
Preference Queries over Sets
Xi Zhang 1, Jan Chomicki 2

Department of Computer Science and Engineering,
University at Buffalo, Buffalo, NY 14260, U.S.A.

1xizhang@acm.org
2chomicki@buffalo.edu

Abstract—We propose a “logic + SQL” framework for set
preferences. Candidate best sets are represented using profiles
consisting of scalar features. This reduces set preferences to
tuple preferences over set profiles. We propose two optimiza-
tion techniques: superpreference and M-relation. Superpreference
targets dominated profiles. It reduces the input size by filtering
out tuples not belonging to any best k-subset. M-relation targets
repeated profiles. It consolidates tuples that are exchangeable
with regard to the given set preference, and therefore avoids
redundant computation of the same profile. We show the results
of an experimental study that demonstrates the efficacy of the
optimizations.

I. INTRODUCTION

In recent years, preferences have been well studied in
the database and AI literature [1], [2], [3], [4], [5]. The
issues addressed in this research include, among others, prefer-
ence specification, preference query languages, and preference
query evaluation and optimization. However, the research on
preferences, with a few exceptions [6], [7], [8], has almost
exclusively focused on object (or tuple) preferences which
express preference relationships between individual objects or
tuples in a relation.

We observe that in decision making a user sometimes needs
to make a group decision based not only on the individual
object properties but also on the properties of the group as a
whole. For example, in university admission, the decision is
made collectively on the whole incoming class. Factors such as
preference for underprivileged groups are usually an important
part of the decision-making process. In a board election, there
might be co-existence or exclusivity relationships between
candidates. A poll company usually needs to find a specific
combination of candidates in order to obtain statistically rep-
resentative results. Ex. 1 illustrates a book purchase scenario,
where several set preferences are elaborated.

Example 1: Alice is buying three books as gifts. Here
is a list of book quotes collected from different vendors:

Book:

title genre rating price vendor
a1 sci-fi 5.0 $15.00 Amazon
a2 biography 4.8 $20.00 B&N
a3 sci-fi 4.5 $25.00 Amazon
a4 romance 4.4 $10.00 B&N
a5 sci-fi 4.3 $15.00 Amazon
a6 romance 4.2 $12.00 B&N
a7 biography 4.0 $18.00 Amazon
a8 sci-fi 3.5 $18.00 Amazon

Alice needs to decide on the three books to buy. She might
have any of the following preferences:
(C1) She wants to spend as little money as possible.

(C2) She prefers to get one sci-fi book.
(C3) Ideally, she prefers that all three books be from the same
vendor. If that is not possible, she prefers to deal with as few
vendors as possible.

In addition, Alice might have different combinations of the
above preferences. For example, Alice might have both (C1)
and (C2), but (C2) may be more important than (C1) to her.
This preference is expressed as follows:
(C4) Alice’s preference is a prioritized composition of (C2)
and (C1).

The preference (C1) can be directly simulated by a tuple
preference over Book, such that for any t1, t2 P Book, t1
is preferred to t2 iff t1.price t2.price. Then the top three
books in Book (according to this preference) constitute the
best answer set. However, in the other cases, i.e., (C2-C4),
such a simulation is not possible. l

Our goal is to develop a general framework for set pref-
erences from the database perspective. Previous work on set
preferences was predominantly done in AI research [7], [8].
To the best of our knowledge, the only work that addresses
a related problem in the database context is [6]. However,
the form of set preferences which can be expressed by the
language in [6] is quite restricted. In this work, we emphasize
the generality of preferences by providing a general formal
framework for set preferences which combines first-order logic
and SQL. We work with sets of fixed cardinality to focus on
the composition of sets. Preferences involving fixed-cardinality
sets emerge in many real applications, as outlined in Sec. V.

We observe that a large class of set preferences has two
components: (1) Quantities of interest; (2) Desired value or
order of those quantities.

Example 2: In Ex. 1,
Quantity of Interest Desired Value

or Order
(C1) total cost
(C2) number of sci-fi books 1
(C3) number of distinct vendors

l

Consequently, our framework consists of two components:
(1) profiles: tuples of features, each feature capturing a quan-
tity of interest; (2) profile preference relations to specify
desired values or orders.

The main idea is to construct the profiles of candidate
subsets based on their features. Since each profile is a tuple of
features, the original set preference can now be formulated as
a tuple preference over the profiles. Moreover, the best subsets

under the set preference in the original relation correspond to
the best profiles.

Our major contributions are:
 We propose a formal framework, combining SQL and

first-order logic, for the specification of (second-order)
set preferences via profiling.

 We define the notion of superpreference relation which
helps to prune candidate best subsets. We show how to
systematically construct first-order definitions of super-
preference relations in restricted cases.

 We define the notion of M-relation that helps to consoli-
date candidate subsets. We show how to compute optimal
M-relations using SQL.

 We report on an experimental study which demonstrates
the efficacy of our optimization techniques and their
synergistic character.

The rest of the paper is organized as follows. Sec. II provides
the basic notions used throughout this work. We first elaborate
our framework in Sec. III and Sec. IV, and then discuss the
computational issues involved in computing the best subsets in
Sec. V-A. We describe efficient optimizations to significantly
reduce the computation effort in Sec. V-B (superpreference)
and Sec. V-C (M-relation). In Sec. V-E, we show how to
combine those two optimizations. We report on an empirical
study of their performance in Sec. VI. Finally, we discuss the
related work in Sec. VII and conclude in Sec. VIII.

II. BASIC NOTIONS

A binary relation ¡ is irreflexive iff @x. x £ x. It is
transitive iff @x, y, z. px ¡ y ^ y ¡ zq ñ x ¡ z. It is
negatively transitive iff @x, y, z. px £ y ^ y £ zq ñ x £ z.
It is connected iff @x, y. x ¡ y _ y ¡ x _ x � y. A strict
partial order (SPO) is an irreflexive, transitive binary relation.
A weak order (WO) is a negatively transitive SPO. A total
order (TO) is a connected SPO. SPO conditions are generally
considered to capture rationality of preferences. WOs arise
when preferences are defined using a numeric scoring function.
SPOs are more general than WOs, for example skyline, p-
skyline and many other kinds of preferences [1], [2], [9] are
SPOs but not WOs.

A multiset is a generalization of a set. In a multiset, each
member may have more than one membership, in contrast
to only one membership in a set. The cardinality of a set
(multiset) s, denoted by |s|, is the total number of elements
in s. A set (multiset) s1 is a subset (multisubset) of the set
(multiset) s iff each member of s1 is also a member of s. For
example, assume multisets s1 � ta, b, bu, s2 � ta, bu, s3 �
ta, a, bu. Then, |s1| � 3, |s2| � 2 and |s3| � 3, respectively.
Furthermore, s2 � s1, but s3 � s1.

We make the standard assumptions of the relational model
of data. In particular, we assume that we have two attribute
domains: rational numbers (Q) and uninterpreted constants
(D). For a relation schema R � xA1, . . . , Amy, we define
the domain of R as the cross product of the domains of its
attributes, i.e. DompRq � DompA1q � . . .�DompAmq.

Definition 1: Tuple Preference [2], [4]. Given a relation
schema R � xA1, . . . , Amy, a tuple preference relation ¡
over R is a subset of rDompRqs2. If for a first order formula
C, Cpt1, t2q ô t1 ¡ t2, then the tuple preference is defined
by the formula C. We denote the preference relation by ¡C .

For a tuple preference, the computation of the best tuples
is embedded into Relational Algebra (RA) in the form of
the winnow operator. It is commonly assumed that the tuple
preference is an SPO.

Definition 2: Winnow Operator [4]. If R is a relation
schema and ¡C a preference relation over R, then the winnow
operator is written as ωCpRq, and for every instance r of R:

ωCprq � tt P r | Et1 P r.t1 ¡C tu.
Tuples in ωCprq are not dominated by other tuples in r, and

are thus the best tuples of r. Denote by subsetsprq the power
set of the relation r. We capture the quantities of interest for
subsets using subset features.

Definition 3: Subset Feature. Given a relation r, a subset
feature F is a function which maps the subsets of r to exactly
one of the two attribute domains. Denote by DompFq the
domain of F , either Q or D.

Definition 4: Subset Profile Schema. Given a relation r, a
subset profile schema Γ is a schema xF1, . . . ,Fmy, where Fi

is a subset feature, i � 1, . . . ,m.
Definition 5: Subset Profile Relation. Given a relation r

and its subset profile schema Γ � xF1, . . . ,Fmy, the subset
profile relation γ is defined as

γ � txF1psq, . . . ,Fmpsqy | s P subsetsprqu
The tuple xF1psq, . . . ,Fmpsqy is the profile of s under Γ,
denoted by profileΓpsq.

