0.4

In order to compute the Global-Térobability ofts (i.e. ¢, ~) in EP, Theorem 5
leads to the following DP tables, each for a distinct comtdmaof a b value and a
secondary induced relation, whérg,, = 3.

\t][t1 [ts] ts5 |tz E\t[tata]ts]ts
offofo[ oo o [[ofo]o]0
1 [0.6]0.2]0.02[0 1([o]o]o]o
_ P - D
(0=0,E) 595 o070 ¢ = % FY 507000
3000.06/0 3|[ofo]o]0
4loflo] oo 4 folofo]o
\t[t1[ts] ts |t7 I\tl[ta] ta | t6 | ts
0 [ofo] 0 |0 offlofol o o
1 [ofo] 0 [0 1 (/0] 0.10.06]0.008
_ P — p
b=LE) 5 or000zi0] ¢ =1 EY2070.15/02100.036
3 [0[0]0.03]0 3'|[0] 0 ]0.18[0.052
4 [ofo] 0|0 4 [0] 0 [ 0 [0.024
I\t[t1 [ts]ts [t7 I\t[[ta]ta] 6 | ts
0 [[ofo]o]0 ofofo] 0| 0
1 [ofo]o]o 1([ojo] 0| 0
_ P — p
b=2E)50T00l0 (b =2, B2) 51010(0.06/0.032
3 [ofo]ofo 3[[0]0]0.09]0.104
4 [ofofofo 4 [ofo] 0 [0.084
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F\t[[t1[ts]ts |t I\t[t2[ta]te] ts
0 [[ofo]o]0 o [ofofo] ©
1([o]o]o]0 1(o[o]o] O
_ P — P
b=3E)51ot0r0l0]® =2 F 2 ololo o
3 |[ofo]o]0 3[0]o]0]0.024
4 [ofofo]o 41[0[0[010.036

The computation of each entry follows the mutual recursioftieorem 5, for example,

1—pP(ts) — pE(¢
0 (2,5,0) = (- (1,3,0) 1 (1,4,0) + 0 (2,3,0) -G
3
1-0.5-0.25
=(0.240+0.3————5)0.2
0.5
=0.07
1—pB(ts) — pE(t
U 2,6.1) = (1 (1,3,0) 4 un(1,4,0) + (2,4, ) ) 1)
3
1-0.5-0.25
= (0.2 A5——f++——)0.
(024+040.15 008 )0.6
=0.21
Finally, under the scoring functiosf” defined in Proposition 5
Pl e (te,.~) = Py s (ts)
3 2 24b—1
2— (K -0
=D (D u(W.80)+ Y %uw(iz’,&b»
b=1 k’'=1 k'=2+1
=u(1,8,1) +u(2,8,1)
1
+u~(1,8,2) + u~(2,8,2) + §uw(3, 8,2)
2 1
+u~(2,8,3) +u~(2,8,3) + guw(3,8,3) + §u~(3,8,4)

=0.156

6 Conclusion

We study the semantic and computational problems forktopteries in probabilistic
databases. We propose three desired postulates foriageprantics and discuss their
satisfaction by all the semantics in the literature. Thos&tydates are our first step to
benchmark different semantics. From the postulates, itdsriclusive that a single se-
mantics is overwhelmingly better. We deem that the choidh®kemantics should be
guided by the application, which in turn, supports our a@ffdo explore postulates in
order to create a profile of each semantics. Our Globak Egmantics satisfies those
postulates to a large degree. We study the computationblgmoof query evaluation
under Global-Top semantics for simple and general probabilistic relatiohgmvthe
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scoring function is injective. For the former, we proposeyaainic programming al-
gorithm and effectively optimize it with Threshold Algdrin. For the latter, we show
a polynomial reduction to the simple case. Furthermore, xtengl our Global-Top
semantics to general scoring functions and introduce theeaqat of allocation policy to
handle ties in score. To the best of our knowledge, this ifitsieattempt to address the
tie problem rigorously. Previous work either does not coesties or uses an arbitrary
tie-breaking mechanism. Advanced dynamic programmingrédtgns are proposed for
query evaluation under general scoring functions for batipke and general proba-
bilistic relations.

For completeness, we list in Table 2 the complexity of the kieswn algorithm for
each semantics in the literature. Since no other work addyesseral scoring functions
in a systematical way, those results are restricted totimgscoring functions.

Semantics |Simple Probabilistic DBGeneral Probabilistic DB
Global-Topk O(kn) O(kn?)

PTk O(kn) O(kn?)

U-Topk O(nlogk) O(nlogk)
U-kRanks O(kn) O(kn?)

Table 2. Time Complexity of Different Semantics

7 Future Work

So far, almost unanimously, only independent and exclusiiaionship among tuples
are considered in the literature [21,23, 25]. It will be nef&ting to investigate other
complex relationships between tuples. Other possiblectiines include topk evalua-
tion in other uncertain database models proposed in thratitee [13] and more general
preference queries in probabilistic databases.
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9 Appendix

9.1 Proofs of Semantic Postulates

Semantics |Exactk|FaithfulnessStability,
TGlobal-Tog:| v (1) | v/x (5) v (9)
PT-k x (2) | vIx(6) | v(10)
U-Topk x (3)| vIx () | v(11)
U-kRanks x (4) x (8) x (12)
 Postulates of Global-Tdp semantics are

proved under general scoring functions with
Equalallocation policy.

