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Abstract. We present here a formal foundation for an iterative and in-
cremental approach to constructing and evaluating preference queries.
Our main focus is on query modification: a query transformation ap-
proach which works by revising the preference relation in the query. We
provide a detailed analysis of the cases where the order-theoretic proper-
ties of the preference relation are preserved by the revision. We consider
a number of different revision operators: union, prioritized and Pareto
composition. We also formulate algebraic laws that enable incremental
evaluation of preference queries.

1 Introduction

The notion of preference is common in various contexts involving decision or
choice. Classical utility theory [10] views preferences as binary relations. This
view has recently been adopted in database research [7, 8, 20, 22], where pref-
erence relations are used in formulating preference queries. In AI, various ap-
proaches to compact specification of preferences have been explored [6]. The
semantics underlying such approaches typically relies on preference relations be-
tween worlds.

Preferences can be embedded into database query languages in several differ-
ent ways. First, [7, 8, 20, 22] propose to introduce a special operator “find all the
most preferred tuples according to a given preference relation.” This operator is
called winnow in [7, 8]. A special case of winnow is called skyline [5] and has
been recently extensively studied [25, 3]. Second, [1, 17] assume that preference
relations are defined using numeric utility functions and queries return tuples or-
dered by the values of a supplied utility function. It is well-known that numeric
utility functions cannot represent all strict partial orders [10], not even those
that occur in database applications in a natural way [8]. For example, utility
functions cannot capture skylines. Also, ordered relations go beyond the clas-
sical relational model of data. The evaluation and optimization of queries over
such relations requires significant changes to relational query processors and op-
timizers [18]. On the other hand, winnow can be seamlessly combined with any
relational operators.
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We adopt here the first approach, based on winnow, within the preference
query framework of [8] (a similar model was described in [20]). In this framework,
preference relations between tuples are defined by first-order logical formulas.

Example 1. Consider the relation Car(Make, Y ear) and the following prefer-
ence relation �C1 between Car tuples:

within each make, prefer a more recent car,

which can be defined as follows:

(m, y) �C1 (m′, y′) ≡ m = m′ ∧ y > y′.

The winnow operator ωC1 returns for every make the most recent car available.
Consider the instance r1 of Car in Figure 1a. The set of tuples ωC1(r1) is shown
in Figure 1b.

Make Year
t1 VW 2002
t2 VW 1997
t3 Kia 1997

(a)

Make Year
t1 VW 2002
t3 Kia 1997

(b)

Fig. 1. (a) The Car relation; (b) Winnow result

In this paper, we focus on preference queries of the form ω�(R), consisting of a
single occurrence of winnow. Here � is a preference relation (typically defined by
a formula), and R is a database relation. The relation R represents the space of
possible choices. We also briefly discuss how our results can be applied to more
general preference queries.

Past work on preference queries has made the assumption that preferences
are static. However, this assumption is often not satisfied. User preferences
change, sometimes as a direct consequence of evaluating a preference query.
Therefore, we view preference querying as a dynamic, iterative process. The
user submits a query and inspects the result. The result may be satisfactory,
in which case the querying process terminates. Or, the result may be too large
or too small, contain unexpected answers, or fail to contain expected answers.
If the user is not satisfied with the query result, she has several further
options:

Modify and resubmit the query. This is appropriate if the user decides to refine
or change her preferences. For example, the user may have started with a partial
or vague concept of her preferences [26]. We consider here query modification
consisting of revising the preference relation �, although, of course, more general
transformations may also be envisioned.

Update the database. This is appropriate if the user discovers that there are more
(or fewer) possible choices than originally envisioned. For example, in comparison
shopping the user may have discovered a new source of relevant data.
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In this context we pursue the following research challenges:

Defining a repertoire of suitable preference relation revisions. In this work, we
consider revisions obtained by composing the original preference relation with a
new preference relation, and transitively closing the result (to guarantee tran-
sitivity). We study different composition operators: union, and prioritized and
Pareto composition. Those operators represent several basic ways of combining
preferences and have already been incorporated into preference query languages
[8, 20]. The operators reflect different user attitudes towards preference conflicts.
(A conflict is, intuitively, a situation in which two preference relations order
the same pair of tuples differently.) Union ignores conflicts (and thus such con-
flicts need to be prevented if we want to obtain a preference relation which is a
strict partial order). Prioritized composition resolves preference conflicts by con-
sistently giving priority to one of the preference relations. Pareto composition
resolves conflicts in a symmetric way. We emphasize that revision is done using
composition because we want the revised preference relation to be uniquely de-
fined in the same first-order language as the original preference relation. Clearly,
the revision repertoire that we study in this paper does not exhaust all mean-
ingful scenarios. One can also imagine approaches where axiomatic properties of
preference revisions are studied, as in belief revision [13].

Identifying essential properties of preference revisions. We claim that revisions
should preserve the order-theoretic properties of the original preference relations.
For example, if we start with a preference relation which is a strict partial or-
der, the revised relation should also have those properties. This motivates, among
others, transitively closing preference relations to guarantee transitivity. Preserv-
ing order-theoretic properties of preference relations is particularly important in
view of the iterative construction of preference queries where the output of a
revision can serve as the input to another one. We study both necessary and suf-
ficient conditions on the original and revising preference relations that yield the
preservation of their order-theoretic properties. Necessary conditions are con-
nected with the absence of preference conflicts. However, such conditions are
typically not sufficient and stronger assumptions about the preference relations
need to be made. Somewhat surprisingly, a special class of strict partial orders,
interval orders, plays an important role in this context. The conditional preser-
vation results we establish in this paper supplement those in [8, 20] and may be
used in other contexts where preference relations are composed, for example in
the implementation of preference query languages. Another desirable property
of revisions is minimality in some well-defined sense. We define minimality in
terms of symmetric difference of preference relations but there are clearly other
possibilities.

