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ABSTRACT
We present a novel approach to program debugging and dynamic
program analysis based on a temporal data model and query lan-
guage. The data model exposes a point-based view of executions,
while the underlying data is represented using intervals, for effi-
ciency reasons. The point-based query language supports selection,
projection, joins, grouping/aggregation, and recursion on both data
and temporal attributes. We present examples of debug and dy-
namic analysis queries to illustrate our approach. The main techni-
cal contribution of the paper lies in showing how to evaluate point-
based recursive queries against the interval-based data. In order
to evaluate a non-recursive point-based query, it is first compiled
into an interval-based query. The compilation relies on a normal-
ization operation to preserve point-based semantics when evalu-
ating compiled queries against interval-based data. It turns out
that a straightforward extension of the compilation to handle recur-
sion yields non-linear recursive queries with non-stratified nega-
tion. We circumvent this problem by employing a simpler compi-
lation and introducing a normalizing immediate-consequence op-
erator for bottom-up evaluation. We also present correctness and
termination theorems for our temporal recursive query evaluation
strategy. This work forms part of a larger research project in devel-
oping JIVE, a state-of-the-art dynamic analysis and visualization
system for Java.

1. INTRODUCTION
The prevalent run-time debugging model today relies on tech-

niques in use since the early 60s [11, 10]: setting breakpoints, in-
spection of variables in the call stack, forward stepping, and print-
ing statements. Most current debuggers provide access only to the
current state of execution, i.e., call stacks and heap objects. Thus,
when a breakpoint is reached, the programmer has to proceed in a
procedural, step-by-step fashion in search for the error. Often the
cause lies in a method call already completed or a value already
modified by the execution, and the process must restart with a new
set of breakpoints.

A program execution is naturally represented as a chronological
sequence of events, each occurring at a discrete point in time and
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encapsulating one or more changes to the execution state, e.g., vari-
able assignment, method call, object creation, etc. We propose that
debuggers record event sequences, from which execution states can
be constructed, stored, and accessed for any time point. Clearly,
storing execution states explicitly for every time point is impracti-
cal. Internally, the debugger should utilize a space-efficient repre-
sentation, typically in the form of an interval-based encoding of the
execution states, e.g., a variable holds a fixed value over each inter-
val spanning consecutive assignments. In this framework, it would
be possible to answer questions such as:

1. When (at which instants) did variable v change value?

2. Was there a concurrent update of an object in the program?

3. Was object o2 ever reachable from object o1?

4. How did the length of a linked list change during execution?

These questions express temporal properties that are hard, if
not impossible, to answer using traditional debuggers. Mechani-
cally traversing an execution trace file is unrealistic: a basic query
such as the first one would require traversing the entire trace file
which, even for simple programs, can be quite large. If a relational
database is used to record executions, it would be possible to an-
swer some questions using SQL. However, because SQL is not a
temporal query language, queries would have to explicitly incorpo-
rate temporal semantics, a complex and error prone task [15]. In
order to answer questions such as the ones above, we argue that
a debugger should support declarative temporal queries over the
point-based view of executions and provide an efficient mechanism
for their evaluation against the interval-based representation.

Evaluation of point-based queries against an interval-based rep-
resentation is typically achieved by means of compilation: a point-
based temporal query is compiled into a corresponding interval-
based one that preserves point-based semantics during evaluation.
SQL/TP [18] is a point-based temporal query language supporting
such an evaluation strategy for non-recursive queries. In SQL/TP, a
normalization operation applied as part of compilation guarantees
the preservation of point-based semantics, i.e., all time-intervals for
some data item are either disjoint or identical.

The main technical contribution of this paper lies in showing
how to evaluate point-based recursive queries against an interval-
based representation. It turns out that a straightforward extension
of the SQL/TP compilation to handle recursion yields non-linear
queries with non-stratified negation. To circumvent this problem,
we adopt a simpler compilation strategy and introduce a normaliz-
ing immediate consequence operator for bottom-up evaluation. We
also present correctness and termination theorems for our temporal
recursive query evaluation strategy.



