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Abstract. We study here fundamental issues involved in top-k query evalua-
tion in probabilistic databases. We considersimple probabilistic databases in
which probabilities are associated with individual tuples, andgeneralprobabilis-
tic databases in which, additionally, exclusivity relationships between tuples can
be represented. In contrast to other recent research in thisarea, we do not limit
ourselves to injective scoring functions. We formulate three intuitive postulates
that the semantics of top-k queries in probabilistic databases should satisfy, and
introduce a new semantics, Global-Topk, that satisfies those postulates to a large
degree. We also show how to evaluate queries under the Global-Topk semantics.
For simple databases we design dynamic-programming based algorithms, and for
general databases we show polynomial-time reductions to the simple cases. For
example, we demonstrate that for a fixedk the time complexity of top-k query
evaluation is as low as linear, under the assumption that probabilistic databases
are simple and scoring functions are injective.

1 Introduction

The study of incompleteness and uncertainty in databases has long been an interest
of the database community [2–8]. Recently, this interest has been rekindled by an in-
creasing demand for managing rich data, often incomplete and uncertain, emerging
from scientific data management, sensor data management, data cleaning, information
extraction etc. [9] focuses on query evaluation in traditional probabilistic databases;
ULDB [10] supports uncertain data and data lineage in Trio [11]; MayBMS [12] uses
the vertical World-Set representation of uncertain data [13]. The standard semantics
adopted in most works is thepossible worldssemantics [2, 6, 7, 10, 9, 13].

On the other hand, since the seminal papers of Fagin [14, 15],the top-k problem has
been extensively studied in multimedia databases [16], middleware systems [17], data
cleaning [18], core technology in relational databases [19, 20] etc. In the top-k problem,
each tuple is given ascore, and users are interested ink tuples with the highest scores.

More recently, the top-k problem has been studied in probabilistic databases [21,
22]. Those papers, however, are solving two essentially different top-k problems. Soli-
man et al. [21] assumes the existence of a scoring function torank tuples. Probabilities
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provide information on how likely tuples will appear in the database. In contrast, in
[22], the ranking criterion for top-k is the probability associated with each query an-
swer. In many applications, it is necessary to deal with tuple probabilities and scores
at the same time. Thus, in this paper, we use the model of [21].Even in this model,
different semantics for top-k queries are possible, so a part of the challenge is to define
a reasonable semantics.

As a motivating example, let us consider the following graduate admission example.

Example 1.A graduate admission committee need to select two winners ofa fellow-
ship. They narrow the candidates down to the following shortlist:

NameOverall Score
Aidan 0.65
Bob 0.55
Chris 0.45

Prob. of Coming
0.3
0.9
0.4

where theoverall scoreis the normalized score of each candidate based on their quali-
fications, and theprobability of acceptanceis derived from historical statistics on can-
didates with similar qualifications and background.

The committee want to make offers to the best two candidates who will take the
offer. This decision problem can be formulated as a top-k query over the above proba-
bilistic relation, wherek = 2.

In Example 1, each tuple is associated with anevent, which is that the candidate
will accept the offer. The probability of the event is shown next to each tuple. In this
example, all the events of tuples are independent, and tuples are therefore said to be
independent. Such a relation is said to besimple. In contrast, Example 2 illustrates a
more general case.

Example 2.In a sensor network deployed in a habitat, each sensor reading comes with
a confidence valueProb, which is the probability that the reading is valid. The following
table shows the temperature sensor readings at a given sampling time. These data are
from two sensors, Sensor 1 and Sensor 2, which correspond to two partsof the relation,
markedC1 andC2 respectively. Each sensor has only onetrue reading at a given time,
therefore tuples from the same part of the relation correspond to exclusive events.

Temp.◦F (Score)
22
10
25
15

Prob
0.6
0.4
0.1
0.6

C1

C2

Our question is:
“What’s the temperature of the warmest spot?”
The question can be formulated as a top-k query, wherek = 1, over a probabilistic

relation containing the above data. The scoring function isthe temperature. However,
we must take into consideration that the tuples in each partCi, i = 1, 2, are exclusive.
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Our contributions in this paper are the following:

• We formulate three intuitive semantic postulates and use them to analyze and com-
pare different top-k semantics in probabilistic databases (Section 3.1);

• We propose a new semantics for top-k queries in probabilistic databases, called
Global-Topk, which satisfies the above postulates to a large degree (Section 3.2);

• We exhibit efficient algorithms for evaluating top-k queries under the Global-Topk
semantics insimpleprobabilistic databases (Section 4.1) and general probabilistic
databases, under injective scoring functions (Section 4.3).

• We generalize Global-Topk semantics to general scoring functions, where ties are
allowed, by introducing the notion ofallocation policy. We propose dynamic pro-
gramming based algorithms for query evaluation under theEqualallocation policy
(Section 5).

2 Background

2.1 Probabilistic Relations

To simplify the discussion in this paper, we assume that a probabilistic database con-
tains a singleprobabilistic relation. We refer to a traditional database relation as ade-
terministic relation. A deterministic relationR is a set of tuples. Apartition C of R is a
collection of non-empty subsets ofR such that every tuple belongs to one and only one
of the subsets. That is,C = {C1, C2, . . . , Cm} such thatC1 ∪ C2 ∪ . . . ∪ Cm = R and
Ci ∩ Cj = ∅, 1 ≤ i 6= j ≤ m. Each subsetCi, i = 1, 2, . . . , m is apart of the partition
C. A probabilistic relationRp has three components, asupport (deterministic) relation
R, a probability functionp and a partitionC of the support relationR. The probability
functionp maps every tuple inR to a probability value in(0, 1]. The partitionC divides
R into subsets such that the tuples within each subset are exclusive and therefore their
probabilities sum up to at most1. In the graphical presentation ofR, we use horizontal
lines to separate tuples from different parts.

Definition 1 (Probabilistic Relation). A probabilistic relationRp is a triplet〈R, p, C〉,
whereR is a support deterministic relation,p is a probability functionp : R 7→ (0, 1]
andC is a partition ofR such that∀Ci ∈ C,

∑

t∈Ci
p(t) ≤ 1.

In addition, we make the assumption that tuples from different parts of ofC are
independent, and tuples within the same part are exclusive.Definition 1 is equivalent
to the model used in Soliman et al. [21] with exclusive tuple generation rules. Ré et
al. [22] proposes a more general model, however only a restricted model equivalent to
Definition 1 is used in top-k query evaluation.

Example 2 shows an example of a probabilistic relation whosepartition has two
parts. Generally, each part corresponds to a real world entity, in this case, a sensor.
Since there is only one true state of an entity, tuples from the same part are exclusive.
Moreover, the probabilities of all possible states of an entity sum up to at most1. In
Example 2, the sum of probabilities of tuples from Sensor1 is 1, while that from Sensor
2 is 0.7. This can happen for various reasons. In the above example, we might encounter
a physical difficulty in collecting the sensor data, and end up with partial data.
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Definition 2 (Simple Probabilistic Relation).A probabilistic relationRp = 〈R, p, C〉
is simple iff the partitionC contains only singleton sets.

The probabilistic relation in Example 1 issimple(individual parts not illustrated).
Note that in this case,|R| = |C|.

We adopt the well-knownpossible worldssemantics for probabilistic relations [2,
6, 7, 10, 9, 13].

Definition 3 (Possible World).Given a probabilistic relationRp = 〈R, p, C〉, a deter-
ministic relationW is apossible worldof Rp iff

1. W is a subset of the support relation, i.e.W ⊆ R;
2. For every partCi in the partitionC, at most one tuple fromCi is in W , i.e.∀Ci ∈

C, |Ci ∩ W | ≤ 1;
3. The probability ofW (defined by Equation 1) is positive, i.e.Pr(W ) > 0.

Pr(W ) =
∏

t∈W

p(t)
∏

Ci∈C′

(1 −
∑

t∈Ci

p(t)) (1)

whereC′ = {Ci ∈ C|W ∩ Ci = ∅}.

Denote bypwd(Rp) the set of all possible worldsof Rp.

2.2 Total order v.s. Weak order

A binary relation≻ is

– irreflexive:∀x. x 6≻ x,
– asymmetric:∀x, y. x ≻ y ⇒ y 6≻ x,
– transitive:∀x, y, z. (x ≻ y ∧ y ≻ z) ⇒ x ≻ z,
– negatively transitive:∀x, y, z. (x 6≻ y ∧ y 6≻ z) ⇒ x 6≻ z,
– connected:∀x, y. x ≻ y ∨ y ≻ x ∨ x = y.

A strict partial order is an irreflexive, transitive ( and thus symmetric ) binary re-
lation. A weak orderis a negatively transitive strict partial order. Atotal order is a
connected strict partial order.

2.3 Scoring function

A scoring function over a deterministic relationR is a function fromR to real numbers,
i.e. s : R 7→ R. The functions induces apreference relation≻s and anindifference
relation∼s onR. For any two distinct tuplesti andtj from R,

ti ≻s tj iff s(ti) > s(tj);
ti ∼s tj iff s(ti) = s(tj).

A scoring function over a probabilistic relationRp = 〈R, p, C〉 is a scoring function
s over its support relationR. In general, a scoring function establishes aweak order
overR, where tuples fromR can tie in score. However, when the scoring functions is
injective, ≻s is atotal order. In such a case, no two tuples tie in score.
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2.4 Top-k Queries

Definition 4 (Top-k Answer Set over Deterministic Relation).Given a deterministic
relationR, a non-negative integerk and a scoring functions overR, a top-k answer in
R unders is a setT of tuples such that

1. T ⊆ R;
s 2. If |R| < k, T = R, otherwise|T | = k;
3.∀t ∈ T ∀t′ ∈ R − T. t ≻s t′ or t ∼s t′.

According to Definition 4, givenk ands, there can be more than one top-k answer
set in a deterministic relationR. The evaluation of a top-k query overR returns one of
them nondeterministically, sayS. However, if the scoring functions is injective,S is
unique, denoted bytopk,s(R).

3 Semantics of Top-k Queries

In the following two sections, we restrict our discussion toinjectivescoring functions.
We will discuss the generalization to general scoring functions in Section 5.

3.1 Semantic Postulates for Top-k Answers

Probability opens the gate for various possible semantics for top-k queries. As the se-
mantics of a probabilistic relation involves a set of worlds, it is to be expected that there
may be more than one top-k answer, even under an injective scoring function. The an-
swer to a top-k query over a probabilistic relationRp = 〈R, p, C〉 should clearly be a
set of tuples from its support relationR. We formulate below three desirablepostulates,
which serve as a benchmark to compare different semantics.

In the following discussion, denote byAnsk,s(R
p) the collection of all top-k answer

sets ofRp under the functions.

Postulates

– Static Postulates
1. Exactk: WhenRp is sufficiently large (|C| ≥ k), the cardinality of every top-k

setS is exactlyk;

|C| ≥ k ⇒ [∀S ∈ Ansk,s(R
p). |S| = k].

2. Faithfulness: For every top-k setS and any two tuplest1, t2 ∈ R, if both the
score and the probability oft1 are higher than those oft2 andt2 ∈ S, then
t1 ∈ S;

∀S ∈ Ansk,s(R
p) ∀t1, t2 ∈ R. s(t1) > s(t2)∧p(t1) > p(t2)∧t2 ∈ S ⇒ t1 ∈ S.

– Dynamic Postulate
∪ Ansk,s(R

p) denotes the union of all top-k answer sets ofRp = 〈R, p, C〉
under the functions. For anyt ∈ R,

t is awinner iff t ∈ ∪ Ansk,s(R
p)

t is a loser iff t ∈ R − ∪ Ansk,s(R
p)
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3. Stability:
• Raising the score/probability of a winner will not turn it into a loser;

(a) If a scoring functions′ is such thats′(t) > s(t) and for everyt′ ∈
R − {t}, s′(t) = s(t), then

t ∈ ∪ Ansk,s(R
p) ⇒ t ∈ ∪ Ansk,s′(Rp).

(b) If a probability functionp′ is such thatp′(t) > p(t) and for every
t′ ∈ R − {t}, p′(t) = p(t), then

t ∈ ∪ Ansk,s(R
p) ⇒ t ∈ ∪ Ansk,s((R

p)′),

where(Rp)′ = 〈R, p′, C〉.
• Lowering the score/probability of a loser will not turn it into a winner.

(a) If a scoring functions′ is such thats′(t) < s(t) and for everyt′ ∈
R − {t}, s′(t) = s(t), then

t ∈ R − ∪ Ansk,s(R
p) ⇒ t ∈ R − ∪ Ansk,s′(Rp).

(b) If a probability functionp′ is such thatp′(t) < p(t) and for every
t′ ∈ R − {t}, p′(t) = p(t), then

t ∈ R − ∪ Ansk,s(R
p) ⇒ t ∈ R − ∪ Ansk,s((R

p)′),

where(Rp)′ = 〈R, p′, C〉.

All of those postulates reflect basic intuitions about top-k answers.
Exactk expresses user expectations about the size of the result. Typically, a user

issues a top-k query in order to restrict the size of the result and get a subset of cardi-
nality k (cf. Example 1). Therefore,k is a crucial parameter specified by the user that
should be complied with.

Faithfulnessreflects the significance of score and probability in a staticenviron-
ment. It plays an important role in designing efficient queryevalution algorithms. The
satisfaction ofFaithfulnessallows the application of a set of pruning techniques based
onmonotonicity.

Stabilityreflects the significance of score and probability in a dynamic environment.
In a dynamic world, it is common that user might update score/probability on-the-fly.
Stabilityrequires that the consequences of such changes should not becounterintuitive.

3.2 Global-Topk Semantics

We propose here a new top-k answer semantics in probabilistic relations, namelyGlobal-
Topk, which satisfies the postulates formulated in Section 3.1 toa large degree:

• Global-Topk: returnk highest-ranked tuples according to their probability of being
in the top-k answers in possible worlds.
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Considering a probabilistic relationRp = 〈R, p, C〉 under an injective scoring func-
tion s, anyW ∈ pwd(Rp) has a unique top-k answer settopk,s(W ). Each tuple from
the support relationR can be in the top-k answer (in the sense of Definition 4) in zero,
one or more possible worlds ofRp. Therefore, the sum of the probabilities of those
possible worlds provides a global ranking criterion.