When the context is unambiguous, we omit subset, and refer
to the above concepts as feature, profile schema and profile
relation, respectively.

III. AGGREGATE FEATURES

In this work, without loss of generality, we consider single-
valued features whose values are rational numbers, as it is
often the case in real applications [7]. This is achieved by
defining features as aggregate values in Def. 6. Other possible
single-valued features include boolean features, which will be
discussed in Sec. VII.

Definition 6: Aggregate Subset Features. Given a relation
r with a schema R, an aggregate subset feature F is defined
by a parameterized SQL query of the form
SELECT expr FROM $S WHERE condition

where: (1) $S is a distinguished set parameter whose values
can be instantiated to an arbitrary subset of r, i.e. Domp$Sq �
subsetsprq. (2) expr is of the form aggr([DISTINCT] A)
where aggr P {min,max,sum,count,avg}, A is an
attribute of R, or a function of constants and the above
aggregates. (3) FROM list contains a single item $S or an
alias for $S. (4) WHERE clause is a conjunction of atomic
comparisons. As we will see, the cardinality of $S can be
restricted.

Example 3: In Ex. 1, the quantity of interest in (C1), (C2)
and (C3) is captured by the subset feature F1,F2 and F3,
respectively.

F1 � SELECT sum(price) FROM $S
F2 � SELECT count(title) FROM $S

WHERE genre=’sci-fi’
F3 � SELECT count(DISTINCT vendor) FROM $S

where $S is a set parameter that can be substituted by
any three-element subset of Book, as Alice decides to buy
three books. Given any subset s of Book, we can evalu-
ate the value of each feature by instantiating the set pa-
rameter $S in the feature definition with s. For example,
assume s � ta1, a2, a3u, then F1psq is the scalar result
of the query SELECT sum(price) FROM s, which is
$15.00 � $20.00 � $25.00� $60.00. Similarly, F2psq � 2
due to the result of SELECT count(title) FROM s
WHERE genre=’sci-fi’, and F3psq � 2 due to that
of SELECT count(DISTINCT vendor) FROM s. Let
the subset profile schema Γ � xF1,F2y. The subset profile
relation γ (corresponding to Book) contains, among others, the
following tuples: p$60, 2q, which is the profile of the subsets
ta1, a2, a3u and ta2, a3, a5u; and p$61, 2q, which is the profile
of ta3, a7, a8u. l

IV. PROFILE-BASED SET PREFERENCES

Now we can define set preferences over subsets as tuple
preferences over the corresponding profiles. Commonly, a
tuple preference relation is defined using a first-order formula
[4], as is the case for the tuple preference simulating (C1) in
Ex. 1.

Definition 7: Set Preference. Given a relation schema R �
xA1, . . . , Amy, a set preference relation Ï is a finite subset
of the product rsubsetspDompRqqs2.

In principle, set preferences could also be defined using
logic formulas. However, second-order variables would be
necessary. To avoid the conceptual and computational com-
plexity associated with such variables, we consider only set
preferences that are based on profile preferences.

Definition 8: Profile-based Set Preference. Let Γ �
xF1, . . . ,Fmy be a profile schema and ¡C a tuple preference
relation, which is a subset of rDompF1q� . . .�DompFmqs2.
For every sets s1 and s2,

s1 ÏpΓ,Cq s2 ô profileΓps1q ¡C profileΓps2q.
We say that the set s1 is preferred to the set s2 and the profile-
based set preference relation is denoted by ÏpΓ,Cq.

Proposition 4.1: If ¡C is an SPO, then for any profile
schema Γ, the set preference relation ÏpΓ,Cq is an SPO, too.

Recall that essential components of set preferences are the
desired values or orders of the quantities of interest, which
are captured by a preference relation over profiles. In fact, in
order to elaborate a set preference in our framework, a user
needs to do the following: (1) Provide a subset profile schema
by defining subset features F1, . . . ,Fm. (2) Specify the profile
preference using a tuple preference formula.

Def. 8 provides a general framework for set preferences. For
the reasons we will shortly discuss in Sec. V, we restrict our
interest to set preferences among subsets of fixed cardinality.
Here, we only point out that in Ex. 1, Alice buys three books,
and thus we work with subsets of fixed cardinality 3.

Example 4: Assume the profile schema Γ � xF1,F2,F3y
as in Ex. 3. We define the preference formula Ci, pi � 1, 2, 3q

over Γ, such that the individual set preference (Ci), i � 1, 2, 3
is based on Γ and ¡Ci. For example,

s1 ÏpΓ,C1q s2

ô xF1ps1q,F2ps1q,F3ps1qy ¡C1 xF1ps2q,F2ps2q,F3ps2qy
ô F1ps1q F1ps2q.

l

Individual preference formulas can be the building blocks of
more complicated preferences, where formulas are assembled
to express union, intersection, prioritized composition and
Pareto composition of preferences [4], [2].

Example 5: Consider (C4) in Ex. 1, i.e. the prioritized
composition of (C2) and (C1) . Let the profile schema
Γ � xF1,F2,F3y, and the preference formula C4 over Γ be
the prioritized composition [4] of the preference formulas C2
and C1
s1 ÏpΓ,C4q s2 ô pF2ps1q � 1^ F2ps2q � 1q

_pF2ps1q � 1^ F2ps2q � 1^ F1ps1q F1ps2qq
_pF2ps1q � 1^ F2ps2q � 1^ F1ps1q F1ps2qq.

We see that the preference formula C4 expresses precisely the
set preference (C4). l

V. COMPUTING THE BEST k-SUBSETS

Recall that we make a decision to work with subsets of
fixed cardinality. There are two reasons for this choice. First,
fixed cardinality allows the user to focus on the composition
of a best subset and the interactions between the tuples in
it. Some set properties might have an inherent bias towards
sets of certain cardinalities. For example, without limiting the
cardinality in the set preference (C1), the user certainly prefers
small subsets, since buying fewer books costs less. In the
extreme case, the best subset would be the empty set, with cost
$0. In reality, this is rarely what the user intends. Likewise,
many applications have an explicit or implicit requirement on
cardinality. For example, a board election typically has a fixed
number of seats to be filled. A university usually admits a class
of a predetermined size. A poll company has limited resources
for interviewing only a certain number of people.

Definition 9: k-subset. Given a relation r and a positive
integer k, k ¤ |r|, a k-subset s of r is a subset of r with
cardinality k, i.e. s � r and |s| � k. Denote by k-subsetsprq
the set of all k-subsets of r.

Definition 10: k-subset Profile Relation. Given a relation r
and its subset profile schema Γ � xF1, . . . ,Fmy, the k-subset
profile relation γk is defined as

γk � txF1psq, . . . ,Fmpsqy | s P k-subsetsprqu
We omit the subscript k in γk when the context is unambigu-
ous.
A. Basic Algorithm

For a tuple preference, the computation of the best tuples
is embedded into Relational Algebra (RA) in the form of a
winnow operator (c.f., Def. 2). In addition to the universal
Nested Loops (NL) algorithm, several other efficient evalu-
ation algorithms for winnow have been proposed when the
preference relation is an SPO, among others, Block Nested
Loops (BNL) [1] and Sort-Filter-Skyline (SFS) [10]. In our
framework, a set preference relation is formulated as a tuple
preference relation ¡C over a profile schema Γ. Then, a

winnow operator is defined over Γ, i.e. ωCpΓq. The best k-
subsets are computed by winnowing over the profile relation
γ containing the profiles of all k-subsets of a given relation r.
Alg. 1 applies winnow on a stream of profiles of all k-subsets.

Algorithm 1 (NAIVE) Basic Algorithm
Require: a profile schema Γ, an SPO profile preference

relation ¡C , a relation r and a positive integer k, k |r|
Ensure: the best k-subsets of r under the set pref. ÏpΓ,Cq

1: Generate all k-subsets of relation r and compute the
profiles of each k-subset based on the schema Γ, obtaining
the profile relation γ.

2: Compute γ1 � ωCpγq using any winnow evaluation
algorithm, e.g. BNL [1].

3: Retrieve the subsets corresponding to the profiles in γ1.

For the generation of candidate k-subsets in Line 1 of
Alg. 1, any sound and complete k-subset generator suffices.
We arbitrarily choose a lexicographical k-subset generator [11]
which produces k-subsets in the lexicographical order of the
tuple indices.