Figure 1: JIVE System Architecture.

In this paper, we introduce a principled approach to debugging
and dynamic analysis based on the declarative investigation of exe-
cutions and supported by a sound temporal framework. We present
the temporal data model and query language, and illustrate them
with examples. We also show how to evaluate point-based recursive
queries against an interval-based representation. This work forms
part of a larger research project aimed at developing a state-of-
the-art dynamic analysis and visualization system for Java, called
JIVE [5] (http://www.cse.buffalo.edu/jive). In JIVE, declar-
ative queries and visualizations work in a synergistic manner– the
results of queries are reported on (run-time) object and sequence
diagrams, while queries help focus on relevant diagram regions.
Figure 1 shows JIVE’s overall system architecture.

The rest of this paper is organized as follows: Section 2 surveys
closely related work. Section 3 describes our temporal model and
illustrates temporal queries for debugging. Section 4 describes the
recursive extension to the temporal query language. Section 5 con-
cludes and provides directions for further work.

2. RELATED WORK
Typically, trace-based tools work by collecting low-level events

during program execution, storing them in a file or database, and
providing some form of analysis over the trace. Whyline [7] is a
debugger supporting ‘why did’ and ‘why did not’ queries exposed
to users in the form of a list of natural language questions. The
tool uses dynamic slicing [1] to precompute queries and their an-
swers. Omniscient debugging [10] is a trace-based technique that
supports navigation through an event history and inspection of pre-
vious states. Omniscient debuggers often integrate additional fea-
tures such as program visualizations and basic queries. For ex-
ample, TOD [13] is an omniscient debugger featuring query-based
debugging based on low-level primitives (cursor and count) used to
construct high-level queries algorithmically. TOD’s query language
is neither declarative nor temporal, and their database is custom
built from scratch for scalability.

Some query-based debuggers do not explicitly store execution
traces. PTQL [6] is a relational query language supporting conjunc-
tive queries over traces consisting of method invocations and object
allocations. Queries are defined prior to execution and are evalu-
ated online by specialized code instrumented into the subject pro-
gram. Coca [4] is an automated debugger for C that allows setting

event-based breakpoints in the form of Prolog-like queries. When
an event match is detected, the program suspends and the developer
can query current program states. In [9], queries are formulated in
the programming language itself and evaluated against the current
state of execution, and may have side-effects.

None of the approaches above support temporal queries, there-
fore, temporal semantics must be incorporated manually by the user
during query formulation, a task that is both challenging and error
prone. Further, none of the declarative query languages support
recursion, a limitation that affects reasoning over the run-time re-
alization of complex structures (e.g., lists, trees) and limits their
applicability for dynamic analyses.

Our unique contribution over prior work lies in combining a
formal temporal model for representing and querying executions,
separating the conceptual (point-based) view of executions from
its (interval-based) representation, and using a highly expressive
declarative temporal query language. We claim that this principled
approach simplifies debugging as well as the task of specifying and
testing new analyses– it is simply a matter of writing a new query.

Declarative query languages have been successfully used in static
program analysis [8, 12]. For example, bddbddb [8] allows static
analyses to be specified as Datalog programs. Relations are stored
using binary decision diagrams (BDDs), which enables bddbddb
to efficiently handle exponential relations. Our declarative, query-
based approach to dynamic program analysis is closely related to
theirs both in design and philosophy.

3. TEMPORAL MODEL
A temporal database is a structure supporting some built-in as-

pect of time. It normally consists of a temporal data model specify-
ing the data and temporal domains supported by the database, and a
temporal query language for retrieving and modifying data within
the database. Restrictions to the supported queries may be neces-
sary to guarantee that query answers are finitely representable.

