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Abstract. We propose a logical framework for set preferences. Candidate sets
are represented using profiles consisting of scalar features. This reduces set pref-
erences to tuple preferences over set profiles. We also give a heuristic algorithm
for the computation of the “best” sets.

1 Introduction

In recent years, preferences have been well studied in the database and AI literature [1–
5]. The issues addressed in that research include preference specification, preference
query languages, and preference query evaluation and optimization. However, the re-
search on preferences has almost exclusively focused on object (or tuple) preferences
which express preference relationships between individual objects or tuples in a rela-
tion.

We observe that in decision making a user sometimes needs to make a group deci-
sion based not only on the individual object properties but also on the properties of the
group as a whole. Consider the following example.

Example 1. Alice is buying three books as gifts. Here is a list of book quotes collected
from different vendors:

Book:

title genre rating price vendor
a1 sci-fi 5.0 $15.00 Amazon
a2 biography 4.8 $20.00 B&N
a3 sci-fi 4.5 $25.00 Amazon
a4 romance 4.4 $10.00 B&N
a5 sci-fi 4.3 $15.00 Amazon
a6 romance 4.2 $12.00 B&N
a7 biography 4.0 $18.00 Amazon
a8 sci-fi 3.5 $18.00 Amazon

Alice needs to decide on the three books to buy. She might have any of the following
preferences:

(C1) She wants to spend as little money as possible.
(C2) She needs one sci-fi book.
(C3) Ideally, she prefers that all three books are from the same vendor. If that is not

possible, she prefers to deal with as few vendors as possible.
(C4) She wants the second highest rating in the final choice set to be above 4.5.
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In addition, Alice might have different combinations of the above preferences. For
example, Alice might have both (C1) and (C2), but (C2) may be more important than
(C1) to her.

The preference (C1) can be directly simulated by a tuple preference over Book, such
that for any t1, t2 P Book, t1 is preferred to t2 if and only if t1.price ¡ t2.price. Then
the top 3 books in Book (according to this preference) constitute the “best” answer set.

However, in the other cases, e.g. (C2-C4) and the prioritized composition of (C2)
and (C1), such a simulation is not possible.

Example 1 motivates our framework for set preferences. We observe that a large
class of set preferences has two components: (1) Quantities of interest; (2) Desired
value or order of those quantities.

Example 2. In Example 1,

Quantity of Interest Desired Value or Order
(C1) total cost  
(C2) number of sci-fi books 1
(C3) number of distinct vendors  
(C4) the second highest rating ¡ 4.5

Consequently, our framework consists of two components: (1) profiles: collections
of features, each of those capturing a quantity of interest; (2) profile preference relations
to specify desired values or orders.

The main idea is to profile candidate subsets based on their features. Since each
profile is a tuple of features, the original set preference can now be formulated as a
tuple preference over the profiles.

In the rest of the paper, we elaborate our framework. We also discuss the computa-
tional issues involved in computing the “best” subsets. We show a heuristic algorithm
for this task.

2 Basic Notions

We make the standard assumptions of the relational model of data. In particular, we
assume that we have two attribute domains: rational numbers (Q) and uninterpreted
constants (D).

We assume that set preferences are defined over sets of the same fixed cardinality.

Definition 1 (k-subset). Given a relation r and a positive integer k, k ¤ |r|, a k-subset
s of r is a subset of r with cardinality k, i.e. s � r and |s| � k. Denote by k-subsetsprq
the set of all k-subsets of r.

We capture the quantities of interest for k-subsets using k-subset features.

Definition 2 (k-subset Feature). Given a relation r and a positive integer k ¤ |r|, a
k-subset feature Ap�q is a function: k-subsetsprq ÞÑ U , where U (either Q or D) is the
range of this function. The domain of feature A, denoted by DompAq, is U .
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Definition 3 (k-subset Profile Schema). Given a relation r and a positive integer k ¤
|r|, a k-subset profile schema Γ is a schema xA1, . . . ,Amy, where Ai is a k-subset
feature, i � 1, . . . ,m.