Definition 5 (Global-Topk Probability). Assume a probabilistic relationRp = 〈R, p, C〉,
a non-negative integerk and an injective scoring functions overRp. For any tuplet in
R, the Global-Topk probability oft, denoted byPRp

k,s (t), is the sum of the probabilities
of all possible worlds ofRp whose top-k answer containst.

PRp

k,s (t) =
∑

W∈pwd(Rp)
t∈topk,s(W )

Pr(W ). (2)

For simplicity, we skip the superscript inPRp

k,s (t), i.e.Pk,s(t), when the context is
unambiguous.

Definition 6 (Global-Topk Answer Set over Probabilistic Relation).Given a prob-
abilistic relation Rp = 〈R, p, C〉, a non-negative integerk and an injective scoring
functions overRp, a top-k answer inRp unders is a setT of tuples such that

1. T ⊆ R;
2. If |R| < k, T = R, otherwise|T | = k;
3.∀t ∈ T, ∀t′ ∈ R − T, Pk,s(t) ≥ Pk,s(t

′).

Notice the similarity between Definition 6 and Definition 4. In fact, the probabilis-
tic version only changes the last condition, which restatesthe preferred relationship
between two tuples by taking probability into account. Thissemantics preserves the
nondeterministic nature of Definition 4. For example, if twotuples are of the same
Global-Topk probability, and there arek − 1 tuples with higher Global-Topk probabil-
ity, Definition 4 allows one of the two tuples to be added to thetop-k answer nondeter-
ministically. Example 3 gives an example of the Global-Topk semantics.

Example 3.Consider the top-2 query in Example 1. Clearly, the scoring function here
is theOverall Scorefunction. The following table shows all the possible worldsand
their probabilities. For each world, the names of the peoplein the top-2 answer set of
that world are underlined.

Possible World Prob
W1 = ∅ 0.042
W2 = {Aidan} 0.018
W3 = {Bob} 0.378
W4 = {Chris} 0.028
W5 = {Aidan, Bob} 0.162
W6 = {Aidan, Chris} 0.012
W7 = {Bob, Chris} 0.252
W8 = {Aidan, Bob, Chris} 0.108
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Chris is in the top-2 answer ofW4, W6, W7, so the top-2 probability of Chris is
0.028 + 0.012 + 0.252 = 0.292. Similarly, the top-2 probability of Aidan and Bob
are0.9 and0.3 respectively.0.9 > 0.3 > 0.292, therefore Global-Topk will return
{Aidan, Bob}.

Note that top-k answer sets may be of cardinality less thank for some possible
worlds. We refer to such possible worlds assmallworlds. In Example 3,W1...4 are all
small worlds.

3.3 Other Semantics

Soliman et al. [21] proposes two semantics for top-k queries in probabilistic relations.

• U-Topk: return the most probable top-k answer set that belongs to possible world(s);
• U-kRanks: for i = 1, 2, . . . , k, return the most probableith-ranked tuples across all

possible worlds.

Hua et al. [23] independently proposes PT-k, a semantics based on Global-Topk
probability as well. PT-k takes an additional parameter: probability thresholdpτ ∈
(0, 1].

• PT-k: return every tuple whose probability of being in the top-k answers in possible
worlds is at leastpτ .

Example 4.Continuing Example 3, under U-Topk semantics, the probability of top-
2 answer set{Bob} is 0.378, and that of{Aidan, Bob} is 0.162 + 0.108 = 0.27.
Therefore,{Bob} is more probable than{Aidan, Bob} under U-Topk. In fact,{Bob}
is the most probable top-2 answer set in this case, and will be returned by U-Topk.

Under U-kRanks semantics, Aidan is in1st place in the top-2 answer ofW2, W5,
W6, W8, therefore the probability of Aidan being in1st place in the top-2 answers in
possible worlds is0.018 + 0.162 + 0.012 + 0.108 = 0.3. However, Aidan is not in
2nd place in the top-2 answer of any possible world, therefore the probability of Aidan
being in2nd place is0. In fact, we can construct the following table.

Aidan Bob Chris
Rank 1 0.3 0.63 0.028
Rank 2 0 0.27 0.264

U-kRanks selects the tuple with the highest probability at eachrank (underlined)
and takes the union of them. In this example, Bob wins at both Rank 1 and Rank 2.
Thus, the top-2 answer returned by U-kRanks is{Bob}.

PT-k returns every tuple with Global-Topk probability above the user specified
thresholdpτ , therefore the answer depends onpτ . Saypτ = 0.6, then PT-k return
{Aidan}, as it is the only tuple with Global-Topk probability at least0.6.

The postulates introduced in Section 3.1 lay the ground for comparing different
semantics. In Table 1, a single “X” (resp. “×”) indicates that postulate is (resp. is not)
satisfied under that semantics. “X/×” indicates that, the postulate is satisfied by that
semantics insimpleprobabilistic relations, but not in the general case.
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Semantics Exactk FaithfulnessStability
Global-Topk X X/× X

PT-k × X/× X

U-Topk × X/× X

U-kRanks × × ×

Table 1.Postulate Satisfaction for Different
Semantics

ForExact k, Global-Topk is the only semantics that satisfies this postulate. Example
4 illustrates the case where U-Topk, U-kRanks and PT-k violate this postulate. It is not
satisfied by U-Topk because asmallpossible world with high probability could domi-
nate other worlds. In that case, the dominating possible world might not have enough
tuples. It is also violated by U-kRanks because a single tuple can win at multiple ranks
in U-kRanks. In PT-k, if the threshold parameterpτ is set too high, then less thank tu-
ples will be returned (as in Example 4). Aspτ decreases, PT-k return more tuples. In the
extreme case whenpτ approaches0, any tuple with a positive Global-Topk probability
will be returned.

For Faithfulness, Global-Topk violates it when exclusion rules lead to a highly re-
stricted distribution of possible worlds, and are combinedwith an unfavorable scoring
function. PT-k violatesFaithfulnessfor the same reason. U-Topk violatesFaithfulness
since it requires all tuples in a top-k answer set to be compatible, this postulate can be
violated when a high-score/probability tuple could be dragged down arbitrarily by its
compatible tuples if they are not very likely to appear. U-kRanks violates bothFaith-
fulnessandStability. Under U-kRanks, instead of a set, a top-k answer is an ordered
vector, where ranks are significant. A change in a tuple’s probability/score might have
unpredictable consequence on ranks, therefore those two postulates are not guaranteed
to hold.

Faithfulnessis a postulate which can lead to significant pruning in practice. Even
though it is not fully satisfied by any of the four semantics, some degree of satisfaction
is still desirable, as it will help us find pruning rules. For example, our optimization in
Section 4.2 explores theFaithfulnessof Global-Topk in simple probabilistic databases.
Another example is that one of the pruning techniques in [23]explores theFaithfulness
of exclusive tuples in general probabilistic databases as well.

Proofs of the results in Table 1 are in Appendix.

4 Query Evaluation under Global-Topk

4.1 Simple Probabilistic Relations

We first consider asimpleprobabilistic relationRp = 〈R, p, C〉 under an injective scor-
ing functions.

Proposition 1. Given a simple probabilistic relationRp = 〈R, p, C〉 and an injective
scoring functions overRp, if R = {t1, t2, . . ., tn} and t1 ≻s t2 ≻s . . . ≻s tn, the
following recursion on Global-Topk queries holds:
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q(k, i) =















0 k = 0
p(ti) 1 ≤ i ≤ k

(q(k, i − 1)
p̄(ti−1)

p(ti−1)
+ q(k − 1, i − 1))p(ti) otherwise

(3)

whereq(k, i) = Pk,s(ti) and p̄(ti−1) = 1 − p(ti−1).

Proof. SeeAppendix.
Notice that Equation 3 involves probabilities only, while the scores are used to de-

termine the order of computation.

Example 5.Consider a simple probabilistic relationRp = 〈R, p, C〉, whereR = {t1,
t2, t3, t4}, p(ti) = pi, 1 ≤ i ≤ 4, C = {{t1}, {t2}, {t3}, {t4}} and an injective scoring
functions such thatt1 ≻s t2 ≻s t3 ≻s t4. The following table shows the Global-Topk
probability ofti, where0 ≤ k ≤ 2.

k t1 t2 t3 t4
0 0 0 0 0
1 p1 p̄1p2 p̄1p̄2p3 p̄1p̄2p̄3p4

2 p1 p2 (p̄2 + p̄1p2)p3 ((p̄2 + p̄1p2)p̄3

+p̄1p̄2p3)p4

Row 2 (bold) is eachti’s Global-Top2 probability. Now, if we are interested in top-2
answer inRp, we only need to pick the two tuples with the highest value in Row 2.

Theorem 1 (Correctness of Algorithm 1).Given a simple probabilistic relationRp =
〈R, p, C〉, a non-negative integerk and an injective scoring functions, Algorithm 1
correctly computes a Global-Topk answer set ofRp under the scoring functions.

Proof. Algorithm 1 maintains a priority queue to select thek tuples with the highest
Global-Topk value. Notice that the nondeterminism is reflected in Line 6 as the algo-
rithm for maintaining the priority queue in the presence of tying elements. As long as
Line 2 in Algorithm 1 correctly computes the Global-Topk probability of each tuple in
R, Algorithm 1 returns a valid Global-Topk answer set. By Proposition 1, Algorithm 2
correctly computes the Global-Topk probability of tuples inR.

Algorithm 1 is a one-pass computation on the probabilistic relation, which can be
easily implemented even if secondary storage is used. The overhead is the initial sort-
ing cost (not shown in Algorithm 1), which would be amortizedby the workload of
consecutive top-k queries.

Algorithm 2 takesO(kn) to compute the DP table. In addition, Algorithm 1 uses
a priority queue to maintain thek highest values, which takesO(n log k). Altogether,
Algorithm 1 takesO(kn).

4.2 Threshold Algorithm Optimization

Fagin [15] proposesThreshold Algorithm (TA)for processing top-k queries in a middle-
ware scenario. In a middleware system, anobjecthasm attributes. For each attribute,
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Algorithm 1 (Ind Topk) Evaluate Global-Topk Queries in a Simple Probabilistic Re-
lation under an Injective Scoring Function
Require: Rp = 〈R, p, C〉, k
Ensure: tuples inR are sorted in the decreasing order based on the scoring function s

1: Initialize a fixed cardinality(k + 1) priority queueAns of 〈t, prob〉 pairs, which compares
pairs onprob, i.e. the Global-Topk probability oft;

2: Calculate Global-Topk probabilities using Algorithm 2, i.e.

q(0 . . . k, 1 . . . |R|) = Ind Topk Sub(Rp
, k);

3: for i = 1 to |R| do
4: Add 〈ti, q(k, i)〉 to Ans;
5: if |Ans| > k then
6: remove the pair with the smallestprob value fromAns;
7: end if
8: end for
9: return {ti|〈ti, q(k, i)〉 ∈ Ans};

Algorithm 2 (Ind Topk Sub) Compute Global-Topk Probabilities in a Simple Proba-
bilistic Relation under an Injective Scoring Function
Require: Rp = 〈R, p, C〉, k
Ensure: tuples inR are sorted in the decreasing order based ons

1: q(0, 1) = 0;
2: for k′ = 1 to k do
3: q(k′, 1) = p(t1);
4: end for
5: for i = 2 to |R| do
6: for k′ = 0 to k do
7: if k′ = 0 then
8: q(k′, i) = 0;
9: else

10: q(k′, i) = p(ti)(q(k
′, i − 1)

p̄(ti−1)

p(ti−1)
+ q(k′ − 1, i − 1));

11: end if
12: end for
13: end for
14: return q(0 . . . k, 1 . . . |R|);
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there is a sorted list ranking objects in the decreasing order of its score on that attribute.
An aggregation functionf combines the individual attribute scoresxi, i=1, 2, . . . , m
to obtain the overall object scoref(x1, x2, . . . , xm). An aggregation function ismono-
tonic iff f(x1, x2, . . . , xm) ≤ f(x′

1, x
′
2, . . . , x

′
m) wheneverxi ≤ x′

i for everyi. Fagin
[15] shows that TA is cost-optimal in finding the top-k objects in such a system.

TA is guaranteed to work as long as the aggregation function is monotonic. For a
simple probabilistic relation, if we regardscoreandprobabilityas two special attributes,
Global-Topk probabilityPk,s is an aggregation function ofscoreandprobability. The
Faithfulnesspostulate in Section 3.1 implies the monotonicity of Global-Topk probabil-
ity. Consequently, assuming that we have an index on probability as well, we can guide
the dynamic programming (DP) in Algorithm 2 by TA. Now, instead of computing all
kn entries for DP, wheren = |R|, the algorithm can be stopped as early as possible.
A subtlety is that Global-Topk probabilityPk,s is only well-defined fort ∈ R, unlike
in [15], where an aggregation function is well-defined over the domain of all possible
attribute values. Therefore, compared to the original TA, we need to achieve the same
behavior without referring to virtual tuples which are not in R.

U-Topk satisfiesFaithfulnessin simple probabilistic relations. An adaption of the
TA algorithm in this case is available in [21]. TA is not applicable to U-kRanks. Even
though we can define an aggregation function perrank, rank = 1, 2, . . . , k, for tuples
under U-kRanks, the violation ofFaithfulnessin Table 1 suggests a violation of mono-
tonicity of thosek aggregation functions. PT-k computes Global-Topk probability as
well, and is therefore a natural candidate for TA in simple probabilistic relations.

DenoteT andP for the list of tuples in the decreasing order of score and probability
respectively. Following the convention in [15],t andp are the last value seen inT and
P respectively.

Algorithm 1’ (TA Ind Topk)

(1) Go downT list, and fill in entries in the DP table. Specifically, fort = tj ,
compute the entries in thejth column up to thekth row. Add tj to the
top-k answer setAns, if any of the following conditions holds:

(a) Ans has less thank tuples, i.e.|Ans| < k;
(b) The Global-Topk probability of tj , i.e. q(k, j), is greater than

the lower bound of Ans, i.e. LBAns, where LBAns =
minti∈Ans q(k, i).

In the second case, we also need to drop the tuple with the lowest Global-
Topk probability in order to preserve the cardinality ofAns.