Incremental evaluation of preference queries. At each point of the interaction
with the user, the results of evaluating previous versions of the given prefer-
ence query are available. Therefore, they can be used to make the evaluation of
the current query more efficient. For both the preference revision and database
update scenarios, we formulate algebraic laws that validate new query evalua-
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tion plans that use materialized results of past query evaluations. The laws use
order-theoretic properties of preference relations in an essential way.

Example 2. Consider Example 1. Seeing the result of the query ωC1(r1), a user
may realize that the preference relation �C1 is not quite what she had in mind.
The result of the query may contain some unexpected or unwanted tuples, for
example t3. Thus the preference relation needs to be modified, for example by
revising it with the following preference relation �C2 :

(m, y) �C2 (m′, y′) ≡ m = ′′VW′′ ∧ m′ �= ′′VW′′ ∧ y = y′.

As there are no conflicts between �C1 and �C2 , the user chooses union as the
composition operator. However, to guarantee transitivity of the resulting prefer-
ence relation, �C1 ∪ �C2 has to be transitively closed. So the revised relation is
�C∗≡ TC(�C1 ∪ �C2). (The explicit definition of �C∗ is given in Example 6.)
The tuple t3 is now dominated by t2 (i.e., t2 �C∗ t3) and will not be returned
to the user.

The plan of the paper is as follows. In Section 2, we define the basic notions.
In Section 3, we introduce preference revision. In Section 4, we discuss query
modification and the preservation by revisions of order-theoretic properties of
preference relations. In Section 5, we discuss incremental evaluation of preference
queries in the context of query modification and database updates. In Section 6,
we consider finite restrictions of preference relations. We briefly discuss related
work in Section 7 and conclude in Section 8. Some proofs are outlined. The
remaining results can be proved by exhaustive case analysis.

2 Basic Notions

We are working in the context of the relational model of data. Relation schemas
consist of finite sets of attributes. For concreteness, we consider two infinite,
countable domains: D (uninterpreted constants, for readability shown as strings)
and Q (rational numbers), but our results, except where explicitly indicated,
hold also for finite domains. We assume that database instances are finite sets
of tuples. Additionally, we have the standard built-in predicates.

2.1 Preference Relations

We adopt here the framework of [8].

Definition 1. Given a relation schema R(A1 · · · Ak) such that Ui, 1 ≤ i ≤ k,
is the domain (either D or Q) of the attribute Ai, a relation � is a preference
relation over R if it is a subset of (U1 × · · · × Uk) × (U1 × · · · × Uk).

Although we assume that database instances are finite, in the presence of infinite
domains preference relations can be infinite.

Typical properties of a preference relation � include [10]:
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– irreflexivity: ∀x. x �� x;
– transitivity: ∀x, y, z. (x � y ∧ y � z) ⇒ x � z;
– negative transitivity: ∀x, y, z. (x �� y ∧ y �� z) ⇒ x �� z;
– connectivity: ∀x, y. x � y ∨ y � x ∨ x = y;
– strict partial order (SPO) if � is irreflexive and transitive;
– interval order (IO) [11] if � is an SPO and satisfies the condition

∀x, y, z, w. (x � y ∧ z � w) ⇒ (x � w ∨ z � y);

– weak order (WO) if � is a negatively transitive SPO;
– total order if � is a connected SPO.

Every total order is a WO; every WO is an IO.

Definition 2. A preference formula (pf) C(t1, t2) is a first-order formula defin-
ing a preference relation �C in the standard sense, namely

t1 �C t2 iff C(t1, t2).

An intrinsic preference formula (ipf) is a preference formula that uses only built-
in predicates.

By using the notation �C for a preference relation, we assume that there is an
underlying pf C. Occasionally, we will limit our attention to ipfs consisting of the
following two kinds of atomic formulas (assuming we have two kinds of variables:
D-variables and Q-variables):

– equality constraints: x = y, x �= y, x = c, or x �= c, where x and y are
D-variables, and c is an uninterpreted constant;

– rational-order constraints: xλy or xλc, where λ ∈ {=, �=, <, >, ≤, ≥}, x and
y are Q-variables, and c is a rational number.

An ipf all of whose atomic formulas are equality (resp. rational-order) con-
straints will be called an equality (resp. rational-order) ipf. If both equality and
rational-order constraints are allowed in a formula, the formula will be called
equality/rational-order. Clearly, ipfs are a special case of general constraints
[23, 19], and define fixed, although possibly infinite, relations.

Proposition 1. Satisfiability of quantifier-free equality/rational-order formulas
is in NP.

Proof. Satisfiability of conjunctions of atomic equality/rational-order constraints
can be checked in linear time [15]. In an arbitrary quantifier-free equality/
rational-order formula negation can be eliminated. Then in every disjunction
one needs to nondeterministically select one disjunct, ultimately obtaining a
conjunction of atomic constraints.