Table 3. Postulate Satisfaction for Different
Semantics in Table 1

Proof. The following proofs correspond to the numbers next to eattyén the above
table.

Assume that we are given a probabilistic relati®h = (R, p,C), a non-negative
integerk and an injective scoring function

(1) Global-Topk satisfiesExactk.
We compute the Global-Tapprobability for each tuple irR. If there is at leask
tuples inR, we are always able to pick thetuples with the highest Global-Tép
probability. In case when there are more thanr 4 1 tuple(s) with the-th highest
Global-Topk: probability, wherer = 1,2...,k, only k — r + 1 of them will be
picked nondeterministically.

(2) PT+« violatesExactk
Example 4 illustrates a counterexample in a simple prolsticilelation.

(3) U-Topk violatesExactk.
Example 4 illustrates a counterexample in a simple prolsgicilelation.

(4) U-kRanks violate&xactk.
Example 4 illustrates a counterexample in a simple prolsticilelation.

(5) Global-Topk satisfiedraithfulnessn simple probabilistic relations while it violates
Faithfulnessn general probabilistic relations.
Simple Probabilistic Relations
Proof. By the assumption,; > t2 andp(t1) > p(t2), SO we need to show that
Pk,s(tl) > Pk,s(tQ)-
For everylV € pwd(RP) such thats € all, (W) andty & ally, (W), obviously
t1 ¢ W. Otherwise, since; >, t2, t; would be inall; s(W). Since all tuples
are independent, there is always a woAd € pwd(RP), W' = (W\{t2}) U
{t:} and Pr(W’) = Pr(W)EHEE2. Sincep(t) > plta), Pr(W’) > Pr(W).
Moreover,t; will substitute fort, in the top4 answer tol’. It is easy to see that
a(t;, W) = 1in W’ and also in any worldV such that botit; and¢, are in
ally (W), a(ty, W) = 1.
Therefore, for the Global-Tdpprobability oft; andts, we have
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(6)

(7)

Pk,s(tQ) -

>

W epwd(RP)
t1 Eallk,S(W)
ta€ally, s (W)

>

W epwd(RP)
t1 Eallk,S(W)
to Gallkys(W)

>

W epwd(RP)
t1 Eallk,S(W)
ta€ally, s (W)

>

W epwd(RP)
t1 Eallk,S(W)
ta€ally, s (W)

<

<

a(te, W)Pr(W) +

>

W epwd(RP)
tl Qallk,s(W)
ta€ally,s(W)

Pr(W) + Pr(w'")

>

W’ epwd(RP)
t1€ally,s(W')
tQQW’

a(ty, W)Pr(W) +

>

W’ epwd(RP)
t1€ally,s(W')
tQQW’

>

W’ epwd(RP)
t1€ally,s(W')
tzQW,

a(ty, W)Pr(W) +

a(te, W)Pr(W)

a(ty, WHPr(W")

a(ty, WHPr(W')

_|_

>

W' epwd(RP)
t1 Eallk,s (W//)
toeW”

t2 &allk,s (W//)

= Py s(t1).

alty, W\ Pr(W'")

The equality in< holds whens(t2) is among the: highest scores and there are at
mostk tuples (includings) with higher or equal scores. Since there is at least one
inequality in the above equation, we have

Pk,s(tl) > Pk_’s(tg).

General Probabilistic Relations

The following is a counterexample.

Sayk: =1 R = {tl,...,tg}, t1 >s ... =5 tog, {tl,..
p(ti) = O.l,i =1... 7, p(tg) = 0.4, p(fg) =0.3.

By Global-Topk, the topd answer it }, whilets > tg andp(ts) > p(t9), which
violatesFaithfulness

PT+ satisfiedraithfulnesdn simple probabilistic relations while it violatésith-
fulnessn general probabilistic relations.

For simple probabilistic relations, we can use the samefimdd) to show that PT-
k satisfiedraithfulnessThe only change would be that we need to st (¢,) >
p, as well. SincePy, (t2) > pr and Py s(t1) > Py s(t2), this is obviously true.
For general probabilistic relations, we can use the sameteoexample in (5) and
set thresholgh, = 0.15.

U-Topk satisfiedraithfulnessn simple probabilistic relations while it violat&sith-
fulnessin general probabilistic relations.

Simple Probabilistic Relations

., t7,tg} are exclusive.
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Proof. By contradiction. If U-Tog violatesFaithfulnessn a simple probabilistic
relation, there exist®? = (R, p,C) and existg;,t; € R, t; > t;,p(ti) > p(t;),
and by U-Tog, ¢; is in the topk answer toR” under the scoring functionwhile
t; is not.

S is a top% answer toR? under the functiors by the U-Togk semanticst; € S
andt; ¢ S. Denote byQ s(.5) the probability ofS under the U-Top semantics.

That s,
Qrs(S)= > Pr(W).

Wepwd(RP)

S=topr,s(W)
For any worldW contributing toQy s(S), t; ¢ W. Otherwise, since; - t;,
t; would be intopy (W), which is S. Define a worldW’ = (W\{t;}) U {¢;}.
Sincet; is independent of any other tuple B, W’ € pwd(R?) and Pr(W') =
Pr(W) 205200 Moreovertopy, (W) = (S\{t;}) U {t:}. Let S’ = ($\{t;}) U
{t:}, thenW’ contributes taQ s (5’).