(2) After we have seen at leastk tuples inT , we go downP list to find
the firstp whose tuplet has not been seen. Letp = p, and we can use
p to estimate thethreshold, i.e. upper bound (UP ) of the Global-Topk
probability of any unseen tuple. Assumet = ti,

UP = (q(k, i)
p̄(ti)

p(ti)
+ q(k − 1, i))p.

(3) If UP > LBAns, we can expectAns will be updated in the future, so
go back to (1). Otherwise, we can safely stop and reportAns.
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Theorem 2 (Correctness of Algorithm 1’).Given a simple probabilistic relationRp =
〈R, p, C〉, a non-negative integerk and an injective scoring functions over Rp, the
above TA-based algorithm correctly find a top-k answer under Global-Topk semantics.

Proof. SeeAppendix.
The optimization above aims at an early stop. Bruno et al. [24] carries out an exten-

sive experimental study on the effectiveness of applying TAin RDMBS. They consider
various aspects of query processing. One of their conclusions is that if at least one of the
indices available for the attributes1 is acovering index, that is, it is defined over all other
attributes and we can get the values of all other attributes directly without performing
a primary index lookup, then the improvement by TA can be up totwo orders of mag-
nitude. The cost of building a useful set of indices once would be amortized by a large
number of top-k queries that subsequently benefit form such indices. Even inthe lack
of covering indices, if the data is highly correlated, in ourcase, that means high-score
tuples having high probabilities, TA would still be effective.

4.3 Arbitrary Probabilistic Relations

Induced Event Relation In the general case of probabilistic relation, each part of the
partitionC can contain more than one tuple. The crucialindependenceassumption in
Algorithm 1 no longer holds. However, even though tuples in one part of the partitionC
are not independent, tuples in different parts are. In the following definition, we assume
an identifier functionid. For any tuplet, id(t) identifies the part wheret belongs.

Definition 7 (Induced Event Relation).Given a probabilistic relationRp = 〈R, p, C〉,
an injective scoring functions overRp and a tuplet ∈ Cid(t) ∈ C, the event relation
induced byt, denoted byEp = 〈E, pE , CE〉, is a probabilistic relation whose support
relation E has only one attribute,Event. The relationE and the probability function
pE are defined by the following two generation rules:

– Rule 1: tet
∈ E andpE(tet

) = p(t);
– Rule 2: ∀Ci ∈ C ∧ Ci 6= Cid(t).

(∃t′ ∈ Ci ∧ t′ ≻s t) ⇒ (teCi
∈ E) andpE(teCi

) =
∑

t′∈Ci

t′≻st

p(t′).

No other tuples belong toE. The partitionCE is defined as the collection of single-
ton subsets ofE.

Except for one special tuple generated byRule 1, each tuple in the induced event
relation (generated byRule 2) represents an eventeCi

associated with a partCi ∈ C.
Given the tuplet, theeventeCi

is defined as “some tuple from the partCi has the score
higher than the score oft”. The probability of this event, denoted byp(teCi

), is the
probability thateCi

occurs.
The role of the special tupletet

and its probabilityp(t) will become clear in Propo-
sition 3. Let us first look at an example of an induced event relation.

1 Probability is typically supported as a special attribute in DBMS.
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Example 6.GivenRp as in Example 2, we would like to construct the induced event
relationEp = 〈E, pE , CE〉 for tuplet=(Temp:15) from C2. By Rule 1, we havetet

∈
E, pE(tet

) = 0.6. By Rule 2, sincet ∈ C2, we haveteC1
∈ E and pE(teC1

) =
∑

t′∈C1

t′≻st

p(t′) = p((Temp:22)) = 0.6. Therefore,

E: pE :
Event
tet

teC1

Prob
0.6
0.6

Proposition 2. An induced event relation in Definition 7 is a simple probabilistic rela-
tion.

Evaluating Global-Topk Queries With the help ofinduced event relation, we can
reduce Global-Topk in the general case to Global-Topk in simple probabilistic relations.

Lemma 1. LetRp = 〈R, p, C〉 be a probabilistic relation,s an injective scoring func-
tion, t ∈ R, and Ep = 〈E, pE , CE〉 the event relation induced byt. DefineQp =
〈E − {tet

}, pE, CE − {{tet
}}〉. Then, the Global-Topk probability of t satisfies the

following:
PRp

k,s (t) = p(t)
∑

We∈pwd(Qp)
|We|<k

Pr(We).

Proposition 3. Given a probabilistic relationRp = 〈R, p, C〉 and an injective scor-
ing functions, for any t ∈ Rp, the Global-Topk probability of t equals the Global-
Topk probability of tet

when evaluating top-k in the induced event relationEp =
〈E, pE , CE〉 under the injective scoring functionsE : E → R, sE(tet

) = 1
2 and

sE(teCi
) = i:

PRp

k,s (t) = PEp

k,sE (tet
).

Proof. SeeAppendix.
In Proposition 3, the choice of the functionsE is rather arbitrary. In fact, any injec-

tive functioin givingtet
the lowest score will do. Every tuple other thant in the induced

event relation corresponds to the event that a tuple with a score higher than that oft oc-
curs. We want to track the case that at mostk−1 such events happen. Since any induced
event relation is simple (Proposition 2), Proposition 3 illustrates how we can reduce the
computation ofPRp

k,s (t) in the original probabilistic relation to a top-k computation in a
simple probabilistic relation, where we can apply the DP technique described in Section
4.1. The complete algorithms are shown as Algorithm 3 and Algorithm 4.

In Algorithm 4, we first find the partCid(t) wheret belongs. In Line 4, we initialize
the support relationE of the induced event relation by the tuple generated by Rule 1
in Definition 7. For any partCi other thanCid(t), we compute the probability of the
eventeCi

according to Definition 7 (Line 4), and add it toE if its probability is non-
zero (Line 5-7). Since all the tuples from the same part are exclusive, this probability is
the sum of the probabilities of all tuples that qualify in that part. Note that if no tuple
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Algorithm 3 (IndEx Topk) Evaluate Global-Topk Queries in a General Probabilistic
Relation under an Injective Scoring Function
Require: Rp = 〈R, p, C〉, k, s

1: Initialize a fixed cardinalityk + 1 priority queueAns of 〈t, prob〉 pairs, which compares
pairs onprob, i.e. the Global-Topk probability oft;

2: for t ∈ R do
3: CalculateP Rp

k,s (t) using Algorithm 4, i.e.

P
Rp

k,s (t) = IndEx Topk Sub(Rp
, k, s, t);

4: Add 〈t, P Rp

k,s (t)〉 to Ans;
5: if |Ans| > k then
6: remove the pair with the smallestprob value fromAns;
7: end if
8: end for
9: return {t|〈t, P Rp

k,s (t)〉 ∈ Ans};

Algorithm 4 (IndEx Topk Sub) CalculatePRp

k,s (t) using an induced event relation

Require: Rp = 〈R, p, C〉, k, s, t ∈ R

1: Find the partCid(t) ∈ C such thatt ∈ Cid(t);
2: E = {tet}, wherepE(tet) = p(t);
3: for Ci ∈ C andCi 6= Cid(t) do

4: p(eCi) =
P

t′∈Ci

t′≻st

p(t′);

5: if p(eCi) > 0 then
6: E = E ∪ {teCi

}, wherepE(teCi
) = p(eCi);

7: end if
8: end for
9: Use Algorithm 2 to compute Global-Topk probabilities inEp = 〈E, pE, CE〉, i.e.

q(0 . . . k, 1 . . . |E|) = Ind Topk Sub(Ep
, k)

10: P Rp

k,s (t) = P Ep

k,sE (tet) = q(k, |E|);

11: return P Rp

k,s (t);
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from Ci qualifies, this probability is zero. In this case, we do not care whether any tuple
from Ci will be in the possible world or not, since it does not have anyinfluence on
whethert will be in top-k or not. The corresponding event tuple is therefore excluded
from E. By default, any probabilistic database assumes that any tuple not in the support
relation is with probability zero. Line 4 uses Algorithm 2 tocomputePEp

k,s (tet
). Note

that Algorithm 2 requires all tuples be sorted on score, but this is not a problem for
us. Since we already know the scoring functionsE , we simply need to organize tuples
based onsE when generatingE. No extra sorting is necessary.

Theorem 3 (Correctness of Algorithm 3).Given a probabilistic relationRp = 〈R, p,
C〉, a non-negative integerk and an injective scoring functions, Algorithm 3 correctly
computes a Global-Topk answer set ofRp under the scoring functions.

Proof. The top-level structure with the priority queue in Algorithm 3 resemble those
in Algorithm 1. Therefore, as long as Line 3 in Algorithm 3 correctly computes the
Global-Topk probability of each tuple inR, Algorithm 3 returns a valid Global-Topk
answer set. Line 1-8 in Algorithm 4 computes the event relation induced by tuplet. By
Proposition 3, Line 9-10 in Algorithm 4 correctly computes the Global-Topk probability
of tuplet.

In Algorithm 4, Line 4-4 takesO(n) to build E (we need to scan all tuples within
each part). The call to Algorithm 2 in Line 4 takesO(k|E|), where|E| is no more than
the number of parts in partitionC, which is in turn no more thann. So Algorithm 4
takesO(kn). Algorithm 3 maken calls to Algorithm 4 to computePRp

k,s (t) for every
tuple t ∈ R. Again, Algorithm 3 uses a priority queue to select the final answer set,
which takesO(n log k). The entire algorithm takesO(kn2 + n log k) = O(kn2).

5 Global-Topk under General Scoring Functions

5.1 Semantics and Postulates

Global-Topk Semantics with Allocation Policy Under a general scoring function,
the Global-Topk semantics remains the same. However, the definition of Global-Topk
probability in Definition 5 needs to be generalized to handleties.

Recall that under an injective scoring functions, there is a unique top-k answer set
S in every possible worldW . When the scoring functions is non-injective, there may be
multiple top-k answer setsS1, . . . , Sd, each of which is returned nondeterministically.
Therefore, for any tuplet ∈ ∩Si, i = 1, . . . , d, the worldW contributesPr(W ) to the
Global-Topk probability of t. One the other hand, for any tuplet ∈ (∪Si − ∩Si), i =
1 . . . , d, the worldW contributes only afractionof Pr(W ) to the Global-Topk proba-
bility of t. Theallocation policydetermines the value of this fraction, i.e. theallocation
coefficient. Denote byα(t, W ) the allocation coefficient of a tuplet in a worldW . Let
allk,s(W ) = ∪Si, i = 1, . . . , d.

Definition 8 (Global-Topk Probability under a General Scoring Function).Assume
a probabilistic relationRp = 〈R, p, C〉, a non-negative integerk and a scoring function
s overRp. For any tuplet in R, the Global-Topk probability oft, denoted byPRp

k,s (t), is
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the sum of the (partial) probabilities of all possible worlds ofRp whose top-k answer
may containt.

PRp

k,s (t) =
∑

W∈pwd(Rp)
t∈allk,s(W )

α(t, W )Pr(W ). (4)

With no prior bias towards any tuple, it is natural to assume that each ofS1, . . . , Sd

is returned nondeterministically withequalprobability. Notice that this probability has
nothing to do with tuple probabilities. Rather, it is the determined by the number of
equally qualified top-k answer sets. Hence, we have the followingEqual allocation
policy.

Definition 9 (Equal Allocation Policy). Assume a probabilistic relationRp = 〈R, p, C〉,
a non-negative integerk and a scoring functions overRp. For a possible worldW ∈
pwd(Rp) and a tuplet ∈ W , let a = |{t′ ∈ W |t′ ≻s t}| andb = |{t′ ∈ W |t′ ∼s t}|

α(t, W ) =

{

1 if a < k anda + b ≤ k
k − a

b
if a < k anda + b > k

Satisfaction of PostulatesThe semantic postulates in Section 3.1 are directly appli-
cable to Global-Topk with allocation policy. In the Appendix, we show that theEqual
allocation policy preserves the semantic postulates of Global-Topk.

5.2 Query Evaluation in Simple Probabilistic Relations

Definition 10. LetRp = 〈R, p, C〉 be a probabilistic relation,k a non-negative integer
and s a general scoring function overRp. Assume thatR = {t1, t2, . . . , tn}, t1 �s

t2 �s . . . �s tn. LetT Rp

k,[i], k ≤ i, be the sum of the probabilities of all possible worlds
of exactlyk tuples from{t1, . . . , ti}:

T Rp

k,[i] =
∑

W∈pwd(Rp)
|W∩{t1,...,ti}|=k

Pr(W )

As usual, we omit the superscript inT Rp

k,[i], i.e. Tk,[i], when the context is unam-
biguous. Remark 1 shows that in a simple probabilistic relation Tk,[i] can be computed
efficiently.

Remark 1.Let Rp = 〈R, p, C〉 be a simple probabilistic relation,k a non-negative in-
teger ands a general scoring function overRp. Assume thatR = {t1, t2, . . . , tn},
t1 �s t2 �s . . . �s tn. For anyi, 1 ≤ i ≤ n − 1, T Rp

k,[i] can be computed using the
DP table for computing the Global-Topk probabilities inRp under an order-preserving
injective scoring functions′ such thatt1 ≻s′ t2 ≻s′ . . . ≻s′ tn.

Proof. We show by case study.
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– Case 1: Ifk = 0, 1 ≤ i ≤ n − 1, then

T Rp

k,[i] =
∏

1≤j≤i

p(tj) =
P

(Rp)
1,s′ (ti+1)

p(ti+1)

– Case 2: For every1 ≤ k ≤ i ≤ n − 1, by the definition ofT Rp

k,[i], we have

T Rp

k,[i] =
∑

W∈pwd(Rp)
|W∩{t1,...,ti}|≤k

Pr(W ) −
∑

W∈pwd(Rp)
|W∩{t1,...,ti}|≤k−1

Pr(W )

In the DP table computing the Global-Topk probabilities inRp under functions′,
we have

PRp

k+1,s′(ti+1) =
∑

W∈pwd(Rp)
ti+1∈topk+1,s′(W )

Pr(W ) (s′ is injective)

=
∑

W∈pwd(Rp)
|W∩{t1,...,ti}|≤k
ti+1∈W

Pr(W )

= p(ti+1)
∑

W∈pwd(Rp)
|W∩{t1,...,ti}|≤k

Pr(W ) (tuples are independent)

Therefore,

T Rp

k,[i] =
PRp

k+1,s′(ti+1)

p(ti+1)
−

PRp

k,s′ (ti+1)

p(ti+1)

Since1 ≤ k ≤ i ≤ n − 1, bothPRp

k+1,s′ (ti+1) andPRp

k,s′ (ti+1) can be computed
using the DP table used to compute the Global-Topk probabilities of tuples inRp

under the injective scoring functions′.