Alg. 1 is suitable for a small k, while for a large k, the
number of k-subsets

�
n
k

�
can be intimidating, and exhaustive

enumeration might not be acceptable. On the other hand, since
the number of best sets can be as large as

�
n
k

�
when the set

preference relationÏpΓ,Cq is empty, the worst case complexity
Ωpnkq is unavoidable. In the following sections, we identify
redundant k-subsets generated by the basic algorithm, i.e., k-
subsets whose profiles will be dominated by other profiles or
k-subsets whose profiles are repeated. We propose two opti-
mization techniques: superpreference and M-relation. Roughly
speaking, superpreference targets the dominated profiles. It
filters out tuples that do not contribute to any best k-subset. M-
relation targets repeated profiles. It groups together tuples that
are exchangeable with regard to the given set preference, and
therefore avoids redundant computation of the same profile.
Both techniques tend to reduce the number of candidate k-
subsets and therefore speed up the computation of the best
subsets.
B. Superpreference

The idea is that, given a set preference relation ÏpΓ,Cq,
we are trying to find a superpreference relation ¡� such that
if t1 ¡� t2, then every k-subset with t1 is preferred (under
ÏpΓ,Cq) to every k-subset with t2 as long as these two k-
subsets are otherwise identical.

Definition 11: Superpreference Relation. Given a relation
r, a positive integer k ¤ |r| and a set preference relation
ÏpΓ,Cq, the corresponding superpreference relation, denoted
by ¡�, is such that
t1 ¡

� t2 ô t1 P r ^ t2 P r ^ r@s1 P (k-1)-subsetsprztt1, t2uq,
s1 Y tt1u ÏpΓ,Cq s

1 Y tt2us.
The cover of t is the set of tuples dominating t under ¡�,

i.e. coverptq � tt1 P r | t1 ¡� tu. Whenever t1 ¡� t2 ô t1 P
r ^ t2 P r ^ C�pt1, t2q and C� is a first-order formula, we
say that ¡� corresponds to C�.

Proposition 5.1: Given a relation r, a positive integer
k |r| and a set preference relation ÏpΓ,Cq, for every

s P k-subsetsprq,

rEs1 P k-subsetsprq, s1 ÏpΓ,Cq ss ñ r@t P s, coverptq � ss. (1)

Eqn. (1) states that if a k-subset s is not dominated by
any other k-subset, then s should contain the cover of each
member. It is a necessary condition for a best k-subset.
Prop. 5.1 enables two optimizations in Alg. 2: (1) Every tuple
t whose |coverptq| ¥ k is discarded, as it cannot belong to
any best k-subset (Line 2); (2) During the candidate k-subset
generation in Line 3, we skip over those candidate k-subsets
not leading to a best k-subset according to Prop. 5.1. To
be more specific, in Line 3 of Alg. 2, we use a modified
version of the standard lexicographical k-subset generator,
which applies a filter when enumerating k-subsets. It returns
the first successive k-subset satisfying Eqn. (1) if any.

Algorithm 2 (SUPER) Superpreference Algorithm
Require: a profile schema Γ, an SPO profile preference

relation ¡C , a relation r, a positive integer k, k |r|
and ¡� corresponding to C�

Ensure: the best k-subsets of r under the set pref. ÏpΓ,Cq

1: Do pairwise comparisons between tuples in r based on
¡�, and determine coverptq for each t P r.

2: Let r1 � tt P r | |coverptq| ku.
3: Use a modified version of the standard k-subset generator

to obtain all k-subsets s of r1 such that @t P s, coverptq �
s and compute the corresponding profile relation γ1 based
on the schema Γ.

4: Compute γ2 � ωCpγ1q using any winnow evaluation
algorithm.

5: Retrieve the subsets corresponding to the profiles in γ2.

Algorithm 3 Superpreference Algorithm under Weak Or-
der Superpreference
Require: a profile schema Γ, a WO profile preference relation

¡C , a relation r, a positive integer k, k |r| and ¡�

corresponding to C�

Ensure: the best k-subsets of r under the set pref. ÏpΓ,Cq

1: Let r1 � ωC�prq.
2: If |r1| ¥ k, generate all k-subsets of r1 and the correspond-

ing profile relation γ1 based on the schema Γ, otherwise
r1 � r1 Y ωC�pr � r1q and repeat this step.

3: Compute γ2 � ωCpγ1q using any winnow evaluation
algorithm.

4: Retrieve the subsets corresponding to the profiles in γ2.

If the superpreference ¡� is a WO, Alg. 3 can further
reduce the input (r1) to the lexicographical k-subset gener-
ator, which leads to fewer candidate k-subsets. In order to
illustrate the importance of the WO requirement in Alg. 3, let
r1 � ωC�prq, r2 � ωC�pr� r1q, r3 � ωC�pr� r1 � r2q . . . ,
until all tuples in r are exhausted. Let Yri � r1Y. . .Yri, then
ri � ωC�pr�Yri�1q. If the superpreference ¡� is a WO, then
by the definition of WO every tuple in Yri is superpreferred
to every tuple in r �Yri. In other words, every tuple in Yri
belongs to the cover of every tuple in r�Yri. If Yri contains

at least k tuples, we know that the cardinality of the cover
of every tuple in r � Yri is at least k, and thus the tuple
can be discarded. A general SPO does not guarantee such a
relationship and thus we have to keep track of the covers of
individual tuples (Alg. 2).

It still remains to show how to construct the formula C�

given a profile schema Γ and a profile preference formula C.
We show below that for restricted classes of profile schemas
and profile preference formulas, C� can be constructed sys-
tematically. Def. 12 introduces an important class of features,
namely additive features. As we will present shortly in this
section as well as in Sec. V-C, additivity of features enables
various optimization techniques.

Definition 12: Additive Subset Features. Given a relation
r and a subset feature F , F is additive iff (1) for every tuple
t P r, Fpttuq � fptq, and (2) for every s P subsetsprq and
every t P r � s, Fps Y ttuq � Fpsq � fptq, where f is a
function of t only, called the base of F .

Proposition 5.2: If an aggregate feature F is of the form
SELECT expr FROM $S WHERE simple-condition
where: (1) expr is of the form aggr(A), where aggr P
{sum, count} and A is an attribute of the schema of r, or a
linear combination of constants and the above aggregates; (2)
simple-condition does not contain subqueries, then F
is additive.

Theorem 1: If k |r| � 1 is the chosen cardinality and a
profile-based set preference is defined as a DNF formula of
the following form

s1 ÏpΓ,Cq s2 ô
nª

i�1

p
mi©

j�1

pFijps1q θFijps2qqq (2)

where θ P t�,�, ,¡,¤,¥u and Fij is an additive aggregate
subset feature, then C� is a first-order formula independent
of k.

Proof: For every i and j, we have the rewriting
t1 ¡

� t2 ô t1 P r ^ t2 P r ^ r@s1 P (k-1)-subsetsprztt1, t2uq,
s1 Y tt1u ÏpΓ,Cq s

1 Y tt2us
ô t1 P r ^ t2 P r ^ r@s1 P (k-1)-subsetsprztt1, t2uq,�n

i�1p
�mi

j�1pFijps1 Y tt1uq θFijps1 Y tt2uqqqs

.

Since Fij is additive, we can show by case study that each
Fijps1Ytt1uq θFijps1Ytt2uq is equivalent to a formula Dijpt1,
t2q of t1 and t2 only. For example, assume aggr in Fij is
sum, and θ is ¡, then with the abuse of the indicator function
cijp�q as a boolean variable, we have

Fijps1 Y tt1uq ¡ Fijps1 Y tt2uq
ô Fijps1q � cijpt1q � t1.Aij ¡ Fijps1q � cijpt2q � t2.Aij

ô pcijpt1q ^ cijpt2q ^ t1.Aij ¡ t2.Aijq
_pcijpt1q ^ cijpt2q ^ t1.Aij ¡ 0q
_p cijpt1q ^ cijpt2q ^ t2.Aij 0q

where cijptq indicates whether the tuple t satisfies the WHERE
condition of the feature Fij . Therefore,
t1 ¡

� t2 ô t1 P r ^ t2 P r ^ r@s1 P (k-1)-subsetsprztt1, t2uq,�n
i�1p
�mi

j�1pDijpt1, t2qqqs
where Dijpt1, t2q is a formula with only variables t1 and t2.
In particular, Dijpt1, t2q does not contain the set variable s1.
By rewriting every conjunct in C, we have

t1 ¡
� t2 ô t1 P r ^ t2 P r ^

�n
i�1p
�mi

j�1pDijpt1, t2qqq,

and thus C�pt1, t2q �
�n

i�1p
�mi

j�1pDijpt1, t2qqq.
The additive subset features identified in Prop. 5.2 are

eligible for the rewriting technique in Thm. 1. However, this
rewriting does not work for non-additive features defined by
min, or max, or avg with non-TRUE WHERE condition. In
those cases, if we rewrite Fpsq as an expression of s1 and t,
the term(s) containing variable s1 cannot be canceled on both
sides of θ. Intuitively, it states that we cannot determine which
of t1 and t2 is superpreferred without looking at the tuples in
s1. For example, consider the case where aggr is avg, the
condition is non-TRUE, and θ is ¡, the rewriting technique
in Thm. 1 generates the following inequality:

Fijps1 Y tt1uq ¡ Fijps1 Y tt2uq ô
pbijps

1q�Fijps
1q�cijpt1q�t1.Aijq

pbijps1q�cijpt1qq
¡ pbijps

1q�Fijps
1q�cijpt2q�t2.Aijq

pbijps1q�cijpt2qq
,

where bijps1q � |tt | t P s1 ^ cijptqu|. After simplifying the
above inequality, we still have terms of variable s1.