Qrs(S)= > Pr(W)

W epwd(RP)
S’ =topy,s (W)

> 3 Pr(W\{;)uft))
W epwd(RP)
S=topy,s(W)
= T M
- wep%z;m " (W)ﬁ(ti)p(tj)
S=tops,s(W)
_ pltaty) )
= ﬁ(ti)p(tj) Weraimm P (W)
S=topg,s (W)
p(t:)p(ty)
ptp(ty) O 5)
> Qk S(S)a

which is a contradiction.

General Probabilistic Relations

The following is a counterexample.

Sayk = 2, R = {t1,ta,t3,t4}, t1 >s to =5 t3 =5 t4, t; andi, are exclusivets
andt, are exclusivep(t1) = 0.5, p(t2) = 0.45, p(t3) = 0.4, p(t4) = 0.3.

By U-Topk, the top2 answer is{ty, t3}, while ty =5 ¢35 andp(tz2) > p(ts), which
violatesFaithfulness

U-kRanks violategaithfulness

The following is a counterexample.

Sayk = 2, RP is simple.R = {t1,to,t3},t1 =5 ta =5 t3, p(t1) = 0.48,p(t2) =
0.8, p(t3) = 0.78.

The probabilities of each tuple at each rank are as follows:
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(9)

th ta ts
rank 1 0.48 0.416 0.08112
rank2 0 0.3840.39936
rank3 0 0 0.29952

By U-kRanks, the to® answer set it1, t5} while t2 > t5 andp(t2) > p(ts),
which contradictgaithfulness

Global-Togk satisfiesStability.

Proof. In the rest of this proof, le#l be the set of all winners under the Global-
Topk semantics.

Part I: Probability.
Case 1.Winners.

For any winnert € A, if we only raise the probability of, we have a new
probabilistic relation(R?)’ = (R,p’,C), where the new probability functiop/
is such thap'(t) > p(t) and for anyt’ € R, ¢ # t,p'(t') = p(t'). Note that
pwd(RP) = pwd((RP)’). In addition, assume € C}, whereC; € C. By Global-
Topk,

PR =Y at,W)Pr(W)
W epwd(RP)
teally, s (W)
and
(RPY p'(t)
P ()= > alt,W)Pr(W)
° p(t)
W epwd(RP)
tEallk,S(W)
p'(t
= 20 prr .
p(t)

For any other tupl¢’ € R, ¢ # ¢, we have the following equation:
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, /

PR @y = S a, w)prw) 2D
T p(t)
t'€ally, s (W), teWw

/ c— pl(t)
+ > a(t' , W)Pr(W)——=
W Epwd(RP) c—p(t)

t'€ally,s(W), tgW
(C\{thnw=0
+ > a(t', W)Pr(W)
W epwd(RP)
t'cally, (W), tgW
(CA\{tHNW#0

p/(t) ’
<S> alt,m)Pr(W)
p(t) W Epwd(RP)
t'Eallk,s(W)
teWw
+ Z at’', W)Pr(W)
W epwd(RP)
t'€ally, s(W), tgWw
(C\{t}H)NW=0

+ > a(t', W)Pr(W))
W epwd(RP)
t'eally, s(W), tgWw
(CA\{tHNW#£0

7]?/(15) RP (41
- p(t) Pk,s(t)a

wherec =13, cc,\ i P(")-
Now we can see that's Global-Top: probability in (R?)" will be raised toexactly

% times of that inR? under the same weak order scoring functipand for any

tuple other than, its Global-Tog probability in(RP)’ can be raised tas much as

% times of that ink? under the same scoring functienAs a result,P,Eip)/(t)
is still among the highest Global-Topg: probabilities in(R?)" under the function
s, and therefore still a winner.

Case 2:Losers.

This case is similar t€ase 1

Part Il : Score.

Case 1:Winners.

For any winnert € A, we evaluateR? under a new general scoring functieh
Comparing tos, s’ only raises the score af That is,s’(t) > s(t) and for any
t' € R,t' #t,s'(t') = s(t'). Then, in addition to all the worlds alreadgtally
(i.e. a(t,W) = 1) or partially (i.e. a(¢t, W) < 1) contributing tot’s Global-Top:
probability when evaluatind?”? unders, some other worlds may now totally or
partially contribute ta’s Global-Top: probability. Because, under the functigh
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(10)

t might climb high enough to be in the tdpanswer set of those worlds. Moreover,
if a possible worldiV contributes paritally under scoring functisnit is easy to
see that it contributes totally under scoring functién

For any tuplet” other thart in R,

(i) If s(t”) # s(t), then its Global-Top probability under the function’ either
stays the same (if the “climbing” gfdoes not knock that tuple out of the tép-
answer in some possible world) or decreases (otherwise);

(i) If s(t”) = s(t), then for any possible worl®l’ contributing tot”’s Global-
Topk under scoring function, a(t”, W) = ’“;b“ and now under scoring func-
tions’, o/ (t", W) = Eza=d < k=2 — (" W). Therefore the Global-Tdp
of ¢ under scoring functior’ is less than that under scoring functian

Consequently; is still a winner when evaluating? under the functions’.

Case 2:Losers.

This case is similar t€ase 1

PT# satisfiesStability.

Proof. In the rest of this proof, lefd be the set of all winners under the RT-

semantics.

Part I: Probability.

Case 1:Winners.