Remark 2 shows that we can compute Global-Topk probability under a general
scoring function in polynomial time for an extreme case, where the probabilistic relation
is simple and all tuples tie in scores. As we will see shortly,this special case plays an
important role in our major result Proposition 4.

Remark 2.Let Rp = 〈R, p, C〉 be a simple probabilistic relation,k a non-negative in-
teger ands a general scoring function overRp. Assume thatR = {t1, . . . , tm} and
t1 ∼s t2 ∼s . . . ∼s tm. For any tupleti, 1 ≤ i ≤ m, the Global-Topk probability ofti,
i.e.PRp

k,s (ti), can be computed using Remark 1.

Proof. If k > m, it is trivial thatPRp

k,s (ti) = p(ti). Therefore, we only prove the case
whenk ≤ m. According to Equation 4, for anyi, 1 ≤ i ≤ m,



19

PRp

k,s (ti) =
m

∑

j=1

∑

W∈pwd(Rp)
ti∈allk,s(W ),|W |=j

α(ti, W )Pr(W )

=

m
∑

j=1

∑

W∈pwd(Rp)
ti∈W,|W |=j

α(ti, W )Pr(W ) (Since all tuple tie, allk,s(W ) = W )

=

k
∑

j=1

∑

W∈pwd(Rp)
ti∈W,|W |=j

α(ti, W )Pr(W ) +

m
∑

j=k+1

∑

W∈pwd(Rp)
ti∈W,|W |=j

α(ti, W )Pr(W )

=

k
∑

j=1

∑

W∈pwd(Rp)
ti∈W,|W |=j

Pr(W ) +

m
∑

j=k+1

k

j

∑

W∈pwd(Rp)
ti∈W,|W |=j

Pr(W )

With out loss of generality, assumei = m, then the above equation becomes

PRp

k,s (tm) =

k
∑

j=1

∑

W∈pwd(Rp)
tm∈W,|W |=j

Pr(W ) +

m
∑

j=k+1

k

j

∑

W∈pwd(Rp)
tm∈W,|W |=j

Pr(W )

= p(ti)(

k
∑

j=1

T Rp

j−1,[m−1] +

m
∑

j=k+1

k

j
T Rp

j−1,[m−1]) (5)

By Remark 1, everyT Rp

j−1,[m−1] can be computed using the DP table computing
Global-Topk probabilities inRp under an order preserving injective scoring function
s′. Therefore, Equation 5 can be computed using Remark 1.

Based on Remark 1 and Remark 2, we design Algorithm 5 and proveits correctness
in Theorem 4 using Proposition 4.

AssumeRp = 〈R, p, C〉 whereR = {t1, t2, . . . , tn} andt1 �s t2 �s . . . �s tn.
For anytl ∈ R, il is the largest index such thattil

≻s tl, andjl is the largest index such
thattjl

�s tl.
Intuitively, Algorithm 5 and Proposition 4 convey the idea that, in a simple proba-

bilistic relation, the computation of Global-Topk under theEqualallocation policy can
be simulated by the following procedure:

(S1) Independently flip a biased coin with probabilityp(tj) for each tupletj ∈ R =
{t1, t2, . . . , tn}, which gives us a possible worldW ∈ pwd(Rp);

(S2) Return a top-k answer setS of W nondeterministically (with equal probability
in the presence of multiple top-k sets). The Global-Topk probability of tl is the
probability thattl ∈ S.

The above Step (S1) can be further refined into:
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(S1.1) Independently flip a biased coin with probabilityp(tj) for each tupletj ∈ RA =
{t1, t2 . . . , til

}, which gives us a collection of tuplesWA;

(S1.2) Independently flip a biased coin with probabilityp(tj) for each tupletj ∈ RB =
{til+1, . . . , tn}, which gives us a collection of tuplesWB . W = WA ∪ WB is a
possible world frompwd(Rp);

In order fortl to be inS, WA can have at mostk − 1 tuples. Let|WA| = k′, then
k′ < k. Every top-k answer setS of W contains allk′ tuples fromWA, plus the top-
(k − k′) tuples fromWB. For tl to be inS, it has to be in the top-(k − k′) set ofWB.
Consequently, the probability oftl ∈ S, i.e. the Global-Topk probability of tl, is the
joint probability that|WA| = k′ < k andtl belongs to the top-(k − k′) set ofWB . The

former isTk′,[il] and the latter isP
Rp

B

k−k′,s(tl) , whereRp
B is Rp restricted toRB. Again,

due to the independence among tuples, Step (S1.1) and Step (S1.2) are independent,
and their joint probability is simply the product of the two.

Further notice that sincetl has the highest score inRB and all tuples are inde-
pendent inRB, any tuple with score lower than that oftl does not have influence on

P
Rp

B

k−k′,s(tl). In other words,P
Rp

B

k−k′,s(tl) = P
Rp

s(tl)
k−k′,s(tl), whereRp

s(tl) is Rp restricted to

all tuples tying withtl in R. Notice that the computation ofPRp
s(tl)

k−k′,s(tl) is the extreme
case addressed in Remark 2.

Algorithm 5 elaborates the algorithm based on the idea above, wherem = jl − il is
the number of tuples tying withtl (includingtl).

Furthermore, Algorithm 5 exploits the overlapping among DPtables and makes the
following two optimizations:

1. Use a single DP table to collect the information needed to compute allTk′,[il],
k′ = 0, . . . , k − 1, l = 1, . . . , n andk′ ≤ il (Line 2).

Notice that for1 ≤ l ≤ n, 1 ≤ il ≤ n − 1. It is easy to see that the DP table
computingTk−1,[n−1] subsumes all other DP tables.

2. Use a single DP table to compute allP
Rp

s(tl)
k−k′,s(tl), k′ = 0, . . . , k − 1, for a tupletl

(Line 8-18).

For differentk′, the computation ofPRp
s(tl)

k−k′,s(tl) requires the computation of the

same set ofT Rp
s(tl)

j,[m−1]. In Line 8-18,PRp
s(tl)

k−k′,s(tl) is abbreviated asPl(k − k′) to
emphasize the changing parameterk′.

Each DP table computation uses a call to Algorithm 2 (Line 2 inAlgorithm 5, Line
3 in Algorithm 6).
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Algorithm 5 (Ind Topk Gen)Evaluate Global-Topk Queries in a Simple Probabilistic
Relation under a General Scoring Function
Require: Rp = 〈R, p, C〉, k
Ensure: tuples inR are sorted in the non-increasing order based ons

1: Initialize a fixed cardinality(k + 1) priority queueAns of 〈t, prob〉 pairs, which compares
pairs onprob, i.e. the Global-Topk probability oft;

2: Get the DP table for computingTk′,[i], k
′ = 0, . . . k − 1, i = 1, . . . , n − 1, k′ ≤ i using

Algorithm 2, i.e.
q(0 . . . k, 1 . . . |R|) = Ind Topk Sub(Rp

, k);

3: for l = 1 to |R| do
4: m = jl − il;
5: if m == 1 then
6: Add 〈tl, q(k, l)〉 to Ans;
7: else
8: Get the DP table for computingP

Rp
s(tl)

k−k′,s
(tl), i.e.Pl(k − k′), k′ = 0, . . . , k − 1

qtie(0 . . . m, 1 . . . m) = Ind Topk GenSub(Rp
s(tl), tl, m);

9: Pl(0 . . . max(m, k)) = 0;
10: for k′′ = 1 to min(k, m) do
11: Pl(k

′′) = Pl(k
′′ − 1) + qtie(k

′′, m);
12: end for
13: for k′′ = k + 1 to m do

14: Pl(k
′′) = Pl(k

′′ − 1) +
k

k′′
qtie(k

′′, m);

15: end for
16: for k′′ = m + 1 to k do
17: Pl(k

′′) = p(tl);
18: end for
19: P Rp

k,s (tl) = 0;
20: for k′ = 0 to k − 1 do
21:

Tk′,[il] =
q(k′ + 1, il + 1) − q(k′, il + 1)

p(til+1)
;

22:
P

Rp

k,s (tl) = P
Rp

k,s (tl) + Tk′,[il] · Pl(k − k
′);

23: end for
24: Add〈tl, P

Rp

k,s (tl)〉 to Ans;
25: end if
26: if |Ans| > k then
27: remove the pair with the smallestprob value fromAns;
28: end if
29: end for
30: return {ti|〈ti, prob〉 ∈ Ans};
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Algorithm 6 (Ind Topk Gen Sub) Compute the DP table for Global-Topk probabili-
ties in a Simple Probabilistic Relation under an All-Tie Scoring Function
Require: Rp

s(ttarget) = 〈R, p,C〉, ttarget, m

Ensure: |R| = m, ttarget ∈ R

1: Rearrange tuples inR such thatR = {t1, . . . , tm−1, tm} andtm = ttarget;
2: Assume the injective scoring functions′ is such thatt1 ≻s′ . . . ≻s′ tm−1 ≻s′ ttarget;
3: Get the DP table

qtie(0 . . . m, 1 . . . m) = Ind Topk Sub(Rp
s(ttarget), m);

4: return qtie(0 . . . m, 1 . . . m);

Proposition 4. Let Rp = 〈R, p, C〉 be a simple probabilistic relation whereR =
{t1, . . . , tn}, t1 �s t2 �s . . . �s tn, k a non-negative integer ands a scoring function.
For everytl ∈ R, the Global-Topk probability of tl can be computed by the following
equation:

PRp

k,s (tl) =

k−1
∑

k′=0

Tk′,[il] · P
Rp

s(tl)
k−k′,s(tl) (6)

whereRp
s(tl) is Rp restricted to{t ∈ R|t ∼s tl}.

Proof. SeeAppendix.

Theorem 4 (Correctness of Algorithm 5).Given a probabilistic relationRp = 〈R, p,
C〉, a non-negative integerk and a general scoring functions, Algorithm 5 correctly
computes a Global-Topk answer set ofRp under the scoring functions.

Proof. In Algorithm 5, by Remark 1, Line 2 and Line 9 correctly computesTk′,[i] for
0 ≤ k′ ≤ k − 1, 1 ≤ i ≤ n − 1, k′ ≤ i. In Line 8, each entryqtie(k

′′, m) =

p(tl)T
Rp

s(tl)

k′′−1,[m−1], 1 ≤ k′′ ≤ m. By Remark 2, Line 8 collects the information for

computingPRp
s(tl)

k−k′,s(tl), 1 ≤ k−k′ ≤ m. Line 9-15 correctly compute those cases based

on the definition. Ifm < k− k′ ≤ k, then it is trivial thatPRp
s(tl)

k−k′,s(tl) = p(tl) (Line 16-
18). By Proposition 4, Line 19-23 correctly computes the Global-Topk probability oftl.
Also notice that in Line 6, the Global-Topk probability of a tuple without tying tuples is
retrieved directly. It is an optimization as the code handling the general case (i.e.m >
1, Line 7-24) works for this special case as well. Again, the top-level structure with
the priority queue in Algorithm 5 ensures that a Global-Topk answer set is correctly
computed.

In Algorithm 5, Line 2 takesO(kn), and for each tuple, there is one call to Algo-
rithm 6 in Line 8, which takesO(m2

max), wheremmax is the maximal number of tying
tuples. Therefore, Algorithm 5 takesO(n max(k, m2

max)) altogether.
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5.3 Query Evaluation in General Probabilistic Relations

Recall that under an injective scoring function, every tuple t in a general probabilistic
relationRp = 〈R, p, C〉 induces asimpleevent relationEp, and we reduce the com-
putation oft’s Global-Topk probability inRp to the computation oftet

’s Global-Topk
probability inEp.

In the case of general scoring functions, we use the same reduction idea. However,
now for each partCi ∈ C, Ci 6= Cid(t), tuple t induces inEp two exclusivetuples
teCi,≻

andteCi,∼
, corresponding to theeventeCi,≻ that “some tuple from the partCi

has the scorehigher thanthat of t” and theeventeCi,∼ that “some tuple from the part
Ci has the scoreequal tothat oft”, respectively. In addition, in Definition 11, we allow
the existence of tuples with probability0, in order to simplify the description of query
evaluation algorithms. This is an artifact whose purpose will become clear in Theorem
5.

Definition 11 (Induced Event Relation under General ScoringFunctions). Given
a probabilistic relationRp = 〈R, p, C〉, a scoring functions over Rp and a tuple
t ∈ Cid(t) ∈ C, the event relation induced byt, denoted byEp = 〈E, pE , CE〉, is a
probabilistic relation whose support relationE has only one attribute,Event. The re-
lation E and the probability functionpE are defined by the following four generation
rules and the postprocess step:

– Rule 1.1: tet,∼
∈ E andpE(tet,∼

) = p(t);
– Rule 1.2: tet,≻

∈ E andpE(tet,≻
) = 0;

– Rule 2.1:

∀Ci ∈ C ∧ Ci 6= Cid(t).(teCi,≻
∈ E) andpE(teCi

,≻) =
∑

t′∈Ci

t′≻st

p(t′);

– Rule 2.2:

∀Ci ∈ C ∧ Ci 6= Cid(t).(teCi,∼
∈ E) andpE(teCi

,∼) =
∑

t′∈Ci

t′∼st

p(t′).

Postprocess step: only whenpE(teCi
,≻) and pE(teCi

,∼) are both0, delete both
tupleteCi

,≻ andteCi
,∼.

Proposition 5. Given a probabilistic relationRp = 〈R, p, C〉 and a scoring functions,
for anyt ∈ Rp, the Global-Topk probability oft equals the Global-Topk probability of
tet,∼ when evaluating top-k in the induced event relationEp = 〈E, pE , CE〉 under the
scoring functionsE : E → R, sE(tet

) = 1
2 , sE(tet,∼) = 1

2 andsE(teCi,≻
) = i:

PRp

k,s (t) = PEp

k,sE (tet,∼).