When Thm. 1 is applicable, we can often use domain
knowledge to significantly simplify the rewriting in Thm. 1.
For the rewriting example in the proof of Thm. 1, if Aij is
price, which is always positive, then the rewriting result can
be simplified to cijpt1q ^ pt1.Aij ¡ t2.Aij _ cijpt2qq.

Example 6: In Ex. 1, consider the following preference:
(C5) Alice wants to spend as little money as possible on
sci-fi books. (C6) Alice wants the total rating of books to
be as high as possible. The set preference is the intersec-
tion of (C5) and (C6). Therefore, we have Γ � xF5,F6y,
F5 � SELECT sum(price) FROM $S

WHERE genre=’sci-fi’
F6 � SELECT sum(rating) FROM $S

and s1 ÏpΓ,Cq s2 iff F5ps1q F5ps2q ^ F6ps1q ¡ F6ps2q. The
superpreference formula C� obtained under the assumption
that price ¡ 0 is
C�pt1, t2q ô t1.rating ¡ t2.rating ^ t2.genre � ’sci-fi’

^pt1.price t2.price_ t1.genre � ’sci-fi’q. l

Notice that the superpreference computed via Thm. 1 is by
itself order-preserving. That is, if the profile preference ¡C is
an SPO (WO, TO resp.), the superpreference ¡� computed
via Thm. 1 is also an SPO (WO, TO resp.). However, the
integration of any domain knowledge might change the order
properties of ¡�. For example, in Ex. 6, the profile preference
¡C is a WO while the superpreference ¡� is not. It is due to
the fact that we integrate the domain knowledge price ¡ 0 in
¡�. Also notice that two important classes of preferences,
skyline [1] and p-skyline [9], can be expressed with DNF
formulas of the form used in Eqn. (2).

C. M-relation

Superpreference is a pruning technique used to filter out
tuples not contributing to the best k-subsets. It reduces the
size of the original relation, which leads to fewer candidate
k-subsets. In other words, it prunes the inferior k-subsets
even before the k-subset generation. In addition, we often
observe another type of redundant candidate k-subsets during
generation, as shown in Ex. 7. For example, if we have
already generated the 3-subset ta1, a2, a7u, we do not need to
generate ta1, a2, a9u or ta1, a2, a10u as neither leads to a new
profile given the set preference. It is therefore more efficient

to consolidate a7, a9, a10 into a meta-tuple, i.e., an M-tuple,
m7,9,10, and consider only the M-tuple in the generation of
candidate k-subsets.

Example 7: Add two more tuples to Book in Ex. 1

Book2:

title genre rating price vendor
a1 sci-fi 5.0 $15.00 Amazon
a2 biography 4.8 $20.00 B&N
a3 sci-fi 4.5 $25.00 Amazon
a4 romance 4.4 $10.00 B&N
a5 sci-fi 4.3 $15.00 Amazon
a6 romance 4.2 $12.00 B&N
a7 biography 4.0 $18.00 Amazon
a8 sci-fi 3.5 $18.00 Amazon
a9 romance 4.0 $20.00 Amazon
a10 history 4.0 $19.00 Amazon

and use the same set preference ÏpΓ,Cq as that in Ex. 6.
The tuple a7 and a9 are exchangeable with regard to the set
preference, because for every 2-subset s of Book2zta7, a9u,
extending s with a7 or a9 leads to the same profile in the pro-
file relation, i.e., profileΓpsYta7uq � profileΓpsYta9uq. By
the same argument, a7, a9 and a10 are mutually exchangeable.

l

Based on the above idea, we can define an exchangeability
relation among tuples. First, we classify the features in a
profile schema into three categories, based on their additivity
and their appearance in the definition of the set preference.
Without loss of generality, the profile schema in a set
preference ÏpΓ,Cq is

Γ � t

relevanthkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkj
F1, . . . ,Fmaloooooomoooooon

additive

,Fma�1, . . . ,Fmb
,Fmb�1 . . . ,Fmu,

where: (1) The features F1, . . . ,Fmb
are the relevant features

appearing in the profile preference formula C, denoted by
Γ∆, while the features Fmb�1, . . . ,Fm do not appear in C;
(2) The features F1, . . . ,Fma are additive (c.f., Def. 12),
while Fma�1, . . . ,Fmb

are not.
Definition 13: Exchangeability Relation. Given a relation

r, a positive integer k |r| and a set preference relation
ÏpΓ,Cq, an equivalence relation �pΓ,Cq is an exchangeability
relation over r if

t1 �pΓ,Cq t2 ñ

t1 P r ^ t2 P r ^ r@s1 P (k-1)-subsetsprztt1, t2uq, (3)
profileΓ∆

ps1 Y tt1uq � profileΓ∆
ps1 Y tt2uqs

in which case, we say that tuple t1 and t2 are exchangeable.
Given a set preference, there can be more than one ex-

changeability relation according to Def. 13. For example,
the equality relation where each equivalence class contains
exactly one tuple is a trivial exchangeability relation. In
fact, any equivalence relation contained in an exchangeability
relation is another exchangeability relation. However, Prop. 5.3
guarantees a unique optimal exchangeability relation.

Proposition 5.3: Given a relation r, a positive integer k
|r| and a set preference relationÏpΓ,Cq, the optimal exchange-
ability relation, which contains every possible exchangeability
relation over r under k and ÏpΓ,Cq, exists and is unique.

Proof: (Sketch) Denote by P the set of all possible
equivalence relations on r. It is well known that P , when

ordered by set containment (�), form a complete lattice
pP,�q, where any subset of P has a supremum. Since all
exchangeability relations form a subset of P , they have a
unique supremum. We can further show that the supremum of
any two exchangeability relations is still an exchangeability
relation. The supremum of all exchangeability relation is
therefore the optimal one.

It is easy to see that the optimal exchangeability relation
�pΓ,Cq over the relation r is

t1 �pΓ,Cq t2 ô

t1 P r ^ t2 P r ^ r@s1 P (k-1)-subsetsprztt1, t2uq, (4)
profileΓ∆

ps1 Y tt1uq � profileΓ∆
ps1 Y tt2uqs

Eqn. (4) differs from Eqn. (3) in that it requires a sufficient
condition as well.

Example 8: Assume the same set preference ÏpΓ,Cq in
Book2 of Ex. 6. By Def. 13, one exchangeability relation
and its partition are �0 � tpai, aiq|i � 1, . . . , 10u, P0 �
ttaiu|i � 1, . . . , 10u. Another exchangeability relation and
its partition are �1 � tpai, aiq|i � 1, . . . , 10u Y tpa7, a9q,
pa9, a7q, pa7, a10q, pa10, a7q, pa9, a10q, pa10, a9qu, P1 �
ttaiu|i � 1, . . . , 6, 8u Y tta7, a9, a10uu. The exchangeability
relation �0 is the equality relation. Since P0 is a refinement
of P1, i.e., P0 � P1, the exchangeability relation �0 is not
optimal. It is easy to verify that �1 is optimal since the merge
of any equivalence classes in partition P1 does not lead to an
exchangeability relation over Book2. l

We introduce now a profile consolidation optimization using
M-relations. Given an exchangeability relation �pΓ,Cq, an M-
relation contains M-tuples, and there is a one-to-one mapping
between its M-tuples and the equivalence classes of �pΓ,Cq.
There are various ways to define an M-relation corresponding
to an exchangeability relation. In Def. 14, we show how to
define in SQL an M-relation corresponding, under certain
conditions, to the optimal exchangeability relation.