Temporal databases usually represent time values either as points
or intervals. A point-based temporal data model allows for a tem-
poral query language with clean, declarative syntax and clear se-
mantics [17], at the expense of a more verbose data representa-
tion. The main advantage of an interval-based data model lies
in its space-efficient representation of temporal facts. However,
interval-based query languages are subject to a number of prob-



Figure 2: Evaluation of point-based abstract temporal queries.

lems: syntax dependence on the choice of interval encoding [17],
necessity of data coalescing to guarantee correctness of results [2],
representation-dependent queries [18], etc. Additionally, formally
defining the semantics of interval-based languages is a complex
task [16], largely due to their semantics being normally defined
with respect to a point-based temporal model.

There are significant benefits in separating the conceptual tempo-
ral data from its representation [2]. Following this approach, an ab-
stract temporal database (ATDB) describes temporal information
in a representation-independent manner, normally using a point-
based temporal data model, while a concrete temporal database
(CTDB) provides a storage-efficient encoding of the ATDB, typ-
ically by means of an interval-based temporal data model. A se-
mantic mapping ‖ · ‖ provides a formal interpretation of concrete
temporal databases (also relations and tuples) in terms of the re-
spective abstract ones.

Evaluation of an abstract query Q is carried out by compiling it
into the concrete query language and evaluating the resulting query
against the CTDB, as illustrated in Figure 2. In the figure, E1 and
E2 are distinct encodings of the abstract temporal relation R. To
evaluate the point-based abstract temporal query ϕ against E1 and
E2, ϕ is compiled and evaluated against each encoding, yielding
concrete relations compile(ϕ)(E1) and compile(ϕ)(E2). These are
clearly distinct relations but their images under ‖ · ‖ are identical.
Hence, they represent the same abstract temporal relation.

Compilation must satisfy two requirements. The first, seman-
tics preservation, states that answers to the compiled query must
represent the exact same answers that would be obtained by exe-
cuting Q against the ATDB, that is, for every CTDB D, Q(‖D ‖) =
‖ compile(Q)(D) ‖. The second, closure of representation, estab-
lishes that the set of time instants associated with every tuple in the
answer to the compiled query must be finitely representable using
the encoding of the CTDB. We note that existing compilation-based
approaches [17, 18, 3] do not support recursive queries.

JIVE’s Temporal Model. Our system uses a point-based ATDB
to represent executions at a conceptual level and an interval-based
CTDB for space-efficient storage. In this section we present our
temporal schema and the features of our temporal query language,
PRACTQL. We delay the technical developments regarding the eval-
uation of temporal recursive queries to next section. Due to limited
space, queries are presented throughout the paper using Datalog no-
tation. The actual syntax of the query language, however, is SQL.

JIVE’s temporal schema exposes program entities (i.e., at the

source language level), their temporal states, and lower-level en-
tities such as trace events. Therefore, users can formulate queries
in terms of the concepts that are most adequate for each task or that
they are most comfortable with.

Example 1 (Concurrency). Temporal queries can help identify
and resolve concurrency errors as well as improve the design of
concurrent programs. For instance, consider the problem of find-
ing all pairs of method calls (m1 and m2) that modify the same
field ( f ) of the same object instance (o) while their executions over-
lap in time. The modifications could indicate a race condition but
they could also be protected by an appropriate concurrency proto-
col (e.g., locking).

Relations Activation(C,TH,CC,M,T) and EventBind(C,O,F,V,T) rep-
resent method activations and field assignments, respectively. Acti-
vation records every instant T in which call C to method M on thread
TH with calling context CC (i.e., type/instance on which the call is
made) is active. EventBind records the instant T in which field F of
object O is assigned value V in the context of activation C.

Concurrent(m1, m2, o, f) :− Activation(c1, th1, _, m1, t2),

EventBind(c1, o, f, v1, t1), Activation(c2, th2, _, m2, t1),

EventBind(c2, o, f, v2, t2), th1 6= th2

Figure 3 provides a visual interpretation for the query: the activa-
tions are concurrent for at least the interval delimited by the assign-
ments on the object/field (shaded region).