For any winnert € A, if we only raise the probability of, we have a new

probabilistic relation(R?) = (R,p’,C), where the new probability functiopf

is such thap'(t) > p(t) and for anyt’ € R, ¢ # t,p'(t') = p(t'). Note that
pwd(RP) = pwd((RP)"). In addition, assume € C;, whereC, € C. The Global-

Topk probability oft is such that

PR (@)= > PrW)>p,
W epwd(RP)
tetopk,s(w)

and

RP) P'(t)

ESRCESED DI b
W epwd(RP) p
tetopr,s (W)
p'(t)

= Pl (8) > B (1) > pr.

p(t)

Therefore,P,gfp),(t) is still above the thresholgd,, andt still belongs to the topk
answer ofl RP)’ under the function.

Case 2:Losers.

This case is similar t€ase 1

Part Il : Score.

Case 1:Winners.

For any winnert € A, we evaluaté?? under a new scoring functiori. Comparing
to s, s’ only raises the score af Use a similar argument as that in (9) Part Il
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Case 1 but under injective scoring functions, we can showttieaGlobal-Tog
probability of ¢ is non-decreasing and is still above the threshgldTherefore,
tuplet still belongs to the tog: answer under the functio.
Case 2:Losers.
This case is similar t€ase 1

(11) U-Topk satisfiesStability.
Proof. In the rest of this proof, led be the set of all winners under U-Top
semantics.
Part I: Probability.
Case 1:Winners.
For any winner € A, if we only raise the probability of, we have a new proba-
bilistic relation(R?)’ = (R, p’,C), where the new probabilistic functigri is such
thatp'(t) > p(t) and for anyt’ € R,t' # t,p'(¢') = p(¢'). In the following dis-
cussion, we use superscript to indicate the probabilithéndontext of R?)’. Note
thatpwd(RP) = pwd((RP)").
Recall that)y, s (A,) is the probability of a tops answer sel;, C A under U-Tog

semantics, wheree A;. Sincet € Ay, Q) (Ar) = Qk,s(At)%.
For any candidate topsetB other than4,, i.e. 3W € pwd(RP), topy,s(W) = B

andB # A;. By definition,
Qk,s(B) S Qk,s(At)-

For any worldW contributing toQy, s(B), its probability either increas%(%) times
(if t € W), or stays the same (ff ¢ W and3t' € W, ¢ andt are exclusive), or
decreases (otherwise). Therefore,

/ t)
(B < 0.(B)E Y.
Qk,s( ) = Qk-, ( )p(t)
Altogether,
/ /
: < ) _ ) _ _
Qk,s(B) = Qk,S(B) p(t) = Qk75(At) p(t) Qk,s(At)
Therefore,A; is still a top& answer to( R?)’ under the functiors andt € A; is

still a winner.

Case 2:Losers.

It is more complicated in the case of losers. We need to shawftin any loser
t, if we decrease its probability, no tdpeandidate seB, containingt will be a
new top4 answer set under the U-Thgemantics. The procedure is similar to that
in Case 1 except that when we analyze the new probability of any pabiop+
answer setd;, we need to differentiate between two cases:

(a) t is exclusive with some tuple id;;

(b) tis independent of all the tuples ;.

It is easier with (a), where all the worlds contributing te@ throbability of A; do
not containt. In (b), some worlds contributing to the probability d4f containt,
while others do not. And we calculate the new probabilitytfayse two kinds of



36

worlds differently. As we will see shortly, the probabili§ A; stays unchanged in
either (a) or (b).

For any losett € R,t ¢ A, by applying the technique used @ase 1 we have a
new probabilistic relatiotR?)’ = (R, p’, C), where the new probabilistic function
p’ is such thap'(t) < p(t) and for anyt’ € R,t' # t,p'(t') = p(t'). Again,
pwd(RP) = pwd((RF)').

For any topk answer sef}; to R? under the functios, A; C A. Denote byS 4, all
the possible worlds contributing . ;(A;). Based on the membership ©fS 4,
can be partitioned into two subset§, ands’, .

Sa, = {W|W € pwd(RP), topy,s(W) = A;};
Sa, =S4 US, ,SY NS, =0,
YW e S ,te WandVW € St ¢ W.

If ¢ is exclusive with some tuple id;, 5% = (. In this case, any worldll” € Sf:,i
contains one of's exclusive tuples, therefoii@’s probability will not be affected
by the change i's probability. In this case,

Q. (A)= > P'W)= > Pr(W)

W epwd(RP) W epwd(RP)
t t
wesh, wesh,
= Qk,s(As).

Otherwiset is independent of all the tuples i;. In this case,

ZWGpwd(RP) PT(W)

wes,. ~op(t)
> wepwd(rr) Pr(W) 1 —p(t)
wesy,

and

p

Qr (A)= > Pr(W)
W epwd(RP)

wesy,

1—p'(¢
+ Y Pr(W)ip()
Wepwd(RP)

wesy,

= Z Pr(W)

W epwd(RP)
WGSAi

= Qr,s(Ai).
We can see that in both cas@ms(Ai) = Qk,s(A;).
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Now for any topk candidate set containirigsay B, such thatB; ¢ A, by defini-
tion, Q. s(B:) < Qk,s(A;). Moreover,
P'(t)

p(t)

Q).s(Bt) = Qs (By) < Qk,s(By).

Therefore,
Qi s(Bt) < Qu,s(Br) < Q,s(Ai) = Qj 5 (A:).