Definition 4 (k-subset Profile Relation). Given a relation r and its k-subset profile
schema Γ � xA1, . . . ,Amy, the k-subset profile relation γ is defined as

γ � tt|Ds P k-subsetsprq, t � xA1psq, . . . ,Ampsqyu.

The tuple xA1psq, . . . ,Ampsqy is the profile of s under Γ , denoted by profileΓ psq.

3 SQL-based Feature Definition

Definition 5 (SQL-based k-subset Features). Given a relation r and a positive integer
k ¤ |r|, a SQL-based k-subset feature A is defined by a parameterized SQL query of
the following type T0:
T0: SELECT expr FROM S WHERE condition
where

(1) S is a set parameter whose values can be arbitrary k-subsets of r, i.e. DompSq �
k-subsetsprq;

(2) expr is
(i) aggr([DISTINCT] A), where aggr P {min,max,sum,count,avg},

A is an attribute of r, or
(ii) any other legal expression in the SQL SELECT clause, which leads to a cate-

gorical query , i.e., a query returning a single value when evaluated over any
k-subset s of r, substituted for S;

(3) the FROM list contains a single item which is S or an alias for S;

Example 3. In Example 1, the quantity of interest in (C2) is captured by the k-subset
featureA2 where k � 3, and S is a set parameter that can be substituted by any 3-subset
of Book.
A2 � SELECT count(title) FROM S WHERE genre=’sci-fi’
Similarly, the quantities of interests in (C1), (C3) and (C4) are captured by the k-

subset features A1, A3 and A4 respectively.
A1 � SELECT sum(price) FROM S
A3 � SELECT count(DISTINCT vendor) FROM S
A4 � SELECT t1.rating FROM S t1

WHERE 1 = (SELECT count(t2.rating) FROM S t2
WHERE t2.rating > t1.rating)

The exprs of the features A1, A2 and A3 are of type (i), and therefore we can
guarantee syntactically that the feature definition query yields a single value over any
k-subset. In the case of A4, we can infer from its semantics that it is categorical. How-
ever, the syntax of A4 does not guarantee that. In fact, if we only slightly change the
SELECT attribute in the outer query, for example to SELECT t1.title, then the
query no longer yields a single value, because we could have multiple different books
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with the second highest rating. As we can see now, if the expr in the SQL-based feature
definition is of type (ii), we really need to study the semantics of the query to determine
its categoricity.

The following example illustrates a k-subset profile schema and relation based on
SQL-based k-subset features in Example 3.

Example 4. Continuing Example 3. Let the k-subset profile schema Γ � xA1,A2y.
The profile relation γ contains, among others, the following tuples: p$60, 2q, which
is the profile of the 3-subsets ta1, a2, a3u and ta2, a3, a5u; and p$61, 2q, which is the
profile of ta3, a7, a8u.

4 Profile-based Set Preferences

Now we can define set preferences over k-subsets as tuple preferences over the corre-
sponding profiles. Typically, a tuple preference relation is defined using a formula [4],
as is the case for the tuple preference for (C1) in Example 1.

For a relation schema R � xA1, . . . , Amy, we define the domain of R as the cross
product of the domains of its attributes, i.e. DompRq � DompA1q� . . .�DompAmq.

Definition 6 (Tuple Preference [4]). Given a relation schema R � xA1, . . . , Amy, a
tuple preference relation ¡ is a subset of rDompRqs2. If for a first order formula C,
Cpt1, t2q ô t1 ¡ t2, then the tuple preference is defined by the formula C. We then
denote the preference relation by ¡C .

Definition 7 (Set Preference). Given a relation schema R � xA1, . . . , Amy, a positive
integer k, a set preference relationÏ is a subset of the product rk-subsetspDompRqqs2.

In principle, set preferences could also be defined using logic formulas. However,
second-order variables would be necessary. To avoid the conceptual and computational
complexity associated with such variables, we consider only set preferences that are
induced by profile preferences. Recall that we also restrict sets to be of the same fixed
cardinality.