In Def. 14, the M-relation is defined using a query on
the distinct values of attributes corresponding to the relevant
features F1, . . . ,Fmb

. Moreover, for the additive relevant
features F1, . . . ,Fma

, tuples are grouped by their contribution
to the values of the additive features over sets: fi is the base
of the additive feature Fi. The M-relation also keeps track of
the number of tuples consolidated into an M-tuple, using the
special attribute Acnt.

Definition 14: M-relation using SQL. Given a relation r
with a schema R, a non-negative integer k and a set preference
ÏpΓ,Cq, define the M-relation schema O � xA1, . . ., Ama

,
Ama�1, . . ., Amc

, Acnty, and the M-relation o by the following
SQL query:
SELECT f1pRq AS A1,...,fmapRq AS Ama,

attrspFma�1, . . . ,Fmbq, count(*) AS Acnt

FROM R GROUP BY A1,..., Ama, attrspFma�1, . . . ,Fmbq
where: (1) R is a tuple range variable. (2) fipRq,
i � 1, . . . ,ma is the base of the additive feature Fi.
(3) attrspFma�1, . . . ,Fmb

q is the set of attributes
mentioned in the definitions of the features Fma�1, . . . ,Fmb

,
say tAma�1, . . . , Amcu. (4) Acnt is a special attribute in the

M-relation schema tracking the number of tuples consolidated
into a single M-tuple in the M-relation.

Example 9: In Ex. 7, the M-relation schema is
xA5, A6, Acnty, which is determined by the set preference.
In order to illustrate the case where there are non-additive
relevant features, and more importantly the concept of
projection to relevant features, we assume the non-additive
feature F3 is also a relevant feature in the set preference.
Thus, the M-relation schema becomes xA5, A6, A3, Acnty,
and the M-relation is generated via the following SQL query:
SELECT

CASE WHEN r.genre=’sci-fi’ THEN r.price

ELSE 0 END AS A5, r.rating AS A6,

r.vendor AS A3, count(*) AS Acnt

FROM Book2 r GROUP BY A5, A6, A3

In the following M-relation o1, the subscripts of each M-tuple
are the indices of the tuples consolidated into it.

A5 A6 A3 Acnt

m1 $15.00 5.0 Amazon 1
m2 $0.00 4.8 B&N 1
m3 $25.00 4.5 Amazon 1
m4 $0.00 4.4 B&N 1
m5 $15.00 4.3 Amazon 1
m6 $2.00 4.2 B&N 1
m7,9,10 $0.00 4.0 Amazon 3
m8 $18.00 3.5 Amazon 1

Notice that the actual M-relation o in Ex. 7 is the above o1

relation with the columns A5, A6, Acnt only. l

In Ex. 9, f5, the base of the additive feature F5, is expressed
via a CASE statement. In the CASE statement, the ELSE
statement gives a default value to the new feature if the WHEN
condition is not satisfied. The default value is 0 for A5 in
Ex. 9. In general, it can be any constant. M-relations identify
the exchangeable tuples in Ex. 7.

Theorem 2: For a DNF profile preference formula C in
the form of Eqn. (2), a relation r and k |r|, if all
relevant features are additive, then the exchangeability relation
corresponding to the M-relation in Def. 14 is optimal over r.

Example 10: In Ex. 9, the partition generated by the
M-relation defined in Def. 14 is tta1u, . . ., ta6u,
ta7, a9, a10u, ta8uu, which is the exact partition corresponding
to the optimal exchangeability relation defined by Eqn. (4). l
D. Computing Profiles via M-relations

Our goal is to directly compute the profiles from an M-
relation. The subtlety lies in that if we compute profiles only
from the k-subsets of the M-relation, we might miss some of
the profiles in the original relation. Say k � 2, and an M-tuple
m1,2 corresponds to tuples t1 and t2 in the original relation r.
We have a profile computed from the 2-subset tt1, t2u in the
profile relation γ. However, we cannot compute this profile
from a k-subset of the M-relation, as any k-subset contains at
most one M-tuple m1,2 and tm1,2,m1,2u is not a 2-subset of
the M-relation. Hence, in order to compute the exact profiles
of the original relation, we need to compute profiles from the
k-multisubsets of an M-relation.

Definition 15: k-multisubset. Given an M-relation o and a
positive integer k, k

°
miPo

mi.Acnt, a k-multisubset s of

o is a multiset of o with cardinality k, and the number of
occurrences of each M-tuple does not exceed its Acnt value.
Denote by k-multisubsetspoq the set of all k-multisubsets of o.

Note that Def. 15 is the multisubset version of Def. 9. We
can easily extend Def. 3-12 to their multisubset counterparts
(details omitted).

Theorem 3: Assume o is an M-relation corresponding to
a relation r. For each s P k-subsetsprq, there is a s1 P
k-multisubsetspoq, such that profileΓ∆

psq � profileΓ∆
ps1q, and

vice versa.
Thm. 3 guarantees that the projection of the original profile

relation to relevant features computed from the M-relation is
an onto function. Therefore, we can compute the projection
by evaluating those features of k-multisubsets. Alg. 4 uses
M-relations to compute the best k-subsets. Alg. 4 differs
from Alg. 1 in the use of an M-relation and a k-multisubset
generator. The number of occurrences of an M-tuple in a
candidate k-multisubset is bounded from above by the number
of tuples consolidated into it. It is therefore crucial to the k-
multisubset generation that the M-relation records this number
for each M-tuple.
Algorithm 4 (MREL) M-relation Algorithm
Require: a profile schema Γ, an SPO profile preference

relation ¡C , a relation r and a positive integer k, k |r|
Ensure: the best k-subsets of r under the set pref. ÏpΓ,Cq

1: Compute the M-relation o of r based on Γ and ¡C .
2: Generate all k-multisubsets of o and for each compute the

profile features in Γ relevant to C, i.e., in Γ∆, to obtain
γ1, i.e. the projection of the profile relation γ onto Γ∆.

3: Compute γ2 � ωCpγ1q using any winnow evaluation
algorithm.

4: Retrieve the subsets whose profile projections correspond
to the elements of γ2.

The profile of a k-multisubset in an M-relation is the
projection of the profile of the corresponding k-subset(s) in the
original relation to relevant features. Notice that the M-relation
contains all the information needed to compute the projection
of this profile. For an additive relevant feature, we keep each
M-tuple’s contribution to the value of this feature. For a non-
additive relevant feature, we keep the values of every attribute
involved in the evaluation of this feature. Therefore, in order
to compute the projection of this profile, we simply add up
each M-tuple’s contribution for additive relevant features, and
compute the values of non-additive relevant features as we
would do for a k-subset.

Example 11: Continuing Ex. 9, the following table gives
a few examples of candidate k-subsets (k � 3) in Book2
and their corresponding k-multisubsets in the M-relation
o, together with their profiles in the profile relation γ.
k-subsets of Book2 k-multisubsets of o profile in γ
ta1, a2, a7u,
ta1, a2, a9u,
ta1, a2, a10u

tm1,m2,m7,9,10u p$15.00, 13.8q

ta1, a7, a9u,
ta1, a7, a10u,
ta1, a9, a10u

tm1,m7,9,10,m7,9,10u p$15.00, 13.0q

In fact, a k-subset generator of Book2 will enumerate all�
10
3

�
� 120 candidate k-subsets, while a k-multisubset

generator of the M-relation will only enumerate
�

7
3

�
+
�

7
2

�
��

7
1

�
�
�

7
0

�
� 64 k-multisubsets, where

�
7
i

�
stands for

the case where the multisubset contains 3 � i m7,9,10,
and i non-m7,9,10 M-tuple(s). Since the feature F5 and
F6 are both additive, the evaluation of F5 changes to
SELECT sum(A5) FROM $S and the evaluation of the
feature F6 changes to SELECT sum(A6) FROM $S. We
can compute a profile from a k-multisubset by computing its
features. For example, s � tm1,m2,m7,9,10u, then F5psq �
m1.A5 �m2.A5 �m7,9,10.A5 � $15.00 � $0.00 � $0.00 �
$15.00, and F6psq � m1.A6 �m2.A6 �m7,9,10.A6 � 5.0�
4.8�4.0 � 13.8. The profile of the multiset s is p$15.00, 13.8q.
The profile relation Γ contains 64 distinct profiles. l

In Ex. 11, the k-multisubset generator eliminates all redun-
dancy in the subset generation: each candidate k-multisubset
returned by the generator leads to a distinct new profile.
Though it is not always the case in general, a k-multisubset
generator still reduces the number of subsets generated sig-
nificantly in most cases. The benefit of M-relations comes
in three folds: (1) Selectivity of attribute values. The M-
relation is defined by a GROUP BY SQL query in Def. 14,
which suggests that low selectivity of attribute values will
lead to fewer M-tuples. (2) Selectivity of WHERE conditions
in feature definitions. Since every feature definition is also
a “mini-SQL” query, it is likely that a tuple not satisfying
the WHERE condition of the feature definition will contribute
a default value in the feature evaluation. In fact, such default
values exist for all additive features. Recall that the M-relation
definition query in Ex. 9 has default value 0 for attribute A5.
The default values fully exploit the selectivity of the WHERE
condition. A highly selective WHERE condition will lead to
more tuples with the default value, which are more likely to
be consolidated into one tuple in the M-relation. This in turn
suggests a smaller M-relation. (3) Non-relevant attributes. The
projection to attributes relevant to the set preference reduces
the redundancy in k-subset generation.