Proposition 1 implies that all the properties that can be polynomially reduced to
validity of equality/rational-order formulas, for example all the order-theoretic
properties listed above, can be decided in co-NP.
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Every preference relation � generates an indifference relation ∼: two tuples
t1 and t2 are indifferent (t1 ∼ t2) if neither is preferred to the other one, i.e.,
t1 �� t2 and t2 �� t1. We denote by ∼C the indifference relation generated by �C .

Composite preference relations are defined from simpler ones using logical con-
nectives. We focus on the following basic ways of composing preference relations
over the same schema:

– union: t1 (�1 ∪ �2) t2 iff t1 �1 t2 ∨ t1 �2 t2;
– prioritized composition: t1 (�1 � �2) t2 iff t1 �1 t2 ∨ (t2 ��1 t1 ∧ t1 �2 t2);
– Pareto composition:

t1 (�1 ⊗ �2) t2 iff (t1 �1 t2 ∧ t2 ��2 t1) ∨ (t1 �2 t2 ∧ t2 ��1 t1).

We will use the above composition operators to construct revisions of given
preference relations. We also consider transitive closure:

Definition 3. The transitive closure of a preference relation � over a relation
schema R is a preference relation TC(�) over R defined as:

(t1, t2) ∈ TC(�) iff t1 �n t2 for some n > 0,

where:
t1 �1 t2 ≡ t1 � t2
t1 �n+1 t2 ≡ ∃t3. t1 � t3 ∧ t3 �n t2.

Clearly, in general Definition 3 leads to infinite formulas. However, in the cases
that we consider in this paper the preference relation �C∗ will in fact be defined
by a finite formula.

Proposition 2. Transitive closure of every preference relation defined by an
equality/rational-order ipf is an ipf of at most exponential size, which can be
computed in exponential time.

Proof. This is because transitive closure can be expressed in Datalog and the
evaluation of Datalog programs over equality and rational-order constraints ter-
minates in exponential time (combined complexity) [19].

In the cases mentioned above, the transitive closure of a given preference relation
is a relation definable in the signature of the preference formula. But clearly
transitive closure itself, unlike union and prioritized or Pareto composition, is
not a first-order definable operator.

2.2 Winnow

We define now an algebraic operator that picks from a given relation the set of
the most preferred tuples, according to a given preference relation.

Definition 4. [8] If R is a relation schema and � a preference relation over R,
then the winnow operator is written as ω�(R), and for every instance r of R:

ω�(r) = {t ∈ r | ¬∃t′ ∈ r. t′ � t}.

If a preference relation is defined using a pf C, we write simply ωC instead of
ω�C . A preference query is a relational algebra query containing at least one
occurrence of the winnow operator.
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3 Preference Revisions

The basic setting is as follows: We have an original preference relation � and
revise it with a revising preference relation �0 to obtain a revised preference
relation �′. We also call �′ a revision of �. We assume that �, �0, and �′ are
preference relations over the same schema, and that all of them satisfy at least
the properties of SPOs.

In our setting, a revision is obtained by composing � with �0 using union,
prioritized or Pareto composition, and transitively closing the result (if necessary
to obtain transitivity). However, we formulate some properties, like minimality
or compatibility, in more general terms.

To define minimality, we order revisions using the symmetric difference (�).

Definition 5. Assume �1 and �2 are two revisions of a preference relation
� with a preference relation �0. We say that �1 is closer than �2 to � if
�1�� ⊂ �2��.

For finite domains and SPOs, the closeness order defined above concides with
the order based on the partial-order distance [4] of the revision to the original
relation �.

To further describe the behavior of revisions, we define several kinds of pref-
erence conflicts. The intuition here is to characterize those conflicts that, when
eliminated by prioritized or Pareto composition, reappear if the resulting pref-
erence relation is closed by transitivity.

Definition 6. A 0-conflict between a preference relation � and a preference
relation �0 is a pair (t1, t2) such that t1 �0 t2 and t2 � t1. A 1-conflict between
� and �0 is a pair (t1, t2) such that t1 �0 t2 and there exist s1, . . . sk, k ≥ 1,
such that t2 � s1 � · · · � sk � t1 and t1 ��0 sk ��0 · · · ��0 s1 ��0 t2. A 2-conflict
between � and �0 is a pair (t1, t2) such that there exist s1, . . . , sk, k ≥ 1 and
w1, . . . , wm, m ≥ 1, such that t2 � s1 � · · · � sk � t1, t1 ��0 sk ��0 · · · ��0 s1 ��0
t2, t1 �0 w1 �0 · · · �0 wm � t2, and t2 �� wm �� · · · �� w1 �� t1.

A 1-conflict is a 0-conflict if � is an SPO, but not necessarily vice versa. A
2-conflict is a 1-conflict if �0 is an SPO. The different kinds of conflicts are
pictured in Figures 2 and 3 (�̄ denotes the complement of �).

Example 3. If �0= {(a, b)} and �= {(b, a)}, then (a, b) is a 0-conflict which is
not a 1-conflict. If we add (b, c) and (c, a) to �, then the conflict becomes a
1-conflict (s1 = c). If we further add (c, b) or (a, c) to �0, then the conflict is
not a 1-conflict anymore. On the other hand, if we add (a, d) and (d, b) to �0
instead, then we obtain a 2-conflict.