Proof. SeeAppendix.
Notice that the induced event relationEp in Definition 11, unlike its counterpart

under an injective scoring function, is not simple. Therefore, we cannot utilize the al-
gorithm in Proposition 4. Rather, the induced relationEp is a special general prob-
abilistic relation, where each part of the partition containsexactlytwo tuples. For this
special general probabilistic relation, the recursion in Theorem 5 (Equation 7,8) collects
enough information to compute the Global-Topk probability of tet,∼ in Ep (Equation
9).
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Definition 12 (Secondary Induced Event Relations).Let Ep = 〈E, pE , CE〉 be the
event relation induced by tuplet under a general scoring functions. Without loss of
generality, assume

E = {teC1,≻
, teC1,∼

, . . . , teCm−1,≻
, teCm−1,∼

, tet,≻
, tet,∼

}

we can splitE into two non-overlapping subsetsE≻ andE∼ such that

E≻ = {teC1,≻
, . . . , teCm−1,≻

, tet,≻
}

E∼ = {teC1,∼
, . . . , teCm−1,∼

, tet,∼
}

The twosecondary induced event relationEp
≻ andEp

∼ areEp restricted toEp
≻ and

Ep
∼ respectively. They are both mutually related and simple probabilistic relations. For

every1 ≤ i ≤ m − 1, tupleti,≻ (ti,∼ resp.) refers toteCi,≻
(teCi,∼

resp.). The tuple
tm,≻ (tm,∼ resp.) refers totet,≻

(tet,∼
resp.).

In spirit, the recursion in Theorem 5 is close to the recursion in Proposition 1, even
though they are not computing the same measure. The following table does a compari-
son between the measureq in Proposition 1 and the measureu in Theorem 5:

Measure =
∑

Pr(W )
|{tj|tj ∈ W,
j ≤ i, tj ∼s t}|

q(k, i)
(1) W containsti
(2) W hasno more thank tuples from{t1, t2, . . . , ti}

-

u≻/∼(k, i, b)
(1) W containsti
(2) W hasexactlyk tuples from{t1, t2, . . . , ti}

b

Under the general scoring functionsE , a possible world of an induced relationEp

may partially contribute to tupletm,∼’s Global-Topk probability. The allocation coeffi-
cient depends on the combination of two factors: the number of tuples that are strictly
better thantm,∼ and the number of tuples tying withtm,∼. Therefore, in the new mea-
sureu, first, we add one more dimension to keep track ofb, i.e. the number of tying
tuples of a subscript no more thani in a world. Second, we keep track of distinct(k, b)
pairs. Furthermore, the recursion on measureu differentiates between two cases: a non-
tying tuple (handled byu≻) and a tying tuple (handled byu∼), since those two types of
tuples have different influence on the values ofk andb.

Formally, letu≻(k′, i, b) (u∼(k′, i, b) resp.) be the sum of the probabilities of all the
possible worldsW of Ep such that

1. ti,≻ ∈ W (ti,∼ ∈ W resp.)
2. i is thek′th smallest tuple subscript in worldW
3. the worldW containsb tuples fromEp

∼ with subscript less than or equal toi.

Equation 7,8 resemble Equation 3, except that now, since we introduce tuples with
probability0 to ensure that each part ofCE has exactly two tuples, we need to address
the special cases when divisor can be zero. Notice that, for any i, 1 ≤ i ≤ m, at least
one ofpE(ti,≻) andpE(ti,∼) is non-zero, otherwise, they are not inEp by definition.
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Theorem 5. Given a probabilistic relationRp = 〈R, p, C〉, a scoring functions, t ∈
Rp, and its induced event relationEp = 〈E, pE , CE〉, where|E| = 2m, the following
recursion onu≻(k′, i, b) andu∼(k′, i, b) holds, wherebmax is the number of tuples with
positive probability inEp

∼.
Wheni = 1, 0 ≤ k′ ≤ m and0 ≤ b ≤ bmax,

u≻(k′, 1, b) =

{

pE(t1,≻) k′ = 1, b = 0
0 otherwise

u∼(k′, 1, b) =

{

pE(t1,∼) k′ = 1, b = 1
0 otherwise

For everyi, 2 ≤ i < m, 0 ≤ k′ ≤ m and0 ≤ b ≤ bmax,

u≻(k′, i, b) =







































































0 k′ = 0

(u≻(k′, i − 1, b)
1 − pE(ti−1,≻) − pE(ti−1,∼)

pE(ti−1,≻)
1 ≤ k′ ≤ m

+ u≻(k′ − 1, i − 1, b) andpE(ti−1,≻) > 0
+ u∼(k′ − 1, i − 1, b))pE(ti,≻)

(u∼(k′, i − 1, b + 1)
1 − pE(ti−1,≻) − pE(ti−1,∼)

pE(ti−1,∼)
b < bmax

+ u≻(k′ − 1, i − 1, b) and1 ≤ k′ ≤ m
+ u∼(k′ − 1, i − 1, b))pE(ti,≻) andpE(ti−1,≻) = 0

(u≻(k′ − 1, i − 1, b) otherwise
+ u∼(k′ − 1, i − 1, b))pE(ti,≻)

(7)

u∼(k′, i, b) =























































0 k′ = 0 or b = 0

(u∼(k′, i − 1, b)
1 − pE(ti−1,≻) − pE(ti−1,∼)

pE(ti−1,∼)
b > 0

+ u≻(k′ − 1, i − 1, b − 1) and1 ≤ k′ ≤ m
+ u∼(k′ − 1, i − 1, b − 1))pE(ti,∼) andpE(ti−1,∼) > 0

(u≻(k′, i − 1, b − 1)
1 − pE(ti−1,≻) − pE(ti−1,∼)

pE(ti−1,≻)
otherwise

+ u≻(k′ − 1, i − 1, b − 1)
+ u∼(k′ − 1, i − 1, b − 1))pE(ti,∼)

(8)
The Global-Topk probability of tet,∼ in Ep under the scoring functionsE can be

computed by the following equation:

PEp

k,sE (tet,∼) = PEp

k,sE (tm,∼)

=

bmax
∑

b=1

(

k
∑

k′=1

u∼(k′, m, b) +

k+b−1
∑

k′=k+1

k − (k′ − b)

b
u∼(k′, m, b)) (9)
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Proof. SeeAppendix.

Recall that we design Algorithm 1 based on the recursion in Proposition 1. Simi-
larly, a DP algorithm based on the mutual recursion in Theorem 5 is available. We are
going skip the details. Instead, we show how the algorithm works using the following
example.

The complexity of the recursion in Theorem 5 determines the complexity of the al-
gorithm. It takesO(bmaxn

2) for one tuple, andO(mmaxn
3) for computing alln tuples.

Recall thatmmax is the maximal number of tying tuples inR. Again, the priority queue
takesO(n log k). Altogether, the algorithm takesO(mmaxn

3) time.

Example 7.When evaluating a top-2 query inRp = 〈R, p, C〉, consider a tuplet ∈ R
and its induced event relationEp = 〈E, pE , CE〉

E≻ teC1,≻
teC2,≻

teC3,≻
tet,≻

(t1) (t3) (t5) (t7)
pE 0.6 0.5 0.2 0

E∼ teC1 ,∼
teC2,∼

teC3,∼
tet,∼

(t2) (t4) (t6) (t8)
pE 0 0.25 0.6 0.4

In order to compute the Global-Topk probability of t8 (i.e. tet,∼) in Ep, Theorem 5
leads to the following DP tables, each for a distinct combination of a b value and a
secondary induced relation, wherebmax = 3.

(b = 0, Ep
≻)

k\t t1 t3 t5 t7
0 0 0 0 0
1 0.6 0.2 0.02 0
2 0 0.3 0.07 0
3 0 0 0.06 0
4 0 0 0 0

(b = 0, Ep
∼)

k\t t2 t4 t6 t8
0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0

(b = 1, Ep
≻)

k\t t1 t3 t5 t7
0 0 0 0 0
1 0 0 0 0
2 0 0 0.02 0
3 0 0 0.03 0
4 0 0 0 0

(b = 1, Ep
∼)

k\t t2 t4 t6 t8
0 0 0 0 0
1 0 0.1 0.06 0.008
2 0 0.15 0.21 0.036
3 0 0 0.18 0.052
4 0 0 0 0.024

(b = 2, Ep
≻)

k\t t1 t3 t5 t7
0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0

(b = 2, Ep
∼)

k\t t2 t4 t6 t8
0 0 0 0 0
1 0 0 0 0
2 0 0 0.06 0.032
3 0 0 0.09 0.104
4 0 0 0 0.084
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(b = 3, Ep
≻)

k\t t1 t3 t5 t7
0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0

(b = 3, Ep
∼)

k\t t2 t4 t6 t8
0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0.024
4 0 0 0 0.036

The computation of each entry follows the mutual recursion in Theorem 5, for example,

u≻(2, 5, 0) = (u≻(1, 3, 0) + u∼(1, 4, 0) + u≻(2, 3, 0)
1 − pE(t3) − pE(t4)

pE(t3)
)pE(t5)

= (0.2 + 0 + 0.3
1 − 0.5 − 0.25

0.5
)0.2

= 0.07

u∼(2, 6, 1) = (u≻(1, 3, 0) + u∼(1, 4, 0) + u∼(2, 4, 1)
1 − pE(t3) − pE(t4)

pE(t3)
)pE(t6)

= (0.2 + 0 + 0.15
1 − 0.5 − 0.25

0.25
)0.6

= 0.21

Finally, under the scoring functionsE defined in Proposition 5

PEp

k,sE (tet,∼) = PEp

2,sE (t8)

=

3
∑

b=1

(

2
∑

k′=1

u∼(k′, 8, b) +

2+b−1
∑

k′=2+1

2 − (k′ − b)

b
u∼(k′, 8, b))

= u∼(1, 8, 1) + u∼(2, 8, 1)

+u∼(1, 8, 2) + u∼(2, 8, 2) +
1

2
u∼(3, 8, 2)

+u∼(2, 8, 3) + u∼(2, 8, 3) +
2

3
u∼(3, 8, 3) +

1

3
u∼(3, 8, 4)

= 0.156

6 Conclusion

We study the semantic and computational problems for top-k queries in probabilistic
databases. We propose three desired postulates for a top-k semantics and discuss their
satisfaction by all the semantics in the literature. Those postulates are our first step to
benchmark different semantics. From the postulates, it is inconclusive that a single se-
mantics is overwhelmingly better. We deem that the choice ofthe semantics should be
guided by the application, which in turn, supports our efforts to explore postulates in
order to create a profile of each semantics. Our Global-Topk semantics satisfies those
postulates to a large degree. We study the computational problem of query evaluation
under Global-Topk semantics for simple and general probabilistic relations when the
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scoring function is injective. For the former, we propose a dynamic programming al-
gorithm and effectively optimize it with Threshold Algorithm. For the latter, we show
a polynomial reduction to the simple case. Furthermore, we extend our Global-Topk
semantics to general scoring functions and introduce the concept of allocation policy to
handle ties in score. To the best of our knowledge, this is thefirst attempt to address the
tie problem rigorously. Previous work either does not consider ties or uses an arbitrary
tie-breaking mechanism. Advanced dynamic programming algorithms are proposed for
query evaluation under general scoring functions for both simple and general proba-
bilistic relations.

For completeness, we list in Table 2 the complexity of the best known algorithm for
each semantics in the literature. Since no other work address general scoring functions
in a systematical way, those results are restricted to injective scoring functions.

Semantics Simple Probabilistic DBGeneral Probabilistic DB
Global-Topk O(kn) O(kn2)
PT-k O(kn) O(kn2)
U-Topk O(n log k) O(n log k)
U-kRanks O(kn) O(kn2)

Table 2.Time Complexity of Different Semantics

7 Future Work

So far, almost unanimously, only independent and exclusiverelationship among tuples
are considered in the literature [21, 23, 25]. It will be interesting to investigate other
complex relationships between tuples. Other possible directions include top-k evalua-
tion in other uncertain database models proposed in the literature [13] and more general
preference queries in probabilistic databases.
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9 Appendix

9.1 Proofs of Semantic Postulates

Semantics Exactk FaithfulnessStability
†Global-Topk X(1) X/× (5) X(9)
PT-k × (2) X/× (6) X(10)
U-Topk × (3) X/× (7) X(11)
U-kRanks × (4) × (8) × (12)
† Postulates of Global-Topk semantics are

proved under general scoring functions with
Equalallocation policy.

Table 3. Postulate Satisfaction for Different
Semantics in Table 1

Proof. The following proofs correspond to the numbers next to each entry in the above
table.

Assume that we are given a probabilistic relationRp = 〈R, p, C〉, a non-negative
integerk and an injective scoring functions.

(1) Global-Topk satisfiesExactk.
We compute the Global-Topk probability for each tuple inR. If there is at leastk
tuples inR, we are always able to pick thek tuples with the highest Global-Topk
probability. In case when there are more thank− r+1 tuple(s) with therth highest
Global-Topk probability, wherer = 1, 2 . . . , k, only k − r + 1 of them will be
picked nondeterministically.

(2) PT-k violatesExactk
Example 4 illustrates a counterexample in a simple probabilistic relation.

(3) U-Topk violatesExactk.
Example 4 illustrates a counterexample in a simple probabilistic relation.

(4) U-kRanks violatesExactk.
Example 4 illustrates a counterexample in a simple probabilistic relation.