Figure 3: Concurrent modifications.

A large class of debug questions are expressible as temporal SPJ
queries such as the one above. For instance, the importance of un-
derstanding the who-calls-whom relation (e.g., does method m call
method n transitively?) in large, object-oriented programs is de-
scribed as a non-trivial task in [6]. Such queries are expressible
as temporal SPJ queries with negation in our query language. An-
other relevant class of questions are those involving aggregation.
For instance, in order to determine how the length of a linked list
changes during execution, a query must group by time instants and
count the number of nodes in the list.

Recursive queries are particularly important in answering several
program understanding, debugging, and dynamic analysis ques-
tions. Programs often define recursive data structures, such as lists,
trees, and graphs. Several questions about their run-time realization
are naturally expressed as recursive queries. Further, the run-time
state of a program is typically represented as a graph, so the anal-
ysis of program sate requires answering queries such as temporal
reachability: was object o2 ever reachable from object o1? It is im-
portant to note that, although none of the data structures mentioned
above are first-class citizens in the relational model, they can be en-
coded as facts in the temporal database. Example 2 illustrates the
use of recursion in analyzing the state of run-time objects.

Example 2 (State Analysis). To answer questions about a bi-
nary tree, we must traverse its left and right subtrees recursively
while observing the temporal relationship among the tree nodes.



For instance, consider the following problem: when were the val-
ues 10 and 20 found simultaneously among the nodes of a binary
tree whose root node has oid = 5?

Let TreeNode(O,V,L,R,T) be a relation representing TreeNode in-
stances in the database. It records every instant T during which
the node with object identifier O (oid) has value V and left and
right subtrees identified by L and R, respectively. The answer to the
problem above can be expressed as follows:

Q(t) :− Path(5, d1, t), TreeNode(d1, 10, _, _, t),

Path(5, d2, t), TreeNode(d2, 20, _, _, t)

Path(a, d, t) :− TreeNode(a, _, d, _, t)

Path(a, d, t) :− TreeNode(a, _, _, d, t)

Path(a, d, t) :− Path(a, n, t), TreeNode(n, _, d, _, t)

Path(a, d, t) :− Path(a, n, t), TreeNode(n, _, _, d, t)

Path is a recursive query that asserts the existence of a path from
node a to node d at time t. The temporal equijoin guarantees that
each ancestor-descendant relation in the path holds over the pro-
jected time. Q returns all time instants during which the root node
has descendants with the specified values.

Dynamic slicing [1] is an important debugging technique in the
area of dynamic program analysis. Intuitively, a dynamic slice can
be computed from a transitive closure of dynamic data and/or con-
trol dependencies in a program. This is a very natural application
of temporal recursion in the context of debugging, as illustrated in
Example 3.

Example 3 (Dynamic Reaching Definitions). Consider the rela-
tion Defs(V1,V2,T) that keeps track of variable assignments at run-
time: variable V1 is assigned a value obtained from the evaluation
of an expression involving variable V2 at time T. Query RDefs com-
putes the set of dynamic reaching definitions in an execution.

RDefs(x, y, t) :− Defs(x, y, t)

RDefs(x, y, t) :− RDefs(z, y, t1), ¬ Defs(z, _, t2), Defs(x, z, t),

t1 < t2, t2 < t

The first rule states that x is defined by y at time t. The second rule
states that x is defined by y at time t if z is defined by y and not
redefined before being used to define x at time t.

Our temporal query language supports all of the aforementioned
features and more. The technical developments necessary to incor-
porate recursion into the language are discussed in the next section.

4. RECURSIVE QUERY EVALUATION
PRACTQL is a point-based temporal query language that extends

SQL/TP [18] with support for recursive queries. Its semantics is
defined over abstract temporal databases and it supports queries
involving selection, projection, joins, set operations, bag operations
with finite duplication, grouping and aggregation on both data and
temporal attributes. Closure of representation is guaranteed by a
syntactic restriction, namely, top-level attribute independence.