We assume here that the preference relations � and �0 are SPOs. If �′=
TC(� ∪ �0), then for every 0-conflict between � and �0, we still obviously
have t1 �′ t2 and t2 �′ t1. Therefore, we say that the union does not resolve
any conflicts. On the other hand, if �′= TC(�0 � �), then for each 0-conflict
(t1, t2), t1 �0 �� t2 and ¬(t2 �0 �� t1). In the case of 1-conflicts, we get again
t1 �′ t2 and t2 �′ t1. But in the case where a 0-conflict is not a 1-conflict, we get
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t1 t2

�0

≺

(a)

t1 t2

sk s1

. . .

�0

≺, �̄0 ≺, �̄0

(b)

Fig. 2. (a) 0-conflict; (b) 1-conflict

t1 t2

w1 wm

. . .

sk s1

. . .

�0, ≺̄ �0, ≺̄

≺, �̄0 ≺, �̄0

Fig. 3. 2-conflict

only t1 �′ t2. Thus we say that prioritized composition resolves those 0-conflicts
that are not 1-conflicts. Finally, if �′= TC(� ⊗ �0), then for each 1-conflict
(t1, t2), ¬(t1 � ⊗ �0 t2) and ¬(t2 � ⊗ �0 t1). We get t1 �′ t2 and t2 �′ t1 if the
conflict is a 2-conflict, but if it is not, we obtain only t2 �′ t1. Thus we say
that Pareto composition resolves those 1-conflicts that are not 2-conflicts.

We now characterize those combinations of � and �0 that avoid different
kinds of conflicts.

Definition 7. A preference relation � is i-compatible(i = 0, 1, 2) with a pref-
erence relation �0 if there are no i-conflicts between � and �0.

0- and 2- compatibility are symmetric. 1-compatibility is not necessarily sym-
metric. For SPOs, 0-compatibility implies 1-compatibility and 1-compatibility
implies 2-compatibility. Examples 1 and 2 show a pair of 0-compatible relations.
0-compatibility of � and �0 does not require the acyclicity of � ∪ �0 or that
one of the following hold: � ⊆ �0, �0 ⊆ �, or � ∩ �0 = ∅.

Propositions 1 and 2 imply that all the variants of compatibility defined above
are decidable for equality/rational order ipfs. For example, 1-compatibility is
expressed by the condition �−1

0 ∩TC(�−�−1
0 ) = ∅ where �−1

0 is the inverse
of the preference relation �0.

0-compatibility of � and �0 is a necessary condition for TC(� ∪ �0) to be
irreflexive, and thus an SPO. Similar considerations apply to TC(�0 � �) and 1-
compatibility, and TC(� ⊗ �0) and 2-compatibility. In the next section, we will
see that those conditions are not sufficient: further restrictions on the preference
relations will be introduced.

We conclude by noting that in the absence of conflicts all three notions of
preference composition coincide.

Lemma 1. For every 0-compatible preference relations � and �0:

�0 ∪ � = �0 � � = �0 ⊗ �
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4 Query Modification

In this section, we study preference query modification. A given preference query
ω�(R) is transformed to the query ω�′(R) where �′ is obtained by composing
the original preference relation � with the revising preference relation �0, and
transitively closing the result. (The last step is clearly unnecessary if the obtained
preference relation is already transitive.) We want �′ to satisfy the same order-
theoretic properties as � and �0, and to be minimally different from �. To
achieve those goals, we impose additional conditions on � and �0.

For every θ ∈ {∪, �, ⊗}, we consider the order-theoretic properties of the pref-
erence relation �′ = �0 θ �, or �′ = TC(�0 θ �) if �0 θ � is not guaranteed
to be transitive. To ensure that this preference relation is an SPO, only irreflex-
ivity has to be guaranteed; for weak orders one has also to establish negative
transitivity.

4.1 Strict Partial Orders

SPOs have several important properties from the user’s point of view, and thus
their preservation is desirable. For instance, all the preference relations defined in
[20] and in the language Preference SQL [22] are SPOs. Moreover, if � is an SPO,
then the winnow ω�(r) is nonempty if (a finite) r is nonempty. The fundamental
algorithms for computing winnow require that the preference relation be an
SPO [8]. Also, in that case incremental evaluation of preference queries becomes
possible (Proposition 4 and Theorem 7).

Theorem 1. For every 0-compatible preference relations � and �0 such that
one is an interval order (IO) and the other an SPO, the preference relation
TC(�0 θ �), where θ ∈ {∪, �, ⊗}, is an SPO. Additionally, if the IO is a WO,
then TC(�0 θ �) =�0 θ �.

Proof. By Lemma 1, 0-compatibility implies that �0 ∪ � = �0 � � = �0 ⊗ �.
Thus, WLOG we consider only union. Assume �0 is an IO. If TC(� ∪ �0) is not
irreflexive, then � ∪ �0 has a cycle. Consider such cycle of minimum length. It
consists of edges that are alternately labeled �0 (only) and � (only). (Otherwise
the cycle can be shortened). If there is more than one non-consecutive �0-edge
in the cycle, then �0 being an IO implies that the cycle can be shortened. So the
cycle consists of two edges: t1 �0 t2 and t2 � t1. But this is a 0-conflict violating
0-compatibility of � and �0.

It is easy to see that there is no preference relation which is an SPO, contains
� ∪ �0, and is closer to � than TC(� ∪ �0).

As can be seen from the above proof, the fact that one of the preference
relations is an interval order makes it possible to eliminate those paths (and
thus also cycles) in TC(� ∪ �0) that interleave � and �0 more than once. In
this way acyclicity reduces to the lack of 0-conflicts.