Definition 8 (Profile-based Set Preference). Let Γ � xA1, . . . ,Amy be a profile
schema and ¡C a tuple preference relation, which is a subset of rDompA1q � . . . �
DompAmqs

2. A set preferenceÏ is induced by Γ and ¡C if for every set s1 and s2,

s1 Ï s2 ô profileΓ ps1q ¡C profileΓ ps2q.

We then denote the set preference relation byÏpΓ,Cq.

Proposition 1. If the tuple preference relation ¡C is a strict partial order, then for any
profile schema Γ , the set preference relationÏpΓ,Cq is a strict partial order as well.

Recall that an essential component of set preferences consists of the desired values
or orders of the quantities of interests, which are captured by a preference relation over
profiles. In fact, in order to elaborate a set preference in our framework, a user needs to
do the following:
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1. Select an integer k and a relation r whose k-subsets are of interest.
2. Provide a k-subset profile schema by defining k-subset features A1, . . . ,Am.
3. Specify the profile preference using a tuple preference formula.

Example 5. Assume Γ � tA1,A2,A3,A4u. We can define the proper preference for-
mula Ci, i � 1, . . . , 4 over Γ , such that individual set preference (C1-C4) is induced
by Γ and ¡Ci. For example, we defineÏpΓ,C1q as

s1 ÏpΓ,C1q s2

ô xA1ps1q,A2ps1q,A3ps1q,A4ps1qy ¡C1 xA1ps2q,A2ps2q,A3ps2q,A4ps2qy
ô A1ps1q   A1ps2q.

Individual preference formulas can be the building blocks of more complicated pref-
erences, where formulas are assembled to express union, intersection, prioritized com-
position and Pareto composition of preferences [4].

Example 6. Consider the prioritized combination of (C2) and (C1) in Example 1. Let
the profile schema Γ � tA1,A2,A3,A4u, and the preference formula C0 over Γ be
such that

s1 ÏpΓ,C0q s2 ô pA2ps1q � 1^A2ps2q � 1q
_pA2ps1q � 1^A2ps2q � 1^A1ps1q   A1ps2qq
_pA2ps1q � 1^A2ps2q � 1^A1ps1q   A1ps2qq.

Note that formula C0 is the prioritized composition of C2 and C1.

5 Computing the Best k-subsets

For a tuple preference, the computation of the “best” tuples is embedded into Relational
Algebra (RA) in the form of a winnow operator.

Definition 9 (Winnow Operator [4]). If R is a relation schema and ¡C a preference
relation over R, then the winnow operator is written as ωCpRq, and for every instance
r of R: ωCprq � tt P r| Dt1 P r.t1 ¡C tu.

In our framework, a set preference is formulated as a tuple preference relation ¡C

over a profile schema Γ , which in turn defines a winnow operator, i.e. ωCpΓ q. The
“best” k-subsets are computed by winnow over the profile relation γ containing the
profiles of all k-subsets of a given relation r. The algorithm and discussion of winnow
in [4] are still valid here.

Algorithm 1 applies winnow on a stream of profiles of all k-subsets. The only differ-
ence is that winnow needs now to be aware of duplicates, since there may be different
k-subsets with the same profile. In this case, winnow eliminates duplicates and keeps
track of the relationship between a profile and its corresponding k-subsets.

This naive algorithm is only practical for small k; for large k, the number of k-
subsets, i.e.

�
n
k

�
, can be very large, and the exhaustive enumeration might not be ac-

ceptable. On the other hand, since the number of “best” sets can be as large as
�
n
k

�
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Algorithm 1 Naive Algorithm
Require: a profile schema Γ , a profile preference relation¡C , a relation r and a positive integer

k, k   |r|
Ensure: the best k-subsets of r
1: Generate all k-subsets of relation r and for each compute its profile based on the schema Γ ,

obtaining the profile relation γ.
2: Compute γ1 � ωCpγq using a duplicate-aware version of any winnow evaluation algorithm,

e.g. BNL [1, 4].
3: Retrieve the subsets corresponding to the profiles in γ1.

when the set preference relation ÏpΓ,Cq is empty, the worst case complexity Opnkq is
unavoidable. In Algorithm 2, we use heuristics to guide the generation of k-subsets,
which leads in some cases to an early stop.