PRACTQL extends the SQL data model with the temporal sort
(Z,≤) to represent individual time points. Non-empty half-open
intervals from Z∪ {−∞,+∞} are used in the concrete encoding:
each abstract temporal attribute t is encoded as a concrete attribute
[t`, tr) of the interval sort. Interval endpoint comparisons use or-
der relations based on the order inherited from the temporal sort.
Like SQL/TP, PRACTQL may represent infinite relations, therefore,
duplicate preserving projection of temporal attributes encoded by
intervals is disallowed in order to avoid space blowup.

Query Compilation. SQL/TP queries are compiled into SQL/92,
which allows evaluation using a standard relational database man-

agement system. For efficient evaluation, compiled queries refer-
ence only values in the active domain and possibly small neigh-
borhoods of time points. Set and bag operations are performed on
time-compatible queries [18] in order to guarantee preservation of
semantics with respect to ATDBs. Intuitively, concrete queries Qi
and Q j are time-compatible if they have compatible schemas and,
for every CTDB D, whenever tuples in Qi(D) and Q j(D) agree on
their data components, the intervals related to each tuple coincide
or are disjoint, i.e., behave like points with respect to set and bag
operations. Time-compatibility is achieved by the application of a
normalization [18] operation on input queries.

DEFINITION 1 (NORMALIZATION). Given a set Q of concrete
queries with a common schema, a set x of their data attributes, and
a temporal attribute t in their common schema, the normalization
of Qi ∈Q with respect to x and t is the query Nt

x(Qi,Q) satisfying,
for every CTDB D, the following properties: (i) for every Q j ∈ Q,
whenever tuples in Nt

x(Qi,Q)(D) and Nt
x(Q j,Q)(D) agree on their

x values, the intervals encoded by t in each tuple either coincide or
are disjoint and (ii) ‖ Qi(D) ‖=‖ Nt

x(Qi,Q)(D) ‖.

Property (i) states that intervals returned by normalized queries
behave like points with respect to set and bag operations and prop-
erty (ii) states that normalized queries preserve meaning with re-
spect to ATDBs.

Example 4 (SQL/TP Compilation). The abstract temporal rela-
tion Refs(O, R, T) keeps track of all instants T during which object
O references object R. The recursive query below computes a tem-
poral transitive closure of Refs:

TTC(x,y, t) :− Refs(x,y, t)

TTC(x,y, t) :− TTC(x,z, t1),Refs(z,y, t), t > t1

A SQL/TP compilation implementing normalization as a first-order
query would produce the concrete query below.

TTC(x,y, `,r) :− TTC1(x,y, t`, tr), Imin(x,y, `,r), t` ≤ `,r ≤ tr

TTC(x,y, `,r) :− TTC2(x,y, t`, tr), Imin(x,y, `,r), t` ≤ `,r ≤ tr

TTC1(x,y, `,r) :− Refs(x,y, `,r)

TTC2(x,y, `,r) :− TTC(x,z, `1,r1),Refs(z,y, `2,r),r > `1 +1,
`= max(`2, `1 +1)

Imin(x,y, `,r) :− EP(x,y, `),EP(x,y,r), ` < r,¬NImin(x,y, `,r)

NImin(x,y, `,r) :− EP(x,y, `),EP(x,y, t),EP(x,y,r), ` < t, t < r

EP(x,y, `) :− TTC1(x,y, `,r)

EP(x,y,r) :− TTC1(x,y, `,r)

EP(x,y, `) :− TTC2(x,y, `,r)

EP(x,y,r) :− TTC2(x,y, `,r)

An overbar indicates a concrete temporal relation or predicate. Imin,
NImin, and EP are helper predicates for the normalization. The first
and second TTC rules correspond to Nt

x,y(TTC1,{TTC1,TTC2}) and
Nt

x,y(TTC2,{TTC1,TTC2}), respectively.
The concrete query above is obtained as follows. First, TTC rules

are compiled into TTC1 and TTC2. Normalization produces time-
compatible rules for TTC by joining TTC1 (also TTC2) with Imin.
Intuitively, the join with Imin partitions the interval of each tuple
returned by TTC1 (also TTC2) into a set of minimal subintervals.
Imin constructs minimal intervals based on non-minimal intervals
returned by NImin. All intervals are constructed from interval end-
points in EP, which contains all left and right interval endpoints
obtained from TTC1 and TTC2.