(5) Global-Topk satisfiesFaithfulnessin simple probabilistic relations while it violates
Faithfulnessin general probabilistic relations.
Simple Probabilistic Relations
Proof. By the assumption,t1 ≻s t2 andp(t1) > p(t2), so we need to show that
Pk,s(t1) > Pk,s(t2).
For everyW ∈ pwd(Rp) such thatt2 ∈ allk,s(W ) andt1 6∈ allk,s(W ), obviously
t1 6∈ W . Otherwise, sincet1 ≻s t2, t1 would be inallk,s(W ). Since all tuples
are independent, there is always a worldW ′ ∈ pwd(Rp), W ′ = (W\{t2}) ∪

{t1} andPr(W ′) = Pr(W )p(t1)p̄(t2)
p̄(t1)p(t2)

. Sincep(t1) > p(t2), Pr(W ′) > Pr(W ).
Moreover,t1 will substitute fort2 in the top-k answer toW ′. It is easy to see that
α(t1, W

′) = 1 in W ′ and also in any worldW such that botht1 and t2 are in
allk,s(W ), α(t1, W ) = 1.
Therefore, for the Global-Topk probability oft1 andt2, we have
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Pk,s(t2) =
∑

W∈pwd(Rp)
t1∈allk,s(W )
t2∈allk,s(W )

α(t2, W )Pr(W ) +
∑

W∈pwd(Rp)
t1 6∈allk,s(W )
t2∈allk,s(W )

α(t2, W )Pr(W )

<
∑

W∈pwd(Rp)
t1∈allk,s(W )
t2∈allk,s(W )

Pr(W ) +
∑

W ′∈pwd(Rp)
t1∈allk,s(W ′)

t2 6∈W ′

Pr(W ′)

=
∑

W∈pwd(Rp)
t1∈allk,s(W )
t2∈allk,s(W )

α(t1, W )Pr(W ) +
∑

W ′∈pwd(Rp)
t1∈allk,s(W ′)

t2 6∈W ′

α(t1, W
′)Pr(W ′)

≤
∑

W∈pwd(Rp)
t1∈allk,s(W )
t2∈allk,s(W )

α(t1, W )Pr(W ) +
∑

W ′∈pwd(Rp)
t1∈allk,s(W ′)

t2 6∈W ′

α(t1, W
′)Pr(W ′)

+
∑

W ′′∈pwd(Rp)
t1∈allk,s(W ′′)

t2∈W ′′

t2 6∈allk,s(W ′′)

α(t1, W
′′)Pr(W ′′)

= Pk,s(t1).

The equality in≤ holds whens(t2) is among thek highest scores and there are at
mostk tuples (includingt2) with higher or equal scores. Since there is at least one
inequality in the above equation, we have

Pk,s(t1) > Pk,s(t2).

General Probabilistic Relations
The following is a counterexample.
Sayk = 1, R = {t1, . . . , t9}, t1 ≻s . . . ≻s t9, {t1, . . . , t7, t9} are exclusive.
p(ti) = 0.1, i = 1 . . . 7, p(t8) = 0.4, p(t9) = 0.3.
By Global-Topk, the top-1 answer is{t9}, while t8 ≻s t9 andp(t8) > p(t9), which
violatesFaithfulness.

(6) PT-k satisfiesFaithfulnessin simple probabilistic relations while it violatesFaith-
fulnessin general probabilistic relations.
For simple probabilistic relations, we can use the same proof in (5) to show that PT-
k satisfiesFaithfulness. The only change would be that we need to showPk,s(t1) >
pτ as well. SincePk,s(t2) > pτ andPk,s(t1) > Pk,s(t2), this is obviously true.
For general probabilistic relations, we can use the same counterexample in (5) and
set thresholdpτ = 0.15.

(7) U-Topk satisfiesFaithfulnessin simple probabilistic relations while it violatesFaith-
fulnessin general probabilistic relations.
Simple Probabilistic Relations
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Proof. By contradiction. If U-Topk violatesFaithfulnessin a simple probabilistic
relation, there existsRp = 〈R, p, C〉 and existsti, tj ∈ R, ti ≻s tj , p(ti) > p(tj),
and by U-Topk, tj is in the top-k answer toRp under the scoring functions while
ti is not.
S is a top-k answer toRp under the functions by the U-Topk semantics,tj ∈ S
andti 6∈ S. Denote byQk,s(S) the probability ofS under the U-Topk semantics.
That is,

Qk,s(S) =
∑

W∈pwd(Rp)
S=topk,s(W )

Pr(W ).

For any worldW contributing toQk,s(S), ti 6∈ W . Otherwise, sinceti ≻s tj ,
ti would be intopk,s(W ), which isS. Define a worldW ′ = (W\{tj}) ∪ {ti}.
Sinceti is independent of any other tuple inR, W ′ ∈ pwd(Rp) andPr(W ′) =

Pr(W )
p(ti)p̄(tj)
p̄(ti)p(tj)

. Moreover,topk,s(W
′) = (S\{tj}) ∪ {ti}. Let S′ = (S\{tj}) ∪

{ti}, thenW ′ contributes toQk,s(S
′).

Qk,s(S
′) =

∑

W∈pwd(Rp)
S′=topk,s(W )

Pr(W )

≥
∑

W∈pwd(Rp)
S=topk,s(W )

Pr((W\{tj}) ∪ {ti})

=
∑

W∈pwd(Rp)
S=topk,s(W )

Pr(W )
p(ti)p̄(tj)

p̄(ti)p(tj)

=
p(ti)p̄(tj)

p̄(ti)p(tj)

∑

W∈pwd(Rp)
S=topk,s(W )

Pr(W )

=
p(ti)p̄(tj)

p̄(ti)p(tj)
Qk,s(S)

> Qk,s(S),

which is a contradiction.
General Probabilistic Relations
The following is a counterexample.
Sayk = 2, R = {t1, t2, t3, t4}, t1 ≻s t2 ≻s t3 ≻s t4, t1 andt2 are exclusive,t3
andt4 are exclusive.p(t1) = 0.5, p(t2) = 0.45, p(t3) = 0.4, p(t4) = 0.3.
By U-Topk, the top-2 answer is{t1, t3}, while t2 ≻s t3 andp(t2) > p(t3), which
violatesFaithfulness.

(8) U-kRanks violatesFaithfulness.
The following is a counterexample.
Sayk = 2, Rp is simple.R = {t1, t2, t3}, t1 ≻s t2 ≻s t3, p(t1) = 0.48, p(t2) =
0.8, p(t3) = 0.78.
The probabilities of each tuple at each rank are as follows:
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t1 t2 t3
rank 1 0.48 0.416 0.08112
rank 2 0 0.384 0.39936
rank 3 0 0 0.29952

By U-kRanks, the top-2 answer set is{t1, t3} while t2 ≻ t3 andp(t2) > p(t3),
which contradictsFaithfulness.

(9) Global-Topk satisfiesStability.

Proof. In the rest of this proof, letA be the set of all winners under the Global-
Topk semantics.

Part I : Probability.

Case 1:Winners.

For any winnert ∈ A, if we only raise the probability oft, we have a new
probabilistic relation(Rp)′ = 〈R, p′, C〉, where the new probability functionp′

is such thatp′(t) > p(t) and for anyt′ ∈ R, t′ 6= t, p′(t′) = p(t′). Note that
pwd(Rp) = pwd((Rp)′). In addition, assumet ∈ Ct, whereCt ∈ C. By Global-
Topk,

PRp

k,s (t) =
∑

W∈pwd(Rp)
t∈allk,s(W )

α(t, W )Pr(W )

and

P
(Rp)′

k,s (t) =
∑

W∈pwd(Rp)
t∈allk,s(W )

α(t, W )Pr(W )
p′(t)

p(t)

=
p′(t)

p(t)
PRp

k,s (t).

For any other tuplet′ ∈ R, t′ 6= t, we have the following equation:
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P
(Rp)′

k,s (t′) =
∑

W∈pwd(Rp)
t′∈allk,s(W ),t∈W

α(t′, W )Pr(W )
p′(t)

p(t)

+
∑

W∈pwd(Rp)
t′∈allk,s(W ), t6∈W
(Ct\{t})∩W=∅

α(t′, W )Pr(W )
c − p′(t)

c − p(t)

+
∑

W∈pwd(Rp)
t′∈allk,s(W ), t6∈W
(Ct\{t})∩W 6=∅

α(t′, W )Pr(W )

≤
p′(t)

p(t)
(

∑

W∈pwd(Rp)
t′∈allk,s(W )
t∈W

α(t′, W )Pr(W )

+
∑

W∈pwd(Rp)
t′∈allk,s(W ), t6∈W
(Ct\{t})∩W=∅

α(t′, W )Pr(W )

+
∑

W∈pwd(Rp)
t′∈allk,s(W ), t6∈W
(Ct\{t})∩W 6=∅

α(t′, W )Pr(W ))

=
p′(t)

p(t)
PRp

k,s (t′),

wherec = 1 −
∑

t′′∈Ct\{t} p(t′′).
Now we can see that,t’s Global-Topk probability in(Rp)′ will be raised toexactly
p′(t)
p(t) times of that inRp under the same weak order scoring functions, and for any
tuple other thant, its Global-Topk probability in(Rp)′ can be raised toas much as
p′(t)
p(t) times of that inRp under the same scoring functions. As a result,P (Rp)′

k,s (t)

is still among the highestk Global-Topk probabilities in(Rp)′ under the function
s, and therefore still a winner.
Case 2:Losers.
This case is similar toCase 1.
Part II : Score.
Case 1:Winners.
For any winnert ∈ A, we evaluateRp under a new general scoring functions′.
Comparing tos, s′ only raises the score oft. That is,s′(t) > s(t) and for any
t′ ∈ R, t′ 6= t, s′(t′) = s(t′). Then, in addition to all the worlds alreadytotally
(i.e. α(t, W ) = 1) or partially (i.e. α(t, W ) < 1) contributing tot’s Global-Topk
probability when evaluatingRp unders, some other worlds may now totally or
partially contribute tot’s Global-Topk probability. Because, under the functions′,
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t might climb high enough to be in the top-k answer set of those worlds. Moreover,
if a possible worldW contributes paritally under scoring functions, it is easy to
see that it contributes totally under scoring functions′.
For any tuplet′′ other thant in R,
(i) If s(t′′) 6= s(t), then its Global-Topk probability under the functions′ either

stays the same (if the “climbing” oft does not knock that tuple out of the top-k
answer in some possible world) or decreases (otherwise);

(ii) If s(t′′) = s(t), then for any possible worldW contributing tot′′’s Global-
Topk under scoring functions, α(t′′, W ) = k−a

b , and now under scoring func-
tion s′, α′(t′′, W ) = k−a−1

b−1 < k−a
b = α(t′′, W ). Therefore the Global-Topk

of t′′ under scoring functions′ is less than that under scoring functions.
Consequently,t is still a winner when evaluatingRp under the functions′.
Case 2:Losers.
This case is similar toCase 1.

(10) PT-k satisfiesStability.
Proof. In the rest of this proof, letA be the set of all winners under the PT-k
semantics.
Part I : Probability.
Case 1:Winners.
For any winnert ∈ A, if we only raise the probability oft, we have a new
probabilistic relation(Rp)′ = 〈R, p′, C〉, where the new probability functionp′

is such thatp′(t) > p(t) and for anyt′ ∈ R, t′ 6= t, p′(t′) = p(t′). Note that
pwd(Rp) = pwd((Rp)′). In addition, assumet ∈ Ct, whereCt ∈ C. The Global-
Topk probability oft is such that

PRp

k,s (t) =
∑

W∈pwd(Rp)
t∈topk,s(W )

Pr(W ) ≥ pτ

and

P
(Rp)′

k,s (t) =
∑

W∈pwd(Rp)
t∈topk,s(W )

Pr(W )
p′(t)

p(t)

=
p′(t)

p(t)
PRp

k,s (t) > PRp

k,s (t) ≥ pτ .

Therefore,P (Rp)′

k,s (t) is still above the thresholdpτ , andt still belongs to the top-k
answer of(Rp)′ under the functions.
Case 2:Losers.
This case is similar toCase 1.
Part II : Score.
Case 1:Winners.
For any winnert ∈ A, we evaluateRp under a new scoring functions′. Comparing
to s, s′ only raises the score oft. Use a similar argument as that in (9) Part II
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Case 1 but under injective scoring functions, we can show that the Global-Topk
probability of t is non-decreasing and is still above the thresholdpτ . Therefore,
tuplet still belongs to the top-k answer under the functions′.
Case 2:Losers.
This case is similar toCase 1.

(11) U-Topk satisfiesStability.
Proof. In the rest of this proof, letA be the set of all winners under U-Topk
semantics.
Part I : Probability.
Case 1:Winners.
For any winnert ∈ A, if we only raise the probability oft, we have a new proba-
bilistic relation(Rp)′ = 〈R, p′, C〉, where the new probabilistic functionp′ is such
thatp′(t) > p(t) and for anyt′ ∈ R, t′ 6= t, p′(t′) = p(t′). In the following dis-
cussion, we use superscript to indicate the probability in the context of(Rp)′. Note
thatpwd(Rp) = pwd((Rp)′).
Recall thatQk,s(At) is the probability of a top-k answer setAt ⊆ A under U-Topk

semantics, wheret ∈ At. Sincet ∈ At, Q′
k,s(At) = Qk,s(At)

p′(t)
p(t) .

For any candidate top-k setB other thanAt, i.e. ∃W ∈ pwd(Rp), topk,s(W ) = B
andB 6= At. By definition,

Qk,s(B) ≤ Qk,s(At).

For any worldW contributing toQk,s(B), its probability either increasep
′(t)

p(t) times
(if t ∈ W ), or stays the same (ift 6∈ W and∃t′ ∈ W, t′ andt are exclusive), or
decreases (otherwise). Therefore,

Q′
k,s(B) ≤ Qk,s(B)

p′(t)

p(t)
.

Altogether,

Q′
k,s(B) ≤ Qk,s(B)

p′(t)

p(t)
≤ Qk,s(At)

p′(t)

p(t)
= Q′

k,s(At).

Therefore,At is still a top-k answer to(Rp)′ under the functions andt ∈ At is
still a winner.
Case 2:Losers.
It is more complicated in the case of losers. We need to show that for any loser
t, if we decrease its probability, no top-k candidate setBt containingt will be a
new top-k answer set under the U-Topk semantics. The procedure is similar to that
in Case 1, except that when we analyze the new probability of any original top-k
answer setAi, we need to differentiate between two cases:
(a) t is exclusive with some tuple inAi;
(b) t is independent of all the tuples inAi.
It is easier with (a), where all the worlds contributing to the probability ofAi do
not containt. In (b), some worlds contributing to the probability ofAi containt,
while others do not. And we calculate the new probability forthose two kinds of
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worlds differently. As we will see shortly, the probabilityof Ai stays unchanged in
either (a) or (b).
For any losert ∈ R, t 6∈ A, by applying the technique used inCase 1, we have a
new probabilistic relation(Rp)′ = 〈R, p′, C〉, where the new probabilistic function
p′ is such thatp′(t) < p(t) and for anyt′ ∈ R, t′ 6= t, p′(t′) = p(t′). Again,
pwd(Rp) = pwd((Rp)′).
For any top-k answer setAi to Rp under the functions, Ai ⊆ A. Denote bySAi

all
the possible worlds contributing toQk,s(Ai). Based on the membership oft, SAi

can be partitioned into two subsetsSt
Ai

andS t̄
Ai

.