ConsequentlyB; is still not a topk answer to( R?)’ under the functiors. Since
no top+4 candidate set containingcan be a topge answer set t¢ R?)’ under the
functions, t is still a loser.

Part Il : Score.

Again, A; C Ais atopk answer set t&? under the functios by U-Topk seman-
tics.

Case 1:Winners.

For any winnet € A;, we evaluaté?? under a new scoring functioth. Comparing
to s, s’ only raises the score af That is,s'(t) > s(t) and for anyt’ € R, ¢ #
t,s'(t") = s(t'). In some possible world such thHat € pwd(RP) andtopy, (W) #
A;, t might climb high enough to be itvpy, s (1W). DefineT to the set of such tog-
candidate sets.

T = {topr,s W)W € pwd(RP),t & topi,s W) At € topr,s (W)}.

Only a top% candidate seB; € 1" can possibly end up with a probability higher
than that ofA; across all possible worlds, and thus substituteApas a new tope
answer set t&?? under the function’. In that caset € B;, sot is still a winner.
Case 2:Losers.

For any losert € R,t ¢ A. Using a similar technique t€ase 1 the new scor-
ing functions’ is such thats’(t) < s(¢) and for anyt’ € R,t' # t,s'(t') =
s(t"). When evaluating?? under the functiors’, for any worldW € pwd(RP)
such thatt ¢ topi (W), the score decrease ofwill not effect its top% an-
swer, i.e.topi,s (W) = topg,s(W). For any worldW € pwd(RP) such that
t € topg,s(W), t might go down enough to drop out &dpy, s (W). In this case,
W will contribute its probability to a tog: candidate set without, instead of
the original one withé. In other words, under the functiori, comparing to the
evaluation under the functiosy the probability of a tope: candidate set with is
non-increasing, while the probability of a tdpeandidate set without is non-
decreasing

Since any topk answer set t&k? under the functiors does not contain, it follows
from the above analysis that any tégandidate set containirigvill not be a topk
answer set td? under the new functios’, and thug is still a loser.

2 Here, any subset aR with cardinality at most: that is not a topk candidate set under the
function s is conceptually regarded as a thpgeandidate set with probability zero under the
functionss.
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(12) U-kRanks violatestability.
The following is a counterexample.
Sayk =2, RPis Slmp|8R = {tl,tg,tg}, t1 =5 to >4 t3.p(t1) = 0.3,p(t2) =
0.4,p(t3) = 0.3.

t1 to t3
rank 1 0.3 0.28 0.126
rank2 0 0.120.138
rank3 0 0 0.036

By U-kRanks, the to2-answer set i§t1, ¢5}.
Now raise the score df such that, =, t3 =4 to.

t1 ts i
rank 1 0.3 0.21 0.196
rank2 0 0.090.168
rank3 0 0 0.036

By U-kRanks, the toj answer set it1, t2}. By raising the score af;, we actu-
ally turn the winnetts to a loser, which contradicStability.

9.2 Proof for Proposition 1

Proposition 1. Given a simple probabilistic relatio®? = (R, p,C) and an injective
scoring functions over R?, if R = {t1,t2,...,t,} @andty =5 ta =5 ... =5 t,, the
following recursion on Global-Tdpqueries holds.

0 k=0
p(ts) 1<i<k

. p(ti—1) . .
(q(k,i— Up(ti_l) +q(k—1,i—1))p(t;) otherwise

Q(kai) =

whereq(k, i) = Py s(t;) andp(ti—1) =1 — p(ti—1).
Proof. By induction onk and;.

— Base case.
e k=0
ForanyW € pwd(RP), topo s(W) = 0. Therefore, for any; € R, the Global-
Topk probability oft; is 0.
e k>0andi=1
t; has the highest score among all tupleinAs long as tuplée; appearsin a
possible world//, it will be in thetops, (W). So the Global-Top probability
of ¢; is the probability that, appears in possible worlds, igk, 1) = p(t1).
— Inductive step.
Assume the theorem holds for< k£ < ko andl < i < io. ForanyW € pwd(RP),
ti, € topk,.s(W)iff t;, € W and there are at mokg — 1 tuples with higher score
in W. Note that any tuple with score lower than the score, ptioes not have any
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influence ong(ko, ip), because its presence/absence in a possible world will not
affect the presence of, in the top4 answer of that world.
Since all the tuples are independent,

q(ko, io) = p(ti,) > Pr(W).
W epwd(RP)
{tlteW ALt } <Ko

(1) g(ko,i0 + 1) is the Global-Top, probability of tuplet;, 1.

q(ko,io +1) = Z Pr(W)
W epwd(RP)
tig4+1 GtOPkO,s(W)
ti() Gtopko,s(w)

+ > Pr(W)
W epwd(RP)
tig+1€t0DPKy,s(W)
tig EW, tig Etopig,s (W)

+ > Pr(W).
W epwd(RP)
tig+1€topry,s (W)
tig W

For the first part of the left hand side,

S Pr(W) = pltiea)a(ko — 1,i0).