E. Hybrid Approaches

Superpreference and M-relation target two different aspects
of pruning: superpreference filters out tuples which cannot
be a part of any best k-subset, while M-relation consolidates
exchangeable tuples and processes k-subsets in groups. It
is natural to combine them to achieve synergistic pruning.
We propose here two possible combinations of those two
optimizations: SM and MS. Without loss of generality, assume
we are given a relation r, a positive integer k |r| and a set
preference ÏpΓ,Cq.
(SM) Superpreference followed by M-relation. This al-
gorithm is rather straightforward. We use the technique in
superpreference to filter out tuples with cover size at least
k, and then apply M-relation to the reduced input to compute
the final results. The exact algorithm is illustrated in Alg. 5.
(MS) M-relation followed by Superpreference. In this al-
gorithm (Alg. 6), we apply the superpreference technique to

the M-relation. We compute the M-relation as before. In order
to apply the superpreference optimization to an M-relation,
we need to generalize the notions of superpreference and
cover to M-relations. Recall that, in Def. 11, a tuple t1 is
superpreferred to a tuple t2 iff it is more beneficial to extend
every (k-1)-subset with t1 instead of t2 to get a k-subset. The
superpreference relation ¡�

o in an M-relation o is based on
the same idea: an M-tuple m1 is superpreferred to an M-tuple
m2 iff it is more beneficial to extend every (k-1)-multisubset
with m1 instead of m2 to get a k-multisubset. Similarly,
the cover of an M-tuple m is the multiset of M-tuples,
where each M-tuple m1 dominates m under ¡�

o , and has
exactly m1.Acnt occurrences in the cover, i.e., coverpmq �
tm1,m1 repeats m1.Acnt times | m1 P o,m1 ¡�

o mu.
Algorithm 5 (SM) Super-MRel Hybrid Algorithm
Require: a profile schema Γ, an SPO profile preference

relation ¡C , a relation r, a positive integer k, k |r|
and ¡� corresponding to C�

Ensure: the best k-subsets of r under the set pref. ÏpΓ,Cq

1: Do pairwise comparison between tuples in r based on ¡�,
and determine coverptq for each t P r.

2: Let r1 � tt P r | |coverptq| ku.
3: Return the result of the M-relation Algorithm (Alg. 4) with

the input relation r1 and the profile preference relation ¡C

restricted to r1 instead.

Algorithm 6 (MS) MRel-Super Hybrid Algorithm
Require: a profile schema Γ, an SPO profile preference

relation ¡C , a relation r, a positive integer k, k |r|
and ¡�

o corresponding to C�

Ensure: the best k-subsets of r under the set pref. ÏpΓ,Cq

1: Compute the M-relation o of the relation r.
2: Compute o1 � tm P o | |coverpmq| ku.
3: Retrieve the relation r1 � r contributing to the M-relation
o1.

4: Return the result of the M-relation Algorithm (Alg. 4) with
the input relation r1 and the profile preference relation ¡C

restricted to r1 instead.

VI. EXPERIMENTS

We report here an experimental study of the best-subset gen-
eration algorithms proposed. We implemented all algorithms
in C++ and ran experiments on a machine with Intel Core2
1.66GHz CPU running Cygwin on Windows XP with 2GB
memory. We used a real dataset containing the information
of 8000 book quotes from Amazon. The data schema is
xtitle, genre, rating, price, vendory. We implemented five
algorithms: NAIVE, SUPER, MREL, SM, MS. NAIVE is
the basic algorithm in Alg. 1. SUPER and MREL are the
implementation of Alg. 2 and Alg. 4, respectively. SM and
MS are the hybrid algorithms in Sec. V-E.

The running time of each algorithm is composed of three
major operations: (1) Preprocessing: superpreference filtering
and/or the M-relation generation; (2) Generation: candidate
k-subset (or k-multisubset) generation; (3) Winnow. Denote
by g the number of sets generated in Generation. g is the

determinant factor of the running time. It is a direct indicator
of the Generation step and also the input of the Winnow
step, which is an operation quadratic of its input size g. Our
experiments demonstrate a strong correlation between g and
the running time. In the set of experiments in Sec. VI-B, the
correlation is 94.6%. Therefore, we focus on g for measuring
the performance. Our experiments are practical to handle up
to 8000 tuples. Further optimizations are needed for larger
datasets. Recall the definitions of feature F5 and F6 in Ex. 6.
Furthermore, we define the following features:

F9 � SELECT sum(rating) FROM $S
WHERE genre=’sci-fi’

F10 � SELECT sum(price) FROM $S
F11 � SELECT count(title) FROM $S

WHERE genre=’sci-fi’ and price<20.00
F12 � SELECT sum(rating) FROM $S

WHERE rating>=4.0
The set preferences used in the experiments are listed in
Table I. The corresponding superpreferences and M-relation
generation SQL queries are listed in Table II, respectively.
Notice that the only difference between SP1 and SP2 is
that in SP1 we apply the WHERE condition in F5 which
aggregates on price, while in SP2 we apply it to F9 which
aggregates on rating. We intend to see the influence of
the selectivity of attributes. In SP1, the attribue in F5, i.e.,
price, affects less tuples due to the WHERE condition,
therefore the selectivity of the attribute in F6, i.e., rating,
is dominating. Similarly, in SP2, the selectivity of price is
dominating. Note that SP1 has been used extensively in our
running examples.

Pref. Prof.
Schema Γ

Profile Pref. Formula C

SP1 xF5,F6y F5ps1q F5ps2q ^ F6ps1q ¡ F6ps2q
SP2 xF9,F10y F9ps1q ¡ F9ps2q ^ F10ps1q F10ps2q
SP3 xF11,F12y F11ps1q ¡ F11ps2q ^ F12ps1q ¡ F12ps2q

TABLE I
SET PREFERENCES

Summary of Experiments. We draw the following conclu-
sions from the experimental results detailed below:

 SUPER, MREL, SM and MS are all effective in reducing
the number of sets generated in Generation;

 The relative efficiency of the four optimization algorithms
depends on the set preference in question, in particular,
the selectivity of the attributes and the WHERE conditions
in the feature definitions. In general, low attribute selec-
tivity and high WHERE condition selectivity enhance the
performance. The best algorithm for each set preference
generates only 0.01% of the candidate k-subsets gener-
ated by NAIVE.

 The best of SUPER, MREL, SM and MS for each set
preference also improve the scalability with input size n
and k by several orders of magnitude.

 The hybrid algorithms SM and MS outperform the stan-
dalone optimizations SUPER and MREL.

A. Performance

In our first experiment, we wanted to study how much
computation we could save by applying superpreference and/

or M-relation. Let k � 3. We tested the dataset up to 1000
tuples as some algorithms do not scale up well with n.

Fig. 1(a), 1(b) and 1(c) illustrate the increase of the number
of sets produced by Generation (g) with the increase of input
size n for SP1, SP2 and SP3, respectively. For the six datasets
of different sizes used, Fig. 1(d), 1(e) and 1(f) show the
average ratio of the number of sets generated in each algorithm
to that in NAIVE using the logarithmic y-scale.

As we can see from Fig. 1, for standalone optimization
techniques SUPER and MREL, the relative efficiency depends
on the set preference. MREL is more efficient in SP1 and
SP3 (Fig. 1(d), 1(f)), while SUPER is more efficient in SP2
(Fig. 1(e)). If we compare SP1 and SP2 in juxtaposition, it is
clear the different reactions to optimizations is caused by the
different selectivity of the attributes rating and price:
in our largest dataset, there are 9 distinct rating values
and 406 distinct price values. For SUPER, the differences
between the superpreferences of SP1 and SP2 are underlined.