The idea is that, given the set preference relation ÏpΓ,Cq, we are trying to find
a “superpreference” relation ¡� such that if t1 ¡

� t2, then any k-subset with t1 is
preferred (under ÏpΓ,Cq) to any k-subset with t2 as long as these two k-subsets are
otherwise identical, and vice versa.

Definition 10 (“Superpreference” Relation). Given a relation r, a positive integer
k   |r| and a set preference relation ÏpΓ,Cq, the corresponding “superpreference”
relation, denoted by ¡�, is such that

t1 ¡
� t2 ô t1 P r ^ t2 P r ^ r@s1 P (k-1)-subsetsprq,

pt1 R s1 ^ t2 R s1q ñ s1 Y tt1u ÏpΓ,Cq s1 Y tt2us.

When t1 ¡
� t2 ô t1 P r ^ t2 P r ^ C�pt1, t2q, then we say that ¡� is locally

defined using C�, and the following heuristic algorithm can be applied:

Algorithm 2 Heuristic Algorithm
Require: a profile schema Γ , a profile preference relation¡C , a relation r and a positive integer

k, k   |r|, ¡� locally defined using C�

Ensure: the best k-subsets of r
1: Let r1 � ωC�prq.
2: If |r1| ¥ k, generate all k-subsets of r1 and the corresponding profile relation γ1 based on the

schema Γ , otherwise r1 � r1 Y ωC�pr � r1q and repeat this step.
3: Compute γ2 � ωCpγ

1q using a duplicate-aware version of any winnow evaluation algorithm.
4: Retrieve the subsets corresponding to the profiles in γ2.

It still remains to be shown how to construct a formula C� given the profile schema
Γ and the profile preference formula C. Our preliminary study shows that for restricted
classes of profile schemas and profile preference formulas, C� exists and can be con-
structed systematically.

Definition 11 (Additive k-subset Features). Given a relation r, a positive integer k ¤
|r| and a k-subset feature A, A is additive if
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1. A is well-defined for the domain of (k-1)-subsetsprq, and
2. for any subset s1 P (k-1)-subsetsprq, and any t P r ^ t R s1,

Aps1 Y ttuq � Aps1q � fptq

where f is a function of t only.

Notice that we use the same notation A for the feature of original domain and the
feature of the expanded domain, as the former should be a restriction of the latter to the
original domain.

Proposition 2. If a SQL-based k-subset feature A is a subtype of (i) such that

1. there is no DISTINCT or subqueries, and
2. the aggregate is sum,count or avg with TRUE WHERE condition

then A is additive.

Proof. Let DompSq � k-subsetsprq Y (k-1)-subsetsprq in the definition of A, A is still
well-defined. Under the above conditions, we can show by case study that function fptq
in Definition 11 always exists. For example, if the aggregate is sum, Aps1 Y ttuq �
Aps1q � cptq � t.A, where A is the quantity of interest inA, i.e. the attribute in SELECT
clause, and cp�q is the indicator function of the condition in the definition of A.

Theorem 1. If the profile preference formula C can be rewritten as a DNF formula
nª

i�1

p
m©

j�1

pAijps1q θAijps2qqq

where θ P t�,�, ,¡,¤,¥u and Aij is an additive SQL-based k-subset feature, then
C� exists and can be constructed systematically.