SAi
= {W |W ∈ pwd(Rp), topk,s(W ) = Ai};

SAi
= St

Ai
∪ S t̄

Ai
, St

Ai
∩ S t̄

Ai
= ∅,

∀W ∈ St
Ai

, t ∈ W and∀W ∈ S t̄
Ai

, t 6∈ W.

If t is exclusive with some tuple inAi, St
Ai

= ∅. In this case, any worldW ∈ S t̄
Ai

contains one oft’s exclusive tuples, thereforeW ’s probability will not be affected
by the change int’s probability. In this case,

Q′
k,s(Ai) =

∑

W∈pwd(Rp)

W∈St̄
Ai

Pr′(W ) =
∑

W∈pwd(Rp)

W∈St̄
Ai

Pr(W )

= Qk,s(Ai).

Otherwise,t is independent of all the tuples inAi. In this case,

∑

W∈pwd(Rp)

W∈St
Ai

Pr(W )

∑

W∈pwd(Rp)

W∈St̄
Ai

Pr(W )
=

p(t)

1 − p(t)

and

Q′
k,s(Ai) =

∑

W∈pwd(Rp)

W∈St
Ai

Pr(W )
p′(t)

p(t)

+
∑

W∈pwd(Rp)

W∈St̄
Ai

Pr(W )
1 − p′(t)

1 − p(t)

=
∑

W∈pwd(Rp)
W∈SAi

Pr(W )

= Qk,s(Ai).

We can see that in both cases,Q′
k,s(Ai) = Qk,s(Ai).
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Now for any top-k candidate set containingt, sayBt such thatBt 6⊆ A, by defini-
tion, Qk,s(Bt) < Qk,s(Ai). Moreover,

Q′
k,s(Bt) = Qk,s(Bt)

p′(t)

p(t)
< Qk,s(Bt).

Therefore,

Q′
k,s(Bt) < Qk,s(Bt) < Qk,s(Ai) = Q′

k,s(Ai).

Consequently,Bt is still not a top-k answer to(Rp)′ under the functions. Since
no top-k candidate set containingt can be a top-k answer set to(Rp)′ under the
functions, t is still a loser.
Part II : Score.
Again,Ai ⊆ A is a top-k answer set toRp under the functions by U-Topk seman-
tics.
Case 1:Winners.
For any winnert ∈ Ai, we evaluateRp under a new scoring functions′. Comparing
to s, s′ only raises the score oft. That is,s′(t) > s(t) and for anyt′ ∈ R, t′ 6=
t, s′(t′) = s(t′). In some possible world such thatW ∈ pwd(Rp) andtopk,s(W ) 6=
Ai, t might climb high enough to be intopk,s′(W ). DefineT to the set of such top-k
candidate sets.

T = {topk,s′(W )|W ∈ pwd(Rp), t 6∈ topk,s(W ) ∧ t ∈ topk,s′ (W )}.

Only a top-k candidate setBj ∈ T can possibly end up with a probability higher
than that ofAi across all possible worlds, and thus substitute forAi as a new top-k
answer set toRp under the functions′. In that case,t ∈ Bj , sot is still a winner.
Case 2:Losers.
For any losert ∈ R, t 6∈ A. Using a similar technique toCase 1, the new scor-
ing function s′ is such thats′(t) < s(t) and for anyt′ ∈ R, t′ 6= t, s′(t′) =
s(t′). When evaluatingRp under the functions′, for any worldW ∈ pwd(Rp)
such thatt 6∈ topk,s(W ), the score decrease oft will not effect its top-k an-
swer, i.e.topk,s′(W ) = topk,s(W ). For any worldW ∈ pwd(Rp) such that
t ∈ topk,s(W ), t might go down enough to drop out oftopk,s′(W ). In this case,
W will contribute its probability to a top-k candidate set withoutt, instead of
the original one witht. In other words, under the functions′, comparing to the
evaluation under the functions, the probability of a top-k candidate set witht is
non-increasing, while the probability of a top-k candidate set withoutt is non-
decreasing2.
Since any top-k answer set toRp under the functions does not containt, it follows
from the above analysis that any top-k candidate set containingt will not be a top-k
answer set toRp under the new functions′, and thust is still a loser.

2 Here, any subset ofR with cardinality at mostk that is not a top-k candidate set under the
function s is conceptually regarded as a top-k candidate set with probability zero under the
functions.
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(12) U-kRanks violatesStability.
The following is a counterexample.
Sayk = 2, Rp is simple.R = {t1, t2, t3}, t1 ≻s t2 ≻s t3. p(t1) = 0.3, p(t2) =
0.4, p(t3) = 0.3.

t1 t2 t3
rank 1 0.3 0.28 0.126
rank 2 0 0.12 0.138
rank 3 0 0 0.036

By U-kRanks, the top-2 answer set is{t1, t3}.
Now raise the score oft3 such thatt1 ≻s′ t3 ≻s′ t2.

t1 t3 t2
rank 1 0.3 0.21 0.196
rank 2 0 0.09 0.168
rank 3 0 0 0.036

By U-kRanks, the top-2 answer set is{t1, t2}. By raising the score oft3, we actu-
ally turn the winnert3 to a loser, which contradictsStability.

9.2 Proof for Proposition 1

Proposition 1. Given a simple probabilistic relationRp = 〈R, p, C〉 and an injective
scoring functions overRp, if R = {t1, t2, . . . , tn} and t1 ≻s t2 ≻s . . . ≻s tn, the
following recursion on Global-Topk queries holds.

q(k, i) =















0 k = 0
p(ti) 1 ≤ i ≤ k

(q(k, i − 1)
p̄(ti−1)

p(ti−1)
+ q(k − 1, i − 1))p(ti) otherwise

whereq(k, i) = Pk,s(ti) and p̄(ti−1) = 1 − p(ti−1).

Proof. By induction onk andi.

– Base case.
• k = 0

For anyW ∈ pwd(Rp), top0,s(W ) = ∅. Therefore, for anyti ∈ R, the Global-
Topk probability ofti is 0.

• k > 0 andi = 1
t1 has the highest score among all tuples inR. As long as tuplet1 appears in a
possible worldW , it will be in thetopk,s(W ). So the Global-Topk probability
of ti is the probability thatt1 appears in possible worlds, i.e.q(k, 1) = p(t1).

– Inductive step.
Assume the theorem holds for0 ≤ k ≤ k0 and1 ≤ i ≤ i0. For anyW ∈ pwd(Rp),
ti0 ∈ topk0,s(W ) iff ti0 ∈ W and there are at mostk0 − 1 tuples with higher score
in W . Note that any tuple with score lower than the score ofti0 does not have any
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influence onq(k0, i0), because its presence/absence in a possible world will not
affect the presence ofti0 in the top-k answer of that world.
Since all the tuples are independent,

q(k0, i0) = p(ti0 )
∑

W∈pwd(Rp)
|{t|t∈W∧t≻sti0}|<k0

Pr(W ).

(1) q(k0, i0 + 1) is the Global-Topk0 probability of tupleti0+1.

q(k0, i0 + 1) =
∑

W∈pwd(Rp)
ti0+1∈topk0,s(W )

ti0∈topk0,s(W )

Pr(W )

+
∑

W∈pwd(Rp)
ti0+1∈topk0,s(W )

ti0∈W, ti0 6∈topk0,s(W )

Pr(W )

+
∑

W∈pwd(Rp)
ti0+1∈topk0,s(W )
ti0 6∈W

Pr(W ).

For the first part of the left hand side,
∑

W∈pwd(Rp)
ti0+1∈topk0,s(W )

ti0∈topk0−1,s(W )

Pr(W ) = p(ti0+1)q(k0 − 1, i0).

The second part is zero. Sinceti0 ≻s ti0+1, if ti0+1 ∈ topk0,s(W ) andti0 ∈
W , thenti0 ∈ topk0,s(W ).
The third part is the sum of the probabilities of all possibleworlds such that
ti0+1 ∈ W, ti0 6∈ W and there are at mostk0 − 1 tuples with score higher than
the score ofti0 in W . So it is equivalent to

p(ti0+1)p(ti0)
∑

|{t|t∈W∧t≻sti0}|<k0

Pr(W )

= p(ti0+1)p(ti0)
q(k0, i0)

p(ti0)
.

Altogehter, we have

q(k0, i0 + 1)

= p(ti0+1)q(k0 − 1, i0) + p(ti0+1)p(ti0)
q(k0, i0)

p(ti0)

= (q(k0 − 1, i0) + q(k0, i0)
p(ti0)

p(ti0)
)p(ti0+1).
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(2) q(k0 + 1, i0) is the Global-Top(k0 + 1) probability of tupleti0 . Use a similar
argument as above, it can be shown that this case is correctlycomputed by
Equation (3) as well.

9.3 Proof for Theorem 2

Theorem 2 (Correctness of Algorithm 1’).Given a simple probabilistic relationRp =
〈R, p, C〉, a non-negative integerk and an injective scoring functions over Rp, the
above TA-based algorithm correctly finds a top-k answer under Global-Topk semantics.

Proof. In every iteration of Step (2), sayt = ti, for any unseen tuplet, s′ is an injective
scoring function overRp, which only differs froms in the score oft. Under the function
s′, ti ≻s′ t ≻s′ ti+1. If we evaluate the top-k query in Rp unders′ instead ofs,
Pk,s′ (t) = p(t)

p UP . On the other hand, for anyW ∈ pwd(Rp), W contributing to

Pk,s(t) implies thatW contributes toPk,s′ (t), while the reverse is not necessarily true.

So, we havePk,s′ (t) ≥ Pk,s(t). Recall thatp ≥ p(t), thereforeUP ≥ p(t)
p UP =

Pk,s′ (t) ≥ Pk,s(t). The conclusion follows from the correctness of the original TA
algorithm and Algorithm 1.

9.4 Proof for Lemma 1

Lemma 1. LetRp = 〈R, p, C〉 be a probabilistic relation,s an injective scoring func-
tion, t ∈ R, and Ep = 〈E, pE , CE〉 the event relation induced byt. DefineQp =
〈E − {tet

}, pE, CE − {{tet
}}〉. Then, the Global-Topk probability of t satisfies the

following:

PRp

k,s (t) = p(t)
∑

We∈pwd(Qp)
|We|<k

Pr(We).

Proof. Given t ∈ R, k ands, let A be a subset ofpwd(Rp) such thatW ∈ A ⇔ t ∈
topk,s(W ). If we group all the possible worlds inA by the set of parts whose tuple in
W has higher score than the score oft, then we will have the following partition:

A = A1 ∪ A2 ∪ . . . ∪ Aq, Ai ∩ Aj = ∅, i 6= j

and
∀Ai, ∀W1, W2 ∈ Ai, i = 1, 2, . . . , q,
{Cj |∃t′ ∈ W1 ∩ Cj , t

′ ≻s t} = {Cj |∃t′ ∈ W2 ∩ Cj , t
′ ≻s t}.

Moreover, denoteCharParts(Ai) to Ai’s characteristic set of parts.

Now, let B be a subset ofpwd(Qp), such thatWe ∈ B ⇔ |We| < k. There is a
bijectiong : {Ai|Ai ∈ A} → B, mapping each partAi in A to a possible world inB
which contains only tuples corresponding to the parts inAi ’s characteristic set.

g(Ai) = {teCj
|Cj ∈ CharParts(Ai)}.
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The following equation holds from the definition of induced event relation and
Proposition 2.

∑

W∈Ai

Pr(W ) = p(t)
∏

Ci∈CharParts(Ai)

p(teCi
)

∏

Ci∈C−{Cid(t)}
Ci 6∈CharParts(Ai)

(1 − p(teCi
))

= p(t)Pr(g(Ai)).

Therefore,

PRp

k,s (t) =
∑

W∈A

Pr(W ) =

q
∑

i=1

(
∑

W∈Ai

Pr(W ))

=

q
∑

i=1

p(t)Pr(g(Ai)) = p(t)

q
∑

i=1

Pr(g(Ai))

= p(t)
∑

We∈B

Pr(We)

= p(t)(
∑

We∈pwd(Qp)
|We|<k

Pr(We)).

9.5 Proof for Proposition 3

Proposition 3 (Correctness of Algorithm 4).Given a probabilistic relationRp =
〈R, p, C〉 and an injective scoring functions, for anyt ∈ Rp, the Global-Topk prob-
ability of t equals the Global-Topk probability of tet

when evaluating top-k in the in-
duced event relationEp = 〈E, pE , CE〉 under the injective scoring functionsE : E →
R, sE(tet

) = 1
2 andsE(teCi

) = i:

PRp

k,s (t) = PEp

k,sE (tet
).

Proof. Sincetet
has the lowest score undersE , for any We ∈ pwd(Ep), the only

chancetet
∈ topk,sE (We) is when there are at mostk tuples inWe, includingtet

.

∀We ∈ pwd(Ep),
tet

∈ topk,s(We) ⇔ (tet
∈ We ∧ |We| ≤ k).

Therefore,
PEp

k,sE (tet
) =

∑

tet∈We∧|We|≤k

Pr(We).

In the proof of Lemma 1,B contains all the possible worlds having at mostk − 1
tuples fromE − {tet

}. By Proposition 2,

∑

tet∈We∧|We|≤k

Pr(We) = p(t)
∑

W ′
e∈B

Pr(W ′
e).
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By Lemma 1,

p(t)
∑

W ′
e∈B

Pr(W ′
e) = PRp

k,s (t).

Consequently,

PRp

k,s (t) = PEp

k,sE (tet
).

9.6 Proof for Proposition 4

Proposition 4 (Correctness of Algorithm 5).Let Rp = 〈R, p, C〉 be a simple prob-
abilistic relation whereR = {t1, . . . , tn}, t1 �s t2 �s . . . �s tn, k a non-negative
integer ands a scoring function. For everytl ∈ R, the Global-Topk probability of tl
can be computed by the following equation:

PRp

k,s (tl) =

k−1
∑

k′=0

Tk′,[il] · P
Rp

s(tl)
k−k′,s(tl)

whereRp
s(tl) is Rp restricted to{t ∈ R|t ∼s tl}.

Proof. Given a tupletl ∈ R, letRθ be the support relationR restricted to{t ∈ R|t θ tl},
and Rp

θ be Rp restricted toRθ. Similarly, for each possible worldW ∈ pwd(Rp),
Wθ = W ∩ Rθ.