It seems that the interval order (IO) requirement in Theorem 1 cannot be
weakened without needing to strengthen the remaining assumptions. If neither
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x1 = w2

y1 = x2

z1 = y2

w1 = z2

� �
0

≺≺
0

Fig. 4. A cycle for 0-compatible relations that are not IOs

of � and �0 is an IO, then we can find such elements x1, y1, z1, w1, x2, y2, z2, w2
that x1 � y1, z1 � w1, x1 �� w1, z1 �� y1, x2 �0 y2, z2 �0 w2, x2 ��0 w2, and
z2 ��0 y2. If we choose y1 = x2, z1 = y2, w1 = z2, and x1 = w2, then we get a
cycle in � ∪ �0. Note that in this case � and �0 are still 0-compatible. Also,
there is no SPO preference relation which contains � ∪ �0 because each such
relation has to contain TC(� ∪ �0). This situation is pictured in Figure 4.

Example 4. Consider again the preference relation �C1 :

(m, y) �C1 (m′, y′) ≡ m = m′ ∧ y > y′.

Suppose that the new preference information is captured as �C3 which is an IO
but not a WO:

(m, y) �C3 (m′, y′) ≡ m = ′′VW′′ ∧ y = 1999 ∧ m′ = ′′Kia′′ ∧ y′ = 1999.

Then TC(�C1 ∪ �C3), which properly contains �C1 ∪�C3 , is defined as the SPO
�C4 :

(m, y) �C4 (m′, y′) ≡ m = m′ ∧ y > y′∨
m = ′′VW′′ ∧ y ≥ 1999 ∧ m′ = ′′Kia′′ ∧ y′ ≤ 1999.

For dealing with prioritized composition, 0-compatibility can be replaced by a less
restrictive condition, 1-compatibility, because prioritized composition already
provides a way of resolving some conflicts.

Theorem 2. For every preference relations � and �0 such that �0 is an IO, �
is an SPO and � is 1-compatible with �0, the preference relation TC(�0 � �)
is an SPO.

Proof. We assume that TC(�0 � �) is not irreflexive and consider a cycle of
minimum length in �0 � �. If the cycle has two non-consecutive edges labeled
(not necessarily exclusively) by �0, then it can be shortened, because �0 is an
IO. The cycle has to consist of an edge t1 �0 t2 and a sequence of edges (labeled
only by �): t2 � t3, . . . , tn−1 � tn, tn � t1 such that n > 2 and t1 ��0 tn ��0
. . . ��0 t3 ��0 t2. (We cannot shorten sequences of consecutive �-edges because
� is not necessarily preserved in �0 � �.) Thus (t1, t2) is a 1-conflict violating
1-compatibility of � with �0.
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Clearly, there is no SPO preference relation which contains �0 ��, and is closer
to � than TC(�0 � �). Violating any of the conditions of Theorem 2 may lead
to a situation in which no SPO preference relation which contains �0 �� exists.

If �0 is a WO, the requirement of 1-compatibility and the computation of
transitive closure are unnecessary.

Theorem 3. For every preference relations �0 and � such that �0 is a WO
and � an SPO, the preference relation �0 � � is an SPO.

Let’s turn now to Pareto composition. There does not seem to be any simple way
to weaken the assumptions in Theorem 1 using the notion of 2-compatibility.
Assuming that �, �0, or even both are IOs does not sufficiently restrict the
possible interleavings of � and �0 in TC(�0 ⊗ �) because neither of those two
preference relations is guaranteed to be preserved in TC(�0 ⊗ �). However, we
can establish a weaker version of Theorem 3.

Theorem 4. For every preference relations �0 and � such that both are WOs,
the preference relation �0 ⊗ � is an SPO.

Proposition 2 implies that for all preference relations defined using equality/-
rational-order ipfs, the computation of the preference relations TC(� ∪ �0),
TC(�0 � �) and TC(� ⊗ �0) terminates. The computation of transitive closure
is done in a completely database-independent way.

Example 5. Consider Examples 1 and 4. We can infer that

t1 = (′′VW′′, 2002) �C4 (′′Kia′′, 1997) = t3,

because (′′VW′′, 2002) �C1 (′′VW′′, 1999), (′′VW′′, 1999) �C3 (′′Kia′′, 1999),
and (′′Kia′′, 1999) �C1 (′′Kia′′, 1997). Note that the tuples (′′VW′′, 1999) and
(′′Kia′′, 1999) are not in the database.

If the conditions of Theorems 1 and 2 do not apply, Proposition 2 implies that
for equality/rational order ipfs the computation of TC(� ∪ �0), TC(�0 � �)
and TC(� ⊗ �0) yields some finite ipf C(t1, t2). Thus the irreflexivity of the
resulting preference relation reduces to the unsatisfiability of C(t, t), which by
Proposition 1 is a decidable problem for equality/rational order ipfs. Of course,
the relation, being a transitive closure, is already transitive.