Proof. Assume s1 is a (k-1)-subset of the relation r, we have the following rewriting

t1 ¡
� t2 ô t1 P r ^ t2 P r ^ r@s1 P (k-1)-subsetsprq,

pt1 R s1 ^ t2 R s1q ñ s1 Y tt1u ÏpΓ,Cq s1 Y tt2us

ô t1 P r ^ t2 P r ^ r@s1 P (k-1)-subsetsprq,

pt1 R s1 ^ t2 R s1q ñ
nª

i�1

p
m©

j�1

pAijps
1 Y tt1uq θAijps

1 Y tt2uqqqs

SinceAij is additive, we can show by case study that eachAijps
1Ytt1uq θAijps

1Y
tt2uq is equivalent to a formula of t1, t2 only. For example, assume aggr inAij is sum,
and θ is¡, then with the abuse of the indicator function cijp�q as a boolean variable, we
have

Aijps
1 Y tt1uq ¡ Aijps

1 Y tt2uq

ô Aijps
1q � cijpt1q � t1.Aij ¡ Aijps

1q � cijpt2q � t2.Aij

ô pcijpt1q ^ cijpt2q ^ t1.Aij ¡ t2.Aijq

_pcijpt1q ^  cijpt2q ^ t1.Aij ¡ 0q
_p cijpt1q ^ cijpt2q ^ t2.Aij   0q
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Therefore,

t1 ¡
� t2 ô t1 P r ^ t2 P r ^ r@s1 P (k-1)-subsetsprq,

pt1 R s1 ^ t2 R s1q ñ
nª

i�1

p
m©

j�1

pDijpt1, t2qqqs

where Dijpt1, t2q is a formula defined in the same language as that of C and only with
variables t1 and t2. In particular, Dijpt1, t2q does not contain variable s1, in which case,

t1 ¡
� t2 ô t1 P r ^ t2 P r ^

nª

i�1

p
m©

j�1

pDijpt1, t2qqq

By rewriting every conjunct in C, we obtain C� �
�n

i�1p
�m

j�1pDijpt1, t2qqq.
For the case of avg with TRUE condition, it is equivalent to the sum case for fixed-

cardinality sets. l

The k-subset features identified in Proposition 2 are eligible for the rewriting tech-
nique in Theorem 1. However, this rewriting does not work for features defined by
min, or max, or avg with non-TRUE WHERE condition. In those cases, the feature is
non-additive. Therefore, if we rewrite Apsq as an expression of s1 and t, the term(s)
containing variable s1 cannot be cancelled on both sides of θ. Intuitively, it says that we
cannot determine which of t1 and t2 is better without looking at the tuples in s1. For
example, consider the case where aggr is avg, the condition is non-TRUE, and θ
is ¡, the rewriting technique in Theorem 1 generates the following inequality:

Aijps
1 Y tt1uq ¡ Aijps

1 Y tt2uq

ô
bijps

1q �Aijps
1q � cijpt1q � t1.Aij

bijps1q � cijpt1q
¡

bijps
1q �Aijps

1q � cijpt2q � t1.Aij

bijps1q � cijpt2q

where bijps
1q � |tt|t P s1 ^ cijptq � 1u|. After simplifying the above inequality, we

still have terms of variable s1.
In most cases, we can use domain knowledge to significantly simplify the rewriting

approach described in Theorem 1. For the rewriting example in the proof, if Aij is
price, which is always positive, then the rewriting is simplified to

cijpt1q ^ pt1.Aij ¡ t2.Aij _ cijpt2qq

Example 7. In Example 1, consider the following preference
(C5) Alice wants to spend as little money as possible on sci-fi books.
(C6) Alice wants the average rating of books to be as high as possible.

and the set preference is the intersection of (C5) and (C6). Let Γ � xA5,A6y
A5 � SELECT sum(price) FROM S WHERE genre=’sci-fi’
A6 � SELECT avg(rating) FROM S

and s1 ÏpΓ,Cq s2 iff A5ps1q   A5ps2q ^ A6ps1q ¡ A6ps2q. The “superpreference”
formula C� obtained under the assumption that price ¡ 0 is

C�pt1, t2q ô t1.rating ¡ t2.rating ^ t2.genre � ’sci-fi’

^pt1.price   t2.price_ t1.genre � ’sci-fi’q.
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Proposition 3. For any set preference relation ÏpΓ,Cq, if the profile preference rela-
tion ¡C is a strict partial order (i.e. irreflexive and transitive), then the corresponding
“superpreference” relation ¡� is a strict partial order as well.