¡
� in SP1 �

pt1.rating ¡ t2.rating ^ t2.genre � ’sci-fi’
^t1.price t2.priceq _ pt1.rating ¡ t2.rating
^t2.genre � ’sci-fi’^ t1.genre � ’sci-fi’q

¡
� in SP2 �

pt1.rating ¡ t2.rating ^ t1.genre � ’sci-fi’
^t1.price t2.priceq _ pt1.price t2.price
^t1.genre � ’sci-fi’^ t2.genre � ’sci-fi’q

SUPER is more effective in SP2 because the selectivity of
price is higher than that of rating and more tuples are
superpreferred in SP2. For MREL, recall that the selectivity
of rating dominates in SP1, while the selectivity of price
dominates in SP2. The selectivity of rating is much lower
than that of price. We are thus able to consolidate on average
more tuples into one M-tuple in SP1. Therefore, MREL is
more effective in SP1. For SP3, the WHERE conditions in
both features of SP3 are more restricted than that in SP1, i.e.,
the condition in F11 requires price<20.00, in addition to
the condition genre=’sci-fi’ used in F5. MREL is able
to benefit more from low selectivity and therefore achieves
higher efficiency in SP3.

The hybrid algorithms SM and MS benefit from both
superpreferences and M-relations, and in general have better
performance than SUPER and MREL. An interesting phe-
nomenon is that SM outperforms MS when MREL outper-
forms SUPER (c.f., Fig. 1(d), 1(f)), and MS outperforms SM
when SUPER outperforms MREL (c.f., Fig. 1(e)). For all
three set preferences (SP1, SP2 and SP3), the most efficient
algorithm generates only about 0.01% of the candidate k-
subsets generated by NAIVE.

Not only do the optimizations reduce the number of sets
generated in Generation, but also improve the scalability with
the input size n. In all three cases, i.e., SP1-3, (Fig. 1(a), 1(b)
and 1(c)), the best algorithm displays a much slower growth
compared to that of NAIVE.

Fig. 2 illustrates the increase of g with the increase of k
when n � 100. By our theoretical analysis, increasing k by 1
raises the complexity of NAIVE from Opnkq to Opnk�1q. It
is not surprising that g values are off the chart when k ¡ 4
for NAIVE. The performances of the other four algorithms
again depend on the specific set preference. The best algorithm

Pref. Superpreference M-relation Generating SQL

SP1 t1.rating ¡ t2.rating ^ t2.genre � ’sci-fi’
^pt1.price t2.price_ t1.genre � ’sci-fi’q

SELECT *, count(*) AS Acnt FROM
(SELECT CASE WHEN r.genre=’sci-fi’ THEN r.price

ELSE 0 END AS A5, r.rating AS A6 FROM r)
GROUP BY A5, A6

SP2 t1.price t2.price^ t1.genre � ’sci-fi’
^pt1.rating ¡ t2.rating _ t2.genre � ’sci-fi’q

SELECT *, count(*) AS Acnt FROM
(SELECT CASE WHEN r.genre=’sci-fi’ THEN r.rating

ELSE 0 END AS A9, r.price AS A10 FROM r)
GROUP BY A9, A10

SP3

t1.genre � ’sci-fi’^ t1.price 20.00
^pt2.genre � ’sci-fi’_ t2.price ¥ 20.00q
^t1.rating ¥ 4.0
^pt2.rating ¤ 4.0_ t1.rating ¡ t2.ratingq

SELECT *, count(*) AS Acnt FROM
(SELECT CASE WHEN r.genre=’sci-fi’ and r.price<20.00

THEN 1 ELSE 0 END AS A11,
CASE WHEN r.rating¥4.0 THEN r.rating

ELSE 0 END AS A12

FROM r)
GROUP BY A11, A12

TABLE II
SUPERPREFERENCES AND M-RELATION CONSTRUCTION IN SQL

 10
 100

 1000
 10000

 100000
 1e+006
 1e+007
 1e+008
 1e+009

 100 300 500 700 900 1K

of

 s
et

s
in

 G
en

er
at

io
n

(g
)

Input Size (n)

NAIVE
SUPER

MREL
SM

MS

(a) # of sets v.s. n (SP1)

 10
 100

 1000
 10000

 100000
 1e+006
 1e+007
 1e+008
 1e+009

 100 300 500 700 900 1K

of

 s
et

s
in

 G
en

er
at

io
n

(g
)

Input Size (n)

NAIVE
SUPER

MREL
SM

MS

(b) # of sets v.s. n (SP2)

 10
 100

 1000
 10000

 100000
 1e+006
 1e+007
 1e+008
 1e+009

 100 300 500 700 900 1K

of

 s
et

s
in

 G
en

er
at

io
n

(g
)

Input Size (n)

NAIVE
SUPER

MREL
SM

MS

(c) # of sets v.s. n (SP3)

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

SUPER MREL SM MS

G
en

er
at

e
P

er
ce

nt
ag

e

(d) Avg Generate Percentage (SP1)

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

SUPER MREL SM MS

G
en

er
at

e
P

er
ce

nt
ag

e

(e) Avg Generate Percentage (SP2)

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

SUPER MREL SM MS

G
en

er
at

e
P

er
ce

nt
ag

e

(f) Avg Generate Percentage (SP3)

Fig. 1. Performance of Different Algorithms under Varying Input Size n

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 2 4 6 8

of

 s
et

s
in

 G
en

er
at

io
n

(g
)

k

NAIVE
SUPER

MREL
MS

SM

(a) # of sets v.s. k (SP1)

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 2 4 6 8

of

 s
et

s
in

 G
en

er
at

io
n

(g
)

k

NAIVE
SUPER

MREL
MS

SM

(b) # of sets v.s. k (SP2)

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 2 4 6 8

of

 s
et

s
in

 G
en

er
at

io
n

(g
)

k

NAIVE
SUPER

MREL
MS

SM

(c) # of sets v.s. k (SP3)

Fig. 2. Performance of Different Algorithms under Varying k

 10000

 100000

 1e+006

 1e+007

1K 2K 3K 4K 5K 6K 7K 8K

of

 s
et

s
in

 G
en

er
at

io
n

(g
)

n

SM MS

(a) Generate Size (g)

 20

 30

 40

 50

 60

 70

 80

1K 2K 3K 4K 5K 6K 7K 8K

of

 M
-t

up
le

s
af

te
r

S
 a

nd
 M

n

SM MS

(b) # of M-tuples after S and M

 0
 20000
 40000
 60000
 80000

 100000
 120000
 140000

1K 2K 3K 4K 5K 6K 7K 8K

of

 P
ro

fil
es

n

SM
MS

Best Profiles

(c) # of Profiles

 0
 5e+008
 1e+009

 1.5e+009
 2e+009

 2.5e+009
 3e+009

 3.5e+009
 4e+009

 4.5e+009

1K 2K 3K 4K 5K 6K 7K 8K

of

 B
es

t k
-s

ub
se

ts

n

Best k-subsets

(d) # of Best k-subsets

Fig. 3. SM v.s. MS in SP1

for each set preference shows a between linear and quadratic
scale-up with the increase of k. In particular, the exponential
blowup predicted by the theoretical analysis does not happen
for those best-performing algorithms.

It is worth noticing that regardless of which set preference
is used, the performance of different algorithms is stable with
the increase of n or k, as the curves of each algorithms do not
cross each other in Fig. 1 or Fig. 2. The figures illustrate that it
is crucial to choose the right algorithm given a set preference.
A practical strategy would be to take a small sample of data,
and try out the algorithms with a small k in order to pick
the best. Notice that, even though the best of SM and MS is
better than the best of SUPER and MREL, SUPER and MREL
are simpler and involve less preprocessing, and thus could be
desirable in some cases.

B. SM v.s. MS

In the second set of experiments, we took a closer look
at the two best algorithms: SM and MS. In Fig. 1, SP2 and
SP3 are biased towards the superpreference optimization and
M-relation optimization, respectively. We therefore focused on
SP1, which is less biased towards either optimization, when
comparing SM and MS.

In Fig. 3, we compare the analytics of the hybrid algorithms
SM and MS when k � 5 and n varies from 1000 to 8000
in SP1. Fig. 3(a) illustrates the number of sets generated in
Generation for different parameter settings. Fig. 3(b) shows
the number of M-tuples after the superpreference step and the
M-relation step in SM and MS. Those are the M-tuples par-
ticipating in the k-multisubset generation in both algorithms.
This number has a positive correlation with the number of k-
multisubsets generated (Fig. 3(a)). In Fig. 3(b), we can see that
SM leads to 10% � 50% fewer M-tuples compared to those
in MS. The saving decreases with the increase of n. For each
parameter setting in Fig. 3(a), MS generates slightly more sets
than SM does. The difference is relatively small compared to g.
As a result, the two lines in Fig. 3(a) almost overlap with each
other. Fig. 3(c) displays the number of profiles computed in
SM and MS. The two lines also overlap with each other, since
SM generates only slightly fewer profiles than MS does. As a
reference, we also illustrate the number of best profiles in the
profile relation in Fig. 3(c). This number grows slower than
the number of profiles generated in both algorithms, which
suggests room for further improvement.