W epwd(RP)

tio+1€topk0,s(w)

tioetopko,l,S(W)
The second part is zero. Sintg > tiy+1, If ti,+1 € topk,,s(W) andt;, €
W, thent;, € topk,,s(W).
The third part is the sum of the probabilities of all possierlds such that
ti+1 € W, t;, & W and there are at mogg — 1 tuples with score higher than
the score ot,, in W. So it is equivalent to

p(tig+1)P(ti) Z Pr(W)

H{tlteW AL=stiy } <Ko

= p(tioﬂ-l)ﬁ(tio)%'

Altogehter, we have

q(ko, 10 + 1)
= p(tio+1)q(ko — 1,40) + p(tio+1)P(tiy) qg?;;:;)
= (q(ko — 1,i0) + Q(ko,io)p(tm) P(tig+1)-

p(tio)
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(2) g(ko + 1,14p) is the Global-Togk + 1) probability of tuplet;,. Use a similar
argument as above, it can be shown that this case is cormmthputed by
Equation (3) as well.

9.3 Proof for Theorem 2

Theorem 2 (Correctness of Algorithm 17).Given a simple probabilistic relatioR? =
(R, p,C), a non-negative integek and an injective scoring function over R?, the
above TA-based algorithm correctly finds a topnswer under Global-Tdpsemantics.

Proof. In every iteration of Step (2), say= t;, for any unseen tuplg s’ is an injective
scoring function oveR?, which only differs froms in the score of. Under the function
s, t; = t =g t;11. If we evaluate the top- query in R? unders’ instead ofs,

Py (t) = %UP. On the other hand, for anyy € pwd(RP), W contributing to

Py, (1) implie_s thatl” contributes taP; .- (¢), while the reverse is not necessarily true.
So, we haveP; . (t) > P s(t). Recall thatp > p(t), thereforeUP > %UP =

Py s (t) > Py s(t). The conclusion follows from the correctness of the origifa
algorithm and Algorithm 1.

9.4 Proof for Lemma 1

Lemma 1. Let R? = (R, p,C) be a probabilistic relations an injective scoring func-
tion,t € R, and EP = (E,p¥ CF) the event relation induced hy DefineQ? =

(B — {te,},p",C¥ — {{t.,}}). Then, the Global-Tdp probability of ¢t satisfies the
following:
PE () =pt) Y Pr(W.).
W, epwd(QP)
[We|<k

Proof. Givent € R, k ands, let A be a subset ofwd(RP) suchthai?V € A & t €
topk,s(W). If we group all the possible worlds iA by the set of parts whose tuple in
W has higher score than the score ghen we will have the following partition:

A=A UAU...UALANA =0i#]

and
VA YW, Wy € A;,i=1,2,...,q,
{Cthl ewWin Cj,tl s t} = {leﬂt/ eWsen Cj,t/ s t}.

Moreover, denot€har Parts(A;) to A;'s characteristic set of parts.

Now, let B be a subset opwd(Q?), such thaiV, € B < |W,| < k. There is a
bijectiong : {A;|4; € A} — B, mapping each par; in A to a possible world i3
which contains only tuples corresponding to the partd,irs characteristic set.

g(4;) = {tecj |C; € CharParts(A;)}.
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The following equation holds from the definition of induceeket relation and
Proposition 2.

3" Pr(W) =p(t) 11 Pltec,) II (1= p(tec,))

WeA; Ci;eCharParts(A;) CieC—{Cia)}
C;¢CharParts(A;)

= p(t)Pr(g(A:)).

Therefore,

9.5 Proof for Proposition 3

Proposition 3 (Correctness of Algorithm 4).Given a probabilistic relationk? =
(R, p,C) and an injective scoring functiog, for anyt € RP, the Global-Tog prob-
ability of ¢ equals the Global-Tdpprobability oft., when evaluating tog-in the in-
duced event relatio” = (E, p¥ CF) under the injective scoring functiorf : £ —
R, 5P (te,) = 5 ands”(t,. ) = i:

P () = Pie(te,).

Proof. Sincet., has the lowest score undef, for any W, € pwd(EP), the only
chance,, € topy = (W.) is when there are at mokttuples inlV,, includingt., .

VW, € pwd(EP),
te, € topr,s(We) & (te, € We A [We| < k).

Therefore,

PElo(te,) = > Pr(W.).
te, EW AW |<k

In the proof of Lemma 1B contains all the possible worlds having at mést 1
tuples fromE — {t., }. By Proposition 2,

S P =p) S Pr(Wl).

te, EW AW |<k w!eB
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By Lemma 1,

Consequently,

P () = Plie(te,).

9.6 Proof for Proposition 4

Proposition 4 (Correctness of Algorithm 5).Let R? = (R, p,C) be a simple prob-
abilistic relation whereR = {t1,...,tn}, t1 =5 ta =5 ... =5 t,, k @ non-negative
integer ands a scoring function. For every; € R, the Global-Tog probability of¢;
can be computed by the following equation:

k—1

RP(t
PE(t) =Y T iy P (1)
k’=0

whereRE (1) is RP restricted to{t € R|t ~ t;}.

Proof. Givenatuple,; € R, let Ry be the supportrelatioR restricted to¢t € R|t 6},
and R) be RP restricted toR,. Similarly, for each possible worldl" € pwd(RP),
Wo =W N Ry.