Each possible worldW ∈ pwd(Rp) such thattl ∈ allk,s(W ) contributes
min(1, k−a

b )Pr(W ) to PRp

k,s (tl), wherea = |W≻| andb = |W∼|.
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PRp

k,s (tl) =
∑

W∈pwd(Rp),tl∈W
|W≻|=a,0≤a≤k−1
|W∼|=b,1≤b≤m

min(1,
k − a

b
)Pr(W )

=
k−1
∑

a=0

m
∑

b=1

min(1,
k − a

b
)(

∑

W∈pwd(Rp),tl∈W
|W≻|=a∧|W∼|=b

Pr(W ))

=

k−1
∑

a=0

m
∑

b=1

min(1,
k − a

b
)(

∑

W≻∈pwd(Rp
≻)

|W≻|=a

Pr(W≻)
∑

W�∈pwd(Rp

�
),tl∈W�

|W∼|=b

Pr(W�))

=

k−1
∑

a=0

(
∑

W≻∈pwd(Rp
≻)

|W≻|=a

Pr(W≻)

m
∑

b=1

min(1,
k − a

b
)(

∑

W�∈pwd(Rp

�
),tl∈W�

|W∼|=b

Pr(W�)))

=

k−1
∑

a=0

(Ta,[il]

m
∑

b=1

min(1,
k − a

b
)(

∑

W∼∈pwd(Rp
∼),tl∈W∼

|W∼|=b

Pr(W∼)
∑

W≺∈pwd(Rp
≺)

Pr(W≺)))

=

k−1
∑

a=0

(Ta,[il]

m
∑

b=1

min(1,
k − a

b
)(

∑

W∼∈pwd(Rp
∼),tl∈W∼

|W∼|=b

Pr(W∼)))

=
k−1
∑

a=0

Ta,[il] · P
Rp

s(tl)
k−a,s (tl)

wherem is the number of tying tuples withtl(including), i.e.m = |Rp
s(tl)|.

9.7 Proof for Proposition 5

Proposition 5.Given a probabilistic relationRp = 〈R, p, C〉 and a scoring functions,
for anyt ∈ Rp, the Global-Topk probability oft equals the Global-Topk probability of
tet,∼ when evaluating top-k in the induced event relationEp = 〈E, pE , CE〉 under the
scoring functionsE : E → R, sE(tet

) = 1
2 , sE(tet,∼) = 1

2 andsE(teCi,≻
) = i:

PRp

k,s (t) = PEp

k,sE (tet,∼).

Proof. Similar to what we did in the Proof for Lemma 1. We are trying tocreate a
bijection.

Given t ∈ R, k ands, let A be a subset ofpwd(Rp) such thatW ∈ A ⇔ t ∈
allk,s(W ). If we group all the possible worlds inA by the set of parts whose tuple in
W has score higher than or equal to that oft, then we will have the following partition:

A = A1 ∪ A2 ∪ . . . ∪ Aq, Ai ∩ Aj = ∅, i 6= j
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and
∀Ai, ∀W1, W2 ∈ Ai, i = 1, 2, . . . , q,
{Cj,≻|∃t′ ∈ W1 ∩ Cj , t

′ ≻s t} = {Cj,≻|∃t′ ∈ W2 ∩ Cj , t
′ ≻s t}

and
{Cj,∼|∃t′ ∈ W1 ∩ Cj , t

′ ∼s t} = {Cj,∼|∃t′ ∈ W2 ∩ Cj , t
′ ∼s t}.

Moreover, denoteCharParts(Ai) to Ai’s characteristic set of parts. Note that allW ∈
Ai have the same allocation coefficientα(t, W ), denoted byαi.

Now, let B be a subset ofpwd(Ep), such thatWe ∈ B ⇔ tet,∼ ∈ allk,s(We).
There is a bijectiong : {Ai|Ai ∈ A} → B, mapping each partAi in A to the a possible
world in B which contains only tuples corresponding to parts inAi ’s characteristic set.

g(Ai) = {teCj
,≻|Cj,≻ ∈ CharParts(Ai)} ∪ {teCj

,∼|Cj,∼ ∈ CharParts(Ai)}

Furthermore, the allocation coefficientαi of Ai equals to the allocation coefficient
α(tet,∼, g(Ai)) under the functionsE .

The following equation holds from the definition of induced event relation under
general scoring functions.

∑

W∈Ai

Pr(W ) =
∏

Ci,≻∈CharParts(Ai)

p(teCi
,≻)

∏

Ci,∼∈CharParts(Ai)

p(teCi
,∼)

∏

Ci∈C
Ci,∼ 6∈CharParts(Ai)
Ci,≻ 6∈CharParts(Ai)

(1 − p(teCi
,≻) − p(teCi

,∼))

= Pr(g(Ai)).

Therefore,

PRp

k,s (t) =
∑

W∈A

α(t, W )Pr(W ) =

q
∑

i=1

(αi

∑

W∈Ai

Pr(W ))

=

q
∑

i=1

αiPr(g(Ai)) =

q
∑

i=1

α(tet,∼, g(Ai))Pr(g(Ai))

=
∑

We∈B

α(tet,∼, We)Pr(We) (g is a bijection)

= PEp

k,sE (tet,∼).

9.8 Proof for Theorem 5

Theorem 5.Given a probabilistic relationRp = 〈R, p, C〉, a scoring functions, t ∈ Rp,
and its induced event relationEp = 〈E, pE , CE〉, where|E| = 2m, the following
recursion onu≻(k′, i, b) and u∼(k′, i, b) holds, wherebmax is the number of tuples
with positive probability inEp

∼.
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Wheni = 1, 0 ≤ k′ ≤ m and0 ≤ b ≤ bmax,

u≻(k′, i, b) =







































































0 k′ = 0

(u≻(k′, i − 1, b)
1 − pE(ti−1,≻) − pE(ti−1,∼)

pE(ti−1,≻)
1 ≤ k′ ≤ m

+ u≻(k′ − 1, i − 1, b) andpE(ti−1,≻) > 0
+ u∼(k′ − 1, i − 1, b))pE(ti,≻)

(u∼(k′, i − 1, b + 1)
1 − pE(ti−1,≻) − pE(ti−1,∼)

pE(ti−1,∼)
b < bmax

+ u≻(k′ − 1, i − 1, b) and1 ≤ k′ ≤ m
+ u∼(k′ − 1, i − 1, b))pE(ti,≻) andpE(ti−1,≻) = 0

(u≻(k′ − 1, i − 1, b) otherwise
+ u∼(k′ − 1, i − 1, b))pE(ti,≻)

u∼(k′, i, b) =























































0 k′ = 0 or b = 0

(u∼(k′, i − 1, b)
1 − pE(ti−1,≻) − pE(ti−1,∼)

pE(ti−1,∼)
b > 0

+ u≻(k′ − 1, i − 1, b − 1) and1 ≤ k′ ≤ m
+ u∼(k′ − 1, i − 1, b − 1))pE(ti,∼) andpE(ti−1,∼) > 0

(u≻(k′, i − 1, b − 1)
1 − pE(ti−1,≻) − pE(ti−1,∼)

pE(ti−1,≻)
otherwise

+ u≻(k′ − 1, i − 1, b − 1)
+ u∼(k′ − 1, i − 1, b − 1))pE(ti,∼)

The Global-Topk probability oftet,∼ in Ep under the scoring functionsE can be com-
puted by the following equation:

PEp

k,sE (tet,∼) = PEp

k,sE (tm,∼)

=

bmax
∑

b=1

(

k
∑

k′=1

u∼(k′, m, b) +

k+b−1
∑

k′=k+1

k − (k′ − b)

b
u∼(k′, m, b))

Proof. Equation 9 follows Equation 7 and Equation 8 as it is a simple enumeration
based on Definition 8. We are going to prove Equation 7 and Equation 8 by an induction
on i.

– Base case:i = 1, 0 ≤ k′ ≤ m and0 ≤ b ≤ bmax

Wheni = 1, based on the definition ofu, the only non-zero entries areu≻(1, 1, 0)
andu∼(1, 1, 1). The former is the probability sum of all possible worlds which con-
tain t1,≻ and do not containt1,∼. The second requirement is redundant since those
two tuples are exclusive. Therefore, it is simply the probability of t1,≻. Similarly,
the latter is the probability sum of all possible worlds which containt1,∼ and do
not containt1,≻. Again, it is simply the probability oft1,∼. It is easy to check that
no possible worlds satisfy other combinations ofk′ andb wheni = 1, therefore
their probabilities are0.
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– Inductive step.
Assume the theorem holds fori ≤ i0, 0 ≤ k′ ≤ m and0 ≤ b ≤ bmax.
DenoteE≻,[i] andE∼,[i] to the set of the firsti tuples inE≻ andE∼ respectively.
For anyW ∈ pwd(Ep), by definition,W contributes tou≻/∼(k′, i0, b) iff ti0,≻/∼ ∈
W and |W ∩ (E≻,[i0] ∪ E∼,[i0])| = k′ and |W ∩ E∼,[i0]| = b. SinceE≻,[i0] ∩
E∼,[i0] = ∅, we have:
W contributes tou≻/∼(k′, i0, b)⇔ ti0,≻/∼ ∈ W and|W∩E≻,[i0]| = k′−b and|W∩
E∼,[i0]| = b.
(1) u≻(k′, i0 + 1, b) is the probability sum of all possible worldW such that

ti0+1,≻ ∈ W , |W ∩ E≻,[i0+1]| = k′ − b and|W ∩ E∼,[i0+1]| = b.

u≻(k′, i0 + 1, b) =
∑

W∈pwd(Ep),ti0+1,≻∈W

|W∩E≻,[i0+1]|=k′−b

|W∩E∼,[i0+1]|=b

Pr(W )

=
∑

W∈pwd(Ep),ti0+1,≻∈W

|W∩E≻,[i0]|=k′−1−b

|W∩E∼,[i0]|=b

Pr(W )
(Sinceti0+1,≻ ∈ W,
ti0+1,∼ 6∈ W )

=
∑

W∈pwd(Ep)
ti0+1,≻∈W,ti0,≻∈W

|W∩E≻,[i0]|=k′−1−b

|W∩E∼,[i0]|=b

Pr(W )

+
∑

W∈pwd(Ep)
ti0+1,≻∈W,ti0,∼∈W

|W∩E≻,[i0]|=k′−1−b

|W∩E∼,[i0]|=b

Pr(W )

+
∑

W∈pwd(Ep)
ti0+1,≻∈W,ti0,≻ 6∈W,ti0,∼ 6∈W

|W∩E≻,[i0]|=k′−1−b

|W∩E∼,[i0]|=b

Pr(W )

For the first part of the left hand side,
∑

W∈pwd(Ep)
ti0+1,≻∈W,ti0,≻∈W

|W∩E≻,[i0]|=k′−1−b

|W∩E∼,[i0]|=b

Pr(W ) = p(ti0+1)
∑

W∈pwd(Ep),ti0,≻∈W

|W∩E≻,[i0]|=k′−1−b

|W∩E∼,[i0]|=b

Pr(W ) = p(ti0+1)u≻(k′−1, i0, b).

For the second part of the left hand side,
∑

W∈pwd(Ep)
ti0+1,≻∈W,ti0,∼∈W

|W∩E≻,[i0]|=k′−1−b

|W∩E∼,[i0]|=b

Pr(W ) = p(ti0+1)
∑

W∈pwd(Ep),ti0,∼∈W

|W∩E≻,[i0]|=k′−1−b

|W∩E∼,[i0]|=b

Pr(W ) = p(ti0+1)u∼(k′−1, i0, b).
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For the third part of the left hand side, ifp(ti0,≻) + p(ti0,∼) = 1, then there is
no possible world satisfying this condition, therefore it is zero. Otherwise,

∑

W∈pwd(Ep)
ti0+1,≻∈W
ti0,≻ 6∈W,ti0,∼ 6∈W

|W∩E≻,[i0]|=k′−1−b

|W∩E∼,[i0]|=b

Pr(W ) = p(ti0+1)
∑

W∈pwd(Ep)
ti0,≻ 6∈W,ti0,∼ 6∈W

|W∩E≻,[i0]|=k′−1−b

|W∩E∼,[i0]|=b

Pr(W ) (10)

Equation 10 can be computed either by Equation 11 whenp(ti0 ,≻) > 0 or
by Equation 12 whenp(ti0 ,∼) > 0. Notice that at least one ofp(ti0 ,≻) and
p(ti0 ,∼) is positive, otherwise neither tuple is in the induced eventrelationEp

according to Definition 11.

∑

W∈pwd(Ep)
ti0,≻ 6∈W,ti0,∼ 6∈W

|W∩E≻,[i0]|=k′−1−b

|W∩E∼,[i0]|=b

Pr(W ) =
1 − p(ti0,≻) − p(ti0,∼)

p(ti0,≻)

∑

W∈pwd(Ep),ti0,≻∈W

|W∩E≻,[i0]|=k′−b

|W∩E∼,[i0]|=b

Pr(W )

=
1 − p(ti0,≻) − p(ti0,∼)

p(ti0,≻)
u≻(k′, i0, b). (11)

∑

W∈pwd(Ep)
ti0,≻ 6∈W,ti0,∼ 6∈W

|W∩E≻,[i0]|=k′−1−b

|W∩E∼,[i0]|=b

Pr(W ) =
1 − p(ti0,≻) − p(ti0,∼)

p(ti0,∼)

∑

W∈pwd(Ep),ti0,∼∈W

|W∩E≻,[i0]|=k′−1−b

|W∩E∼,[i0]|=b+1

Pr(W )

=
1 − p(ti0,≻) − p(ti0,∼)

p(ti0,∼)
u∼(k′, i0, b + 1). (12)

A subtlety is that whenp(ti0 ,≻) = 0 andb = bmax, simply no possible world
satisfies the condition in Equation 10, and Equation 10 equals0.
Altogether, we show that this case can be correctly computedby Equation 7

(2) u∼(k′, i0 + 1, b) is the probability sum of all possible worldW such that
ti0+1,∼ ∈ W , |W ∩ E≻,[i0+1]| = k′ − b and |W ∩ E∼,[i0+1]| = b. Use a
similar argument as above, it can be shown that this case is correctly computed
by Equation 8 as well.
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