Normalization can be extended to handle concrete relations as
follows. Given a set R of concrete relations with a common sig-
nature, a subset x of their data attributes, and a temporal attribute
t, the normalization of Ri ∈ R with respect to x and t is the re-
lation Nt

x(Ri,R) satisfying: (i) for every R j ∈ R, whenever tuples
in Nt

x(Ri,R) and Nt
x(R j,R) agree on their x values, the intervals

encoded by t in each tuple either coincide or are disjoint, and (ii)
‖ Ri ‖=‖ Nt

x(Ri,R) ‖.
To define a set of time-compatible queries (relations) with re-

spect to x and Q (R), normalization is applied for every temporal
attribute in the common schema. The Nx operator designates such
application. By convention, the subscript can be omitted when
normalizing with respect to all data attributes. Hence, a set op-
eration on concrete queries Q1 op Q2, where op ∈ {∪,∩,−}, is
compiled into a corresponding set operation on time-compatible
queries, N(Q1,{Q1,Q2}) op N(Q2,{Q1,Q2}), which we denote as
Q1 opN Q1 for convenience. Normalizing set operations for con-
crete relations are defined analogously. The N operator is also used
to define bag operations, grouping, and duplicate elimination.

As evidenced by Example 4, the SQL/TP compilation interacts
with recursive queries in a way that introduces fundamental diffi-
culties. Recursion on TTC2 is non-linear, since TTC2 references
TTC and TTC references TTC2 multiple times– once directly and
multiple times indirectly, through Imin. Further, the negation intro-
duced in the body of Imin is non-stratified: the dependence graph
of the compiled query contains the cycle (TTC, TTC2, EP, NImin,
Imin, TTC) where (NImin, Imin) is a negative edge. Hence, a stan-
dard SQL:1999 (or later) query engine cannot evaluate such query.

PRACTQL Compilation. The problems discussed above have a
common cause, namely, the introduction of the join with Imin by the
normalization step of the compilation. Unfortunately, there is no
way to avoid the use of negation if normalization is implemented as
a first-order query– negation is necessary to guarantee minimality
of the intervals returned by time-compatible queries.

In order to address this issue, the PRACTQL compiler omits the
normalization step for recursive rules, where it introduces difficul-
ties. As a result, given an input recursive query valid with respect
to the SQL:1999 standard, the PRACTQL compiler produces a re-
cursive query that preserves such validity and, therefore, can be
evaluated by a standards compliant SQL:1999 query engine.

Example 5 (PRACTQL Compilation). Assume that we compile
the query of Example 4 using the PRACTQL compilation. After
simplification to remove subqueries, the resulting query is:

TTC(x,y, `,r) :− Refs(x,y, `,r)

TTC(x,y, `,r) :− TTC(x,z, `1,r1),Refs(z,y, `2,r),r > `1 +1,
`= max(`2, `1 +1)

Assume that Refs contains a single tuple (1,1,1,2k+1), k≥ 0. The
tuple encodes the fact that object O = 1 has a self reference during
[1,2k +1). Bottom-up evaluation of TTC using the standard imme-
diate consequence operator, TP, produces the following results:

TP ↑ 1: {(1,1,1,2k +1)}
TP ↑ 2: {(1,1,1,2k +1),(1,1,2,2k +1)}
. . .
TP ↑ 2k: {(1,1,1,2k +1),(1,1,2,2k +1), . . . ,(1,1,2k,2k +1)}

The evaluation terminates at stage 2k +1, with 2k tuples.
As Example 5 illustrates, standard bottom-up evaluation [20] of

compiled queries is problematic. First, set operations performed
at each iteration do not preserve semantics with respect to ATDBs,
e.g., tuples (1,1,1,2k + 1) and (1,1,2,2k + 1) in TP ↑ 2 represent
duplicate information, i.e., ‖ (1,1,1,2k +1) ‖⊃‖ (1,1,2,2k +1) ‖.