Each possible world” € pwd(RP) such that; € ally (W) contributes

min(1, 5:2) Pr(W) to PF (t;), wherea = [W,_| andb = [W.|.
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k —
=Y i een)

Wepwd(RP),tieW

[Wy|=a,0<a<k—1

W |=b,1<b<m

k—1 m k—a

=> D min(l,——)( Y Pr(W)

a=0b=1 Wepwd(RP),tieW
|[Wo |=an|W.|=b

k—1 m k—a

a=0 b=1 W, epwd(RY) W epwd(RP),tieW<
W |=a W~ |=b -

k—1

=30 Y Prwe)Y min(, i 7 4 > Pr(Wx)))
b=1

a=0 W, epwd(RY) W<« Epwd(Rg),tlewj

W |=a W |=b
k—1 m kE—a
=D (Tagiyg D_min(1, ——)( > Pr(W.) Y. Pr(Wg))
a=0 b=1 W pwd(RY),tieWL W< epwd(RY)
W |=b

k

= E(Ta,[iz] Zmin(l, k_;a)( Z Pr(w.)))
—0 b=1

a W epwd(RY),tieWL
W l=b

k—1 R
P(t
= Z Ta:[iz] ’ ijzg,ls) (t)
a=0
wherem is the number of tying tuples with(including), i.e.m = |RE(¢;)].

9.7 Proof for Proposition 5

Proposition 5. Given a probabilistic relationR? = (R, p,C) and a scoring function,
for anyt € RP, the Global-Tog probability oft equals the Global-Tapprobability of
te, ~ When evaluating tog+in the induced event relatioA” = (E, p¥,C¥) under the

scoring functions” : £ — R, s"(t.,) = 3, s (te,~) = 5 ands”(t.. ) =i

PE (1) = P (te, ).

Proof. Similar to what we did in the Proof for Lemma 1. We are tryingcteate a
bijection.

Givent € R, k ands, let A be a subset ofwd(RP) suchthat € A & ¢ €
ally s(W). If we group all the possible worlds iA by the set of parts whose tuple in
W has score higher than or equal to that,ahen we will have the following partition:

A=A UAU...UALANA =0i#]
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and
VA YW, Wy € A;,i=1,2,...,q,
{Cj,>|3tl eWin Cj,tl s t} = {C’j7>|3t/ e Wan Cj,t/ s t}
and
{Cj,NHt/ ewWin Cj,t/ ~g t} = {C’j7~|3t/ eWsen Cj,t/ ~g t}.

Moreover, denot€'har Parts(A;) to A;'s characteristic set of parts. Note thatidfl €
A; have the same allocation coefficier(t, 1V'), denoted byy,.

Now, let B be a subset opwd(E?P), such thatW, € B < t., . € ally (We).
There is a bijectiory : {A4;|A; € A} — B, mapping each pa#d; in A to the a possible
world in B which contains only tuples corresponding to partsljris characteristic set.

9(Ai) = {tec, »|Cj - € CharParts(Ai)} U{les, ~|Cj~ € CharParts(A;)}

Furthermore, the allocation coefficiemt of A; equals to the allocation coefficient
a(te, ~,g(A;)) under the function®.

The following equation holds from the definition of inducegest relation under
general scoring functions.

Z Pr(W) = H p(teci,>) H p(teciﬁ")

WeA; C;,» €CharParts(A;) Ci,~€CharParts(A;)

11 (1= pltec, =) = Pltec, ~))
c,eC
C; ~&CharParts(A;
C;,~gCharParts(A;

)
)
= Pr(g(A:)).

Therefore,

|
Q
<
&
2
5
S~—
o
)
—
5
~—
S
&
o
=5
=:
o
=
o
=4

9.8 Proof for Theorem 5

Theorem 5.Given a probabilistic relatiorR? = (R, p,C), a scoring functiors, t € R?,
and its induced event relatioh”? = (E,p” CF), where|E| = 2m, the following
recursion onu (k’,i,b) and u.(k’,4,b) holds, whereb,.x is the number of tuples
with positive probability inE?,.
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Wheni = 1,0 < ¥ <mand0 < b < byax,

0 =0
1—pPti1 o) —pPltii~
(us (K i —1,b)~—2 ( El*) Po(tian) 1<k <m
p (tz 1, >)
+ u>(k -Li-1, ) andpE(ti—l,F) >0
un (K = 1,0 = 1,0))p" (t,-)
Uy (k/aiab) = ;7 . 1- pE(tzflk-) _pE(tifl.N)
u~ (ki —1,0+1 ’ ’ b < bmax
(u~( ) PP
+us (k' —1,i—1,b) andl <k' <m
un (K = 1,3 = 1,0))p" (i) andp®(t;1,-) =0
(us (K" — 1,9 —1,b) otherwise
wn (K — 1,0 — 1,5))pE (k1)
0 K=00rb=0
. 1—pP(ticay) —p"(tian)
u~(k',1—1,b ’ : b>0
(un~( ) PP ()
+us(k'—1,i—1,b—1) andl < k' <m
u(k'yi,0) =< +uo(k —1,i—1,b—1))pP(t;~) andp®(t;—1 ) >0
. 1—pP(tii1) —pP(ti1n) -
us (K',i—1,b—1 ’ : otherwise
( F( ) pE(ti—17>-)
+us (' —1,i—1,b—1)
+uo(k —1,i—1,b—1))pP(t; )

The Global-Top probability oft,., . in EP under the scoring functios” can be com-
puted by the following equation:

PksE(etN) PksE(mN)

brmax k4+b—1 r
=>4 Z (K',m,b)+ > LUZ D) (kb))

b=1 k’'=1 k'=k+1

Proof. Equation 9 follows Equation 7 and Equation 8 as it is a simplengeration
based on Definition 8. We are going to prove Equation 7 and aqué by an induction
oni.