Example 6. Consider Examples 1 and 2. Neither of the preference relations �C1

and �C2 is an interval order. Therefore, the results established earlier in this
section do not apply. The preference relation �C∗= TC(�C1 ∪ �C2) is defined
as follows (this definition is obtained using Constraint Datalog computation):

(m, y) �C∗ (m′, y′) ≡ m = m′ ∧ y > y′ ∨ m = ′′VW′′ ∧ m′ �= ′′VW′′ ∧ y ≥ y′

The preference relation �C∗ is irreflexive (this can be effectively checked). It
also properly contains �C1 ∪�C2 , because t1 �C∗ t3 but t1 ��C1 t3 and t1 ��C2 t3.
The query ωC∗(Car) evaluated in the instance r1 (Figure 1) returns only the
tuple t1.
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4.2 Weak Orders

Weak orders are practically important because they capture the situation where
the domain can be decomposed into layers such that the layers are totally or-
dered and all the elements in one layer are mutually indifferent. This is the
case, for example, if the preference relation can be represented using a nu-
meric utility function. If the preference relation is a WO, a particularly ef-
ficient (essentially single pass) algorithm for computing winnow is applic-
able [9].

We will see that for weak orders the transitive closure computation is unnec-
essary and minimal revisions are directly definable in terms of the preference
relations involved.

Theorem 5. For every 0-compatible WO preference relations � and �0, the
preference relations � ∪ �0 and � ⊗ �0 are WO.

For prioritized composition, we can relax the 0-compatibility assumption. This
immediately follows from the fact that WOs are closed with respect to prioritized
composition [8].

Proposition 3. For every WO preference relations � and �0, the preference
relation �0 � � is a WO.

A basic notion in utility theory is that of representability of preference relations
using numeric utility functions:

Definition 8. A real-valued function u over a schema R represents a preference
relation � over R iff

∀t1, t2 [t1 � t2 iff u(t1) > u(t2)].

Such a preference relation is called utility-based.

Being a WO is a necessary condition for the existence of a numeric representation
for a preference relation. However, it is not sufficient for uncountable orders [10].
It is natural to ask whether the existence of numeric representations for the
preference relations � and �0 implies the existence of such a representation
for the preference relation �′= (�0 θ �) where θ ∈ {∪, �, ⊗}. This is indeed
the case.

Theorem 6. Assume that � and �0 are WO preference relations such that

1. � and �0 are 0-compatible,
2. � can be represented using a real-valued function u,
3. �0 can be represented using a real-valued function u0.

Then �′ = �0 θ �, where θ ∈ {∪, �, ⊗}, is a WO preference relation that can
be represented using any real-valued function u′ such that for all x, u′(x) =
a · u(x) + b · u0(x) + c where a and b are arbitrary positive real numbers.

Proof. By case analysis. The assumption of 0-compatibility is essential.
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Surprisingly, 0-compatibility requirement cannot in general be replaced by 1-
compatibility if we replace ∪ by � in Theorem 6. This follows from the fact that
the lexicographic composition of one-dimensional standard orders over R is not
representable using a utility function [10]. Thus, preservation of representability
is possible only under 0-compatibility, in which case �0 ∪� = �0 �� = �0 ⊗�.
(Lemma 1). (The results [10] indicate that for countable domains considered in
this paper, the prioritized composition of WOs, being a WO, is representable
using a utility function. However, that utility function is not definable in terms
of the utility functions representing the given orders.)

We conclude this section by showing a general scenario in which the union of
WOs occurs in a natural way. Assume that we have a numeric utility function u
representing a (WO) preference relation �. The indifference relation ∼ generated
by � is defined as:

x ∼ y ≡ u(x) = u(y).

Suppose that the user discovers that ∼ is too coarse and needs to be further
refined. This may occur, for example, when x and y are tuples and the function
u takes into account only some of their components. Another function u0 may
be defined to take into account other components of x and y (such components
are called hidden attributes [26]). The revising preference relation �0 is now:

x �0 y ≡ u(x) = u(y) ∧ u0(x) > u0(y).

It is easy to see that �0 is an SPO 0-compatible with � but not necessarily a
WO. Therefore, by Theorem 1 the preference relation � ∪ �0 is an SPO.

5 Incremental Evaluation

5.1 Query Modification

We show here how the already computed result of the original preference query
can be reused to make the evaluation of the modified query more efficient. We
will use the following result.

Proposition 4. [8] If �1 and �2 are preference relations over a relation schema
R and �1 ⊆ �2, then for all instances r of R:

– ω�2(r) ⊆ ω�1(r);
– ω�2(ω�1(r)) = ω�2(r) if �1 and �2 are SPOs.

Consider the scenario in which we iteratively modify a given preference query by
revising the preference relation using only union in such a way that the revised
preference relation is an SPO (for example, if the assumptions of Theorem 1
are satisfied). We obtain a sequence of preference relations �1, . . . , �n such that
�1 ⊆ · · · ⊆ �n.

In this scenario, the sequence of query results is:

r0 = r, r1 = ω�1(r), r2 = ω�2(r), . . . , rn = ω�n(r).
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Proposition 4 implies that the sequence r0, r1, . . . , rn is decreasing:

r0 ⊇ r1 ⊇ · · · ⊇ rn

and that it can be computed incrementally:

r1 = ω�1(r0), r2 = ω�2(r1), . . . , rn = ω�n(rn−1).

To compute ri, there is no need to look at the tuples in r − ri−1, nor to
recompute winnow from scratch. The sets of tuples r1, . . . , rn are likely to have
much smaller cardinality than r0 = r.