For completeness, we show the result size: the number of
best k-subsets in each parameter setting in Fig. 3(d). Both
SM and MS correctly identify all the best k-subsets. The
fluctuation in the number of best k-subsets can be explained by
the existence of super tuples that are superpreferred to many
tuples, and therefore lead to fewer best k-subsets. However,
the number of such super tuples is not related to the size of the
input. In general, the number of best k-subsets is huge, i.e., in
the order of 108 � 109. In fact, the result size in Fig. 3(d) is
2 � 5 orders of magnitude larger than the number of candidate
sets generated (Fig. 3(a)), which illustrates the compactness of
the M-relation representation.

VII. RELATED WORK

There are many papers on preferences over tuples using
either a qualitative or a quantitative approach. However, there
are only a few works on preferences over sets [6], [7], [8].

Binshtok et al. [8] is conceptually the closest to our work.
It addresses the problem of finding an optimal subset of a
set of items according to given set preferences. The language
for specifying such preferences uses the attribute values of
individual items within the set. Each set property is based on
the number of items satisfying a certain predicate. It is either
an integer value (Class 1), i.e., the number of items satisfying
the predicate), or a boolean value (Class 2), i.e., whether
the number of items satisfying the predicate is ¡ k. Given
a collection of set properties, a set preference is specified
as either a TCP-net [12] or a scoring function. Binshtok et
al. [8] gives heuristic search algorithms for finding an optimal
subset. Binshtok et al. [8] considers subsets of any cardinality.
For fixed-cardinality subsets, the language in [8] can easily
be expressed in our framework with a simple extension of
Def. 6 to boolean features. Each Class 1 set property in [8] can
be translated to an aggregate subset feature with the count
aggregate. Those features are additive.

For simplicity, we do not discuss boolean features in Def. 6.
The extension to boolean features can be easily accomplished
by introducing a relational operator (or an appropriate user-
defined function) in the SQL definition: SELECT expr θ
constant FROM $S WHERE condition, where θ P t�,
�, , ¡, ¤, ¥u. Each Class 2 set property in [8] can be
translated to such a boolean feature. Such boolean features are
additive when θ P t ,¡,¤,¥u and its numeric counterpart
is additive. Otherwise, they are non-additive. The preference

model in [8], i.e., either a scoring function or a TCP-net set
preference, can be captured by our set preference relation as
well. General aggregate features are not supported in [8]. The
largest dataset experimented on in [8] is of a comparable size
to those used in our experiments.

desJardins et al. [7] focuses on fixed-cardinality set prefer-
ences. It considers two subset features: diversity and depth, and
the set preference as an objective function of maximizing the
linear combination of diversity and depth. Again, those cases
can be expressed in our framework. The subset features depth
and diversity are weighted sums of the depth of attributes and
diversity of attributes, respectively. The depth of an attribute
is a utility function of the most desirable attribute values of
the set elements, which can be captured by a feature definition
with a WHERE clause specifying the desirable condition and
a count aggregate1 in the SELECT clause. The diversity of
an attribute is defined as 1 minus the skew of that attribute’s
values in the set. The computation of skew requires the values
of mean, mode and standard deviation of that attribute. Mean
and mode can be captured by aggregates avg and max,
respectively. It is well-known that the standard deviation
equals the square root of the second moment minus the square
of the mean. We can capture the second moment of attribute
A by specifying sum(A*A) in the SELECT clause. Features
derived from depth, and features corresponding to the mean
and the second moment of an attribute are additive, while
features corresponding to the mode of an attribute are not. The
preference model in [7] is maximizing an objective function
composed of a linear combination of depth and diversity. This
can be easily captured by our set preference relation.

We have just shown that we can express set preferences
in both [8] and [7] using our current framework. In order
to efficiently evaluate the set preferences derived from [8],
[7], the M-relation optimization is always applicable. For the
superpreference optimization, if the set preference formula
derived can be written as a DNF in Eqn. (2), then we can apply
the superpreference optimization in a systematic manner based
on Thm. 1. Moreover, the features and the preference model
in [7] is of a special form, so that a specialized optimization
schema can be designed to achieve better optimization results.

Guha et al. [6] considers a new class of queries called
OPAC (optimization and parametric aggregation constraints)
queries. Such queries aim at identifying sets of tuples that
constitute the solutions of optimization problems. Guha et
al. [6] considers subsets of any cardinality. The evaluation of
general OPAC queries is NP-hard, and the specific form of
the OPAC queries discussed in [6] corresponds to the well-
known multi-attribute knapsack problem and is therefore NP-
complete. Approximation algorithms are given for query eval-
uation. For fixed-cardinality subsets, again, in our framework
the atomic aggregation constraints can be captured by k-subset
features, and the parameters and the objective function by the
preference formula over profiles.

1In cases where values outside the desirable range are penalized to varying
degrees, we can define one feature for each degree of penalization.

VIII. CONCLUSIONS AND FUTURE WORK

We demonstrated a “logic + SQL” framework for preference
queries over sets, and designed a query rewriting technique
based on superpreference and a consolidation technique based
on M-relation to effectively optimize the generation of the best
subsets of the given relation. For future directions, we see more
opportunities in query optimization, especially for non-additive
features. Also, a set preference with low selectivity, e.g., H,
often leads to a large result set. We therefore consider the
set preference elicitation an important topic whose study will
enrich the picture of set preferences. Moreover, if the result
set is large, we can adopt additional set ranking or browsing
techniques to facilitate the navigation of results. In addition,
one should study the embedding of the best-subset generation
into relational query languages. For example, the best subsets
could be returned non-deterministically. Another direction
is designing more expressive set preference languages and
studying their expressive power. An interesting problem is how
to relax the fixed cardinality constraint in our framework. As
we have pointed out in Sec. V, a complete absence of the
cardinality constraint is likely to lead to problematic semantics.
However, it is possible to relax this constraint in some applica-
tions: we might want to work with subsets of cardinality within
a range instead. The M-relation optimization will continue to
work as it is independent of the fixed cardinality assumption.
On the other hand, the current version of superpreference relies
on the fact that all subsets in competition are of the same
cardinality. Extensions are needed to accommodate the relaxed
cardinality assumption.

REFERENCES

[1] S. Börzsönyi, D. Kossmann, and K. Stocker, “The skyline operator,” in
ICDE, 2001, pp. 421–430.

[2] W. Kießling, “Foundations of preferences in database systems,” in
VLDB, 2002, pp. 311–322.

[3] W. Kießling and G. Köstler, “Preference SQL - design, implementation,
experiences,” in VLDB, 2002, pp. 990–1001.

[4] J. Chomicki, “Preference formulas in relational queries,” ACM Trans.
Database Syst., vol. 28, no. 4, pp. 427–466, 2003.

[5] C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, and D. Poole,
“CP-nets: A tool for representing and reasoning with conditional ceteris
paribus preference statements,” J. Artif. Intell. Res. (JAIR), vol. 21, pp.
135–191, 2004.

[6] S. Guha, D. Gunopulos, N. Koudas, D. Srivastava, and M. Vlachos,
“Efficient approximation of optimization queries under parametric ag-
gregation constraints,” in VLDB, 2003, pp. 778–789.

[7] M. desJardins and K. Wagstaff, “DD-pref: A language for expressing
preferences over sets,” in AAAI, 2005, pp. 620–626.

[8] M. Binshtok, R. I. Brafman, S. E. Shimony, A. Mani, and C. Boutilier,
“Computing optimal subsets,” in AAAI, 2007, pp. 1231–1236.

[9] D. Mindolin and J. Chomicki, “Discovering relative importance of
skyline attributes,” in VLDB, 2009, pp. 610–621.

[10] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, “Skyline with presorting:
Theory and optimizations,” in Intelligent Information Systems, 2005, pp.
595–604.

[11] D. L. Kreher and D. R. Stinson, Combinatorial algorithms: generation,
enumeration and search. CRC Press LTC, 1998.

[12] R. I. Brafman, C. Domshlak, and S. E. Shimony, “On graphical modeling
of preference and importance,” J. Artif. Intell. Res. (JAIR), vol. 25, pp.
389–424, 2006.