Second, evaluation suffers from an exponential blowup in space
complexity since it returns 2k tuples for an input relation instance
containing a single tuple. Moreover, the blowup depends on the
particular query and database instance against which evaluation is
performed– if Refs contained tuple (1,1,1,+∞), evaluation would
simply not terminate.

The first problem is caused by evaluating the set union over
queries that are not time-compatible. The second, by using a termi-
nation condition that is incapable of identifying concrete relations
that are equivalent with respect to their abstract interpretations (i.e.,
their images under ‖ · ‖) but not their concrete representations. The
third, by this same reason but augmented by the fact that concrete
relations can encode infinite abstract temporal relations. Unfortu-
nately, it is not possible to address these issues at the query compi-
lation level. Instead, we must modify the bottom-up evaluation.

Normalizing Bottom-up Evaluation. As observed, bottom-up
evaluation using the standard immediate consequence operator does
not preserve temporal semantics with respect to ATDBs. To over-
come this limitation, we define a normalizing immediate conse-
quence operator, TNP, that enforces such semantics by incorpo-
rating normalization as part of the evaluation of recursive rules.

DEFINITION 2 (TNP). Let P be a recursive query obtained from
the PRACTQL compilation. The normalizing immediate consequence
operator, denoted by TNP, is defined as follows:

TNP(I) =
⋃

ri∈P TNP(ri, I), where

TNP(ri, I) =

{
TP(ri, I)

⋂N UR(I) ri defines recursive predicate R
TP(ri, I) otherwise

,

TP(ri, I) = {A : A← B is a ground instance of ri and B⊆ I},

UR(I) =
⋃

ri defines R TP(ri, I),

and
⋂

N is the normalizing set intersection.

TNP is identical to TP for every rule that is not part of the defi-
nition of a recursive predicate. On the other hand, consider the set
of rules {r1, . . . ,rn} defining a recursive predicate R. TNP evaluates
each of the rules using TP and then performs a normalizing set in-
tersection of TP(ri, I) and UR(I). While the intersection modifies
the concrete representation of TP(ri, I), its image under ‖ · ‖ is pre-
served, that is, ‖ TP(ri, I) ‖=‖ TP(ri, I)

⋂N UR(I) ‖. The soundness
and completeness of the TNP operator is established in Theorem 1.

THEOREM 1. [Soundness and Completeness] Let P be a re-
cursive PRACTQL query and NP the concrete query obtained from
the PRACTQL compilation. Then, ‖ TNP ↑ ω ‖= TP ↑ ω.

Intuitively, Theorem 1 establishes an equivalence between the
evaluation of TNP over CTDBs and TP over ATDBs. The proof
follows from the correctness of TP, the soundness and completeness
of SQL/TP [18], and the preservation of temporal semantics with
respect to ATDBs guaranteed by TNP at every stage. We observe,
however, that simply replacing TP for TNP in the standard bottom-
up evaluation is not sufficient to guarantee termination.

Example 6 (TNP). We evaluate TTC of Example 5 using TNP and
the standard bottom-up evaluation termination condition:

TP ↑ 1: {(1,1,1,2k +1)}
TP ↑ 2: {(1,1,1,2),(1,1,2,2k +1)}
TP ↑ 3: {(1,1,1,2),(1,1,2,3),(1,1,3,2k +1)}
. . .
TP ↑ 2k: {(1,1,1,2),(1,1,2,3), . . . ,(1,1,2k,2k +1)}

Temporal semantics with respect to ‖ · ‖ is clearly preserved.