It is easy to see that the above comments apply to all cases where the revised
preference relation is a superset of the original preference relation. Unfortunately,
this is not the case for revisions that use prioritized or Pareto composition.
However, given a specific pair of preference relations � and �0, one can still
effectively check whether TC(�0 � �) or TC(�0 ⊗ �) contains � if the validity
of preference formulas is decidable, as is the case for equality/rational-order
formulas (Proposition 1).

5.2 Database Update

In the previous section we studied query modification: the query is modified,
while the database remains unchanged. Here we reverse the situation: the query
remains the same and the database is updated.

We consider first updates that are insertions of sets of tuples. For a database
relation r, we denote by ∆+r the set of inserted tuples. We show how the previous
result of a given preference query can be reused to make the evaluation of the
same query in an updated database more efficient.

We first establish the following result.

Theorem 7. For every preference relation � over R which is an SPO and every
instance r of R:

ω�(r ∪ ∆+r) = ω�(ω�(r) ∪ ∆+r).

Consider now the scenario in which we have a preference relation �, which is an
SPO, and a sequence of relations

r0 = r, r1 = r0 ∪ ∆+r0, r2 = r1 ∪ ∆+r1, . . . , rn = rn−1 ∪ ∆+rn−1.

Theorem 7 shows that

ω�(r1) = ω�(ω�(r0) ∪ ∆+r0)
ω�(r2) = ω�(ω�(r1) ∪ ∆+r1)
. . .
ω�(rn) = ω�(ω�(rn−1) ∪ ∆+rn−1).

Therefore, each subsequent evaluation of winnow can reuse the result of the
previous one. This is advantageous because winnow returns a subset of the given
relation and this subset is often much smaller than the relation itself.
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Clearly, the algebraic law, stated in Theorem 7, can be used together with
other, well-known laws of relational algebra and the laws specific to preference
queries [8, 21] to produce a variety of rewritings of a given preference query.
To see how a more complex preference query can be handled, let’s consider the
query consisting of winnow and selection, ω�(σα(R)). We have

ω�(σα(r ∪ ∆+r)) = ω�(σα(r) ∪ σα(∆+r)) = ω�(ω�(σα(r)) ∪ σα(∆+r))

for every instance r of R. Here again, one can use the previous result of the
query, ω�(σα(r)), to make its current evaluation more efficient. Other operators
that distribute through union, for example projection and join, can be handled
in the same way.

Next, we consider updates that are deletions of sets of tuples. For a database
relation r, we denote by ∆−r the set of deleted tuples.

Theorem 8. For every preference relation � over R and every instance r of R:

ω�(r) − ∆−r ⊆ ω�(r − ∆−r).

Theorem 8 gives an incremental way to compute an approximation of winnow
from below. It seems that in the case of deletion there cannot be an exact law
along the lines of Theorem 7. This is because the deletion of some tuples from
the original database may promote some originally dominated (and discarded)
tuples into the result of winnow over the updated database.

Example 7. Consider the following preference relation �= {(a, b1), . . . , (a, bn)}
and the database r = {a, b1, . . . , bn}. Then ω�(r) = {a} but ω�(r − {a}) =
{b1, . . . , bn}.

6 Finite Restrictions of Preference Relations

It is natural to consider restrictions of preference relations to given database
instances [27]. If r is an instance of a relation schema R and � is a preference
relation over R, then [�]r = � ∩ r × r is also a preference relation over R and
ω[�]r (r) = ω�(r).

The advantage of using [�]r instead of � comes from the fact that the former
depends on the database contents and can have stronger properties than the
latter. For example, [�]r may be an SPO (or a WO), while � is not. (Clearly,
[�]r inherits all the order-theoretic properties of �, studied in the present paper.)
Similarly, [�]r may be i-compatible with [�0]r, while � is not i-compatible with
�0. On the other hand, � makes more elaborate use of the preference information
than [�]r and does not require adaptation if the input database changes.

Example 8. Let �= {(a, b)}, �0= {(b, c)}, r = {a, c}. Thus ω�(r) = ω[�]r (r) =
{a, c}. Consider revision using union, as in Theorem 1. The revised preference
relation �1= TC(� ∪ �0) = {(a, b), (b, c), (a, c)}. On the other hand, [�]r =
[�0]r = ∅. Thus the revised preference relation �2= TC([�]r ∪ [�0]r) = ∅. After
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the revision, ω�1(r) = {a} and ω�2 = {a, c}. So in the latter case revision has no
impact on preference. We also note that [TC(� ∪ �0)]r �= TC([�]r ∪ [�0]r), and
thus the correspondence between the unrestricted and the restricted preference
relations no longer holds after the revision.

A related issue is that of non-intrinsic preference relations. Such relations are
defined using formulas that refer not only to built-in predicates.

Example 9. The following preference relation is not intrinsic:

x �Pref y ≡ Pref(x, y)

where Pref is a database relation. One can think of such a relation as repre-
senting stored preferences.

Revising non-intrinsic preference relations looks problematic. First, it is typically
not possible to establish the simplest order-theoretic properties of such relations.
For instance, in Example 9 it is not possible to determine the irreflexivity or
transitivity of �Pref on the basis of its definition. Whether such properties are
satisfied depends on the contents of the database relation Pref . Second, the
transitive closure of a non-intrinsic preference relation may fail to be expressed
as a finite formula. Again, Example 9 can be used to illustrate this point. The
above problems disappear, however, if we consider [�]r instead of �.