Proof. If ¡� is empty, then it is trivially true. Otherwise, we need to show that ¡� is
irreflexive and transitive. Given the irreflexitivity of ¡C , the irreflexitivity of ¡� can
be easily shown by contradiction. Here, we only prove the transitivity of ¡�.
We need to show that t1 ¡

� t2 ^ t2 ¡
� t3 ñ t1 ¡

� t3.

t1 ¡
� t2 ô t1 P r ^ t2 P r ^ r@s P (k-1)-subsetsprq,

pt1 R s^ t2 R sq ñ sY tt1u ÏpΓ,Cq sY tt2us (1)

t2 ¡
� t3 ô t2 P r ^ t3 P r ^ r@s P (k-1)-subsetsprq,

pt2 R s^ t3 R sq ñ sY tt2u ÏpΓ,Cq sY tt3us (2)

Therefore, consider any subset s P (k-1)-subsetsprq, t1 R s ^ t3 R s. We have the
following two cases:

Case 1: t2 R s
By (1), (2) and the transitivity of ¡C , we have sY tt1u ÏpΓ,Cq sY tt3u.

Case 2: t2 P s
Let s1 � s� tt2u, by (1),

s1 Y tt3u Y tt1u ÏpΓ,Cq s1 Y tt3u Y tt2u (3)

By (2),
s1 Y tt1u Y tt2u ÏpΓ,Cq s1 Y tt1u Y tt3u (4)

By (3), (4) and the transitivity of ¡C , we have sY tt1u ÏpΓ,Cq sY tt3u.

l

6 Related Work

There are many papers on preferences over tuples using either a qualitative or a quanti-
tative approach. However, there are only a few works on preferences over sets [6–8].

[8] is conceptually the closest to our work. It addresses the problem of finding an
optimal subset of items given a set of items. The language for specifying such set pref-
erences is based on the attribute values of individual items within the set. Each set
property is based on the number of items satisfying a certain predicate. It is either a
boolean value (whether the number of items satisfying the predicate is ¡ k), or an
integer value (the number of items satisfying the predicate). Given a collection of set
properties, a set preference is specified as either a TCP-net [9] or a scoring function. [8]
gives heuristic search algorithms for finding an optimal subset. [8] considers subsets
of any cardinality. For fixed-cardinality subsets, the language in [8] can easily be ex-
pressed in our approach: each set property being translated to a k-subset feature of the
type (i) with the count aggregate; the boolean value and the TCP-net set preference
being captured by a preference formula over profiles.
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[7] focuses on fixed-cardinality set preferences. It considers two k-subset features:
diversity and depth, and the set preference as an objective function of maximizing the
linear combination of diversity and depth. Again, those cae be expressed in our ap-
proach.

[6] considers a new class of queries called OPAC (optimization and parametric ag-
gregation constraints) queries. Such queries aim at identifying sets of tuples that consti-
tute the solutions of optimization problems. [6] considers subsets of any cardinality. The
atomic parametric aggregation constraint is of the form aggrpAq   parameter and
the objective function is min {maxpaggrpatomic constraintsqq. Approximation al-
gorithms are given for query evaluation. For fixed-cardinality subsets, again, the atomic
aggregation constraints can be captured by k-subset features and the parameters and
the objective function can be captured by the preference formula over profiles in our
framework.

7 Future Work

Our framework works for the set preferences induced by profiles and tuple preferences.
We intend to study the expressive power of the framework for restricted classes of
features and tuple preferences, and see if restrictions could lead to more efficient im-
plementations. We also plan to adapt existing preference query optimization techniques
[10] to set preferences, and develop new techniques. Finally, we will also investigate
the query categoricity issue and the impact of integrity constraints.
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