1 Normalizing−Naive(P)
2 I := Ø;
3 repeat
4 J := I;
5 I := TNP(I);
6 until ‖ I ‖=‖ J ‖;
7 return I;

Listing 1: Normalizing Naïve bottom-up evaluation.

As Example 6 illustrates, when the bottom-up evaluation reaches
a stage with ‖ I ‖=‖ J ‖, it is possible that I 6= J. Therefore, termi-
nation of the bottom-up evaluation should be based on the equiva-
lence of the images of I and J under ‖ · ‖. Obviously, it is impossi-
ble to perform the equivalence check on abstract temporal relations
as they may be infinite. Even if they were finite, as is the case
in program debugging, the test could cause a space blowup in the
evaluation (cf. Example 6). Instead, we perform a check on con-
crete relations as follows: for every recursive predicate R in P, we
test whether RI −N RJ = RJ −N RI = Ø, where RI and RJ denote
the instances of R in I and J, respectively, and −N guarantees that
set semantics is preserved with respect to ATDBs. Our normalizing
bottom-up evaluation is presented in Listing 1. Example 7 shows
the algorithm in action and termination is presented in Theorem 2.

THEOREM 2. [Termination] Normalizing-Naïve terminates for
every recursive query (under set semantics) produced by the PRAC-
TQL compilation.

In the standard relational setting, termination of the bottom-up
evaluation relies on the finiteness of the input relations and the fact
that new symbols are never introduced during the evaluation. In
our setting, compilation may introduce new symbols via quantifier
elimination (e.g., rule for TTC2 in Example 4), which means that
new temporal symbols could be introduced at every iteration of the
bottom-up evaluation. Further, although concrete relations are fi-
nite, they may encode infinite abstract temporal relations, which
would provide an infinite source of new temporal symbols. There-
fore, termination of the normalizing bottom-up evaluation must
rely on a different argument.

The proof is based on the reduction of Normalizing-Naïve to the
bottom-up evaluation of constraint Datalog programs, which ter-
minates for all constraint-compact classes of constraints [19]. The
reduction is possible because the PRACTQL compilation produces
queries that are essentially Datalog queries with integer gap-order
constraints [14], a constraint-compact class of constraints.

Finally, we observe that the techniques used here to modify the
standard bottom-up evaluation can also adapted to the semi-naïve
bottom-up evaluation [20].

5. CONCLUSIONS
We described a point-based temporal data model for debugging

that supports declarative temporal queries over program executions
and transparently stores execution traces in a space-efficient man-
ner. We showed that common debug questions can be adequately
formulated in a declarative temporal query language and that recur-
sion is of fundamental importance in answering important dynamic
analysis problems. In order to support recursion, we extended a
point-based query language with recursion and showed the neces-
sary modifications to the standard bottom-up evaluation.

Future work will evaluate the performance of PRACTQL for a
wide range of debug and dynamic analysis queries. We will inves-
tigate the scalability of temporal query evaluation in general and

Example 7 (Normalizing Bottom-Up Evaluation). We evaluate
TTC of Example 5 for the concrete instance of Refs containing tu-
ple (1,1,1,+∞):

TP ↑ 1: {(1,1,1,+∞)}
TP ↑ 2: {(1,1,1,2),(1,1,2,+∞)}

TP ↑ 2 represents the same abstract temporal relation as TP ↑ 1.
Hence, the termination condition is satisfied and the computation
returns with two tuples.

of the normalizing bottom-up evaluation in particular. For recur-
sive queries, we will analyze the benefits of incorporating static
and dynamic optimizations in the compilation procedure. We will
also consider using domain-specific optimizations which take ad-
vantage of the temporal semantics of program executions.

The PRACTQL query language and compiler are currently be-
ing incorporated into JIVE to replace a simpler, interval-based tem-
poral query language prototype previously supported by the tool.
JIVE has been under development since 2007, has been tested on a
large number of programs, and has been extensively used in both
undergraduate and graduate programming language courses in our
department.
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