7 Related Work

[16] presents a general framework for modeling change in preferences. Preferences
are represented syntactically using sets of ground preference formulas, and their
semantics is captured using sets of preference relations. Thanks to the syntactic
representation preference revision is treated similarly, though not identically, to
belief revision [13], and some axiomatic properties of preference revisions are
identified. The result of a revision is supposed to be minimally different from
the original preference relation (using a notion of minimality based on symmet-
ric difference) and satisfy some additional background postulates, for example
specific order axioms. [16] does not address the issue of constructing or defining
revised relations, nor does it study the properties of specific classes of prefer-
ence relations. On the other hand, [16] discusses also preference contraction, and
domain expansion and shrinking.

In our opinion, there are several fundamental differences between belief and
preference revision. In belief revision, propositional theories are revised with
propositional formulas, yielding new theories. In preference revision, binary pref-
erence relations are revised with other preference relations, yielding new pref-
erence relations. Preference relations are single, finitely representable (though
possibly infinite) first-order structures, satisfying order axioms. Belief revision
focuses on axiomatic properties of belief revision operators and various notions
of revision minimality. Preference revision focuses on axiomatic, order-theoretic
properties of revised preference relations and the definability of such relations
(though still taking revision minimality into account).
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[28] considers revising a ranking (a WO) of a finite set of product profiles
with new information, and shows that a new ranking, satisfying the AGM belief
revision postulates [13], can be computed in a simple way. [26] formulates various
scenarios of preference revision and does not contain any formal framework. [29]
studies revision and contraction of finite WO preference relations by single pairs
t1 �0 t2. [12] describes minimal change revision of rational preference relations
between propositional formulas.

Two different approaches to preference queries have been pursued in the liter-
ature: qualitative and quantitative. In the qualitative approach, preferences are
specified using binary preference relations [24, 14, 7, 8, 20, 22]. In the quantitative
utility-based approach, preferences are represented using numeric utility func-
tions [1, 17], as shown in Section 4. The qualitative approach is strictly more
general than the quantitative one, since one can define preference relations in
terms of utility functions. However, only WO preference relations can be rep-
resented by numeric utility functions [10]. Preferences that are not WOs are
common in database applications, c.f., Example 1.

Example 10. There is no utility function that captures the preference relation
described in Example 1. Since there is no preference defined between t1 and t3
or t2 and t3, the score of t3 should be equal to the scores of both t1 and t2. But
this implies that the scores of t1 and t2 are equal which is not possible since t1
is preferred over t2.

This lack of expressiveness of the quantitative approach is well known in utility
theory [10].

In the earlier work on preference queries [8, 20], one can find positive and
negative results about closure of different classes of orders, including SPOs and
WOs, under various composition operators. The results in the present paper
are, however, new. Restricting the relations � and �0 (for example, assuming
the interval order property and compatibility) and applying transitive closure
where necessary make it possible to come up with positive counterparts of the
negative results in [8]. For example, [8] shows that SPOs and WOs are in general
not closed w.r.t. union, which should be contrasted with Theorems 1 and 5. In
[20], Pareto and prioritized composition are defined somewhat differently from
the present paper. The operators combine two preference relations, each defined
over some database relation. The resulting preference relation is defined over the
Cartesian product of the database relations. So such operators are not useful in
the context of revision of preference relations. On the other hand, the careful
design of the language guarantees that every preference relation that can be
defined is an SPO.

Probably the most thoroughly studied class of qualitative preference queries
is the class of skyline queries. A skyline query partitions all the attributes of a
relation into DIFF, MAX, and MIN attributes. Only tuples with identical values
of all DIFF attributes are comparable; among those, MAX attribute values are
maximized and MIN values are minimized. The query in Example 1 is a very
simple skyline query [5], with Make as a DIFF and Year as a MAX attribute.
Without DIFF attributes, a skyline is a special case of n-ary Pareto composition.
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Algorithms for evaluating qualitative preference queries are described in [8,
27], and for evaluating skyline queries, in [5, 25, 3]. [2] describes how to im-
plement preference queries that use Pareto compositions of utility-based pref-
erence relations. In Preference SQL [22] general preference queries are imple-
mented by a translation to SQL. [17] describes how materialized results of
utility-based preference queries can be used to answer other queries of the
same kind.

8 Conclusions and Future Work

We have presented a formal foundation for an iterative and incremental approach
to constructing ans evaluating preference queries. Our main focus is on query
modification, a query transformation approach which works by revising the pref-
erence relation in the query. We have provided a detailed analysis of the cases
where the order-theoretic properties of the preference relation are preserved by
the revision. We considered a number of different revision operators: union, pri-
oritized and Pareto composition. We have also formulated algebraic laws that
enable incremental evaluation of preference queries.

Future work includes the integration of our results with standard query opti-
mization techniques, both rewriting- and cost-based. Semantic query optimiza-
tion techniques for preference queries [9] can also be applied in this context.
Another possible direction could lead to the design of a revision language in
which richer classes of preference revisions can be specified.

One should also consider possible courses of action if the original preference
relation � and �0 lack the property of compatibility, for example if � and �0
are not 0-compatible in the case of revision by union. Then the target of the
revision is an SPO which is the closest to the preference relation � ∪ �0. Such
an SPO will not be unique. Moreover, it is not clear how to obtain ipfs defining
the revisions. Similarly, one could study contraction of preference relations. The
need for contraction arises, for example, when a user realizes that the result of
a preference query does not contain some expected tuples.
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