— Basecase:=1,0 < k¥ <mand0 < b < byax
Wheni = 1, based on the definition af, the only non-zero entries atg (1, 1,0)
andu.. (1,1, 1). The former is the probability sum of all possible worlds afh¢on-
taint; - and do not contaity ... The second requirement is redundant since those
two tuples are exclusive. Therefore, it is simply the praligitof ¢, .. Similarly,
the latter is the probability sum of all possible worlds whimntaint; .. and do
not contair; .. Again, it is simply the probability of; ... It is easy to check that
no possible worlds satisfy other combinationsk6fandb when: = 1, therefore
their probabilities aré.
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— Inductive step.
Assume the theorem holds foK ¢, 0 < &’ < m and0 < b < byax.
DenoteE, ; andE_ |; to the set of the firsttuples inE,. andE.. respectively.
ForanyWW € pwd(EP), by definition,W contributes tas, ;. (', i, b) iff t;, . /. €
w and|W n (E>_1[1-0] @] Ew,[ig])| =k and|W n E~7[io]| = b. SinceEHiO] n
E. i) = 0, we have:
g/ con|tribt;tes taw, /(K i0,0) <ty v/ € Wand|WNE, ;1| = k'—band|IWN
N)[io] =0
(1) us(K',io + 1,0) is the probability sum of all possible world” such that
tip+1,- €W, WNE, ;17| =k —band[W N E_ ;1] =b.

ws (K ig +1,b) = > Pr(W)
WGpwd(Ep),ti0+1,> ceWw
IWNE, [ig+1)|=K —b
IWNE (ig+1]=b

Sincet; ew,

_ )y pr(w) ety €1
ot 1

Wepwd(EP), tig 1,2 €W tot

‘WOE>’[io]|:k/—l—b

‘W0E~,[io]|:b

= E Pr(W)
W epwd(EP)
tig+1,- EWitig - €W
‘W0E>y[io] |:kl717b
IWAEL [ig)|=b

+ E Pr(W)
W epwd(EP)
tig+1,- EWitig ~EW
‘WOE>’[io] IZk/—l—b
‘WQENV[Z'()] |:b

+ E Pr(W)
W epwd(EP)
tig+1,- EWitig, = EWitig n EW
‘W0E>y[io] |:kl717b
‘WQENV[Z'()] |=b

For the first part of the left hand side,

> Pr(W) = p(tiy+1) > Pr(W) = p(tig+1)us(k'—1,40,b).
W epwd(EP) Wepwd(EP) b, ~ €W
tig+1,- EWitig - €W |WﬂE>1[i0]‘:k,flfb
‘W0E>,[i0]|:kl717b IWﬂEN,[iO]‘:b

‘WQENV[Z'()] |=b

For the second part of the left hand side,

, .
Y Pr(W) = p(tiy+1) > Pr(W) = p(tiys1)u~(k'—1,i0,b).
W epwd(EP) Wepwd(EP),tiy,~ €W
tig+1,- €EWitig,~EW [WNE, (io)|=k —1-b
IWNEy [ip11=k —1-b [WNEL [ig)|=b

‘WQENV[Z'()] |:b
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For the third part of the left hand side ift;, . ) + p(ti,.~) = 1, then there is
no possible world satisfying this condition, thereforesizero. Otherwise,

>

W epwd(EP)

tig+1,- €W

tig, = EWitiy,~ EW
‘WOE>,[io] IZk/—l—b
‘WQEN,[iO]IZb

Pr(W) = p(tiy+1)

Pr(W) (10)

>

W epwd(EP)
tig, - EWitig,~EW
[WNE, [;0)|=k—1-b
|WﬂENy[i0]|:b

Equation 10 can be computed either by Equation 11 when,>) > 0 or
by Equation 12 whemp(t;,,~) > 0. Notice that at least one eft;,, >) and
p(ti,, ~) is positive, otherwise neither tuple is in the induced evelattion E»

according to Definition 11.

_p(ti0,>)

- p(timN)

1
E Pr(W) =
W epwd(EP)
tig, - EWitiy,~EW
‘WOE>,[io] IZk/—l—b
‘WQENV[T'()] |:b

>

Wepwd(EP) tiy » €W
IWNE, [i)|=K'~0b
[WNEL [ig)|=b

D) Pr(W)

1—p(t; — p(ti, ~ .
_ p( 0-,>-) p( 0, )U>_(I€I,’L(),b). (11)
p(tio7>)
1 —p(t; — p(tig.~
Z PT‘(W) — p( Oa;.) p( 0, ) Z PT(W)
Wepwd(EP) p(tio.~) Wepwd(EP),tig,~ €W
tig,~ €W7ti0xN€W |WﬂE>Y[i0]‘:k,flfb
[WNE, [i)|=kK ~1-b [WNE. J59)|=b+1
‘WQEN,[iO]IZb
1—p(t; — p(ti, ~ .
_ p( 0-,>-) p( 0, )u,\,(k/,lo,b—Fl). (12)

p(timN)

A subtlety is that whem(t;,, =) = 0 andb = by,ax, Simply no possible world

satisfies the condition in Equation 10, and Equation 10 exfual

Altogether, we show that this case can be correctly compadequation 7
(2) u~(k',ig + 1,b) is the probability sum of all possible world” such that

tip+1,~ € W, [W N E>,[i0+1]| =k —band|WW N EN,[Z-0+1]| = b. Use a

similar argument as above, it can be shown that this caserisatly computed

by Equation 8 as well.
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