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ABSTRACT
We present here a variant of acyclic CP-networks. It allows
not only finite but also infinite domain attributes. It also
has the property that a preference over each attribute in the
network has higher priority then all the descendants’ prefer-
ences. We provide an algorithm of constructing a preference
formula representing the order induced by a hierarchical CP-
network, thus making it possible to work with hierarchical
CP-networks in the database context. We also provide a
complexity analysis of the size of preference formula con-
structed by the algorithm.

1. INTRODUCTION
In making any kind of choice in the everyday’s life, the

notion of preference always comes to mind. A number of
preference handling models have been developed. Two very
popular ones are the CP-network model [1] and the binary
relation model [4, 9].

Being very general, the binary relation framework can be
used in different contexts like preference construction [9] or
preference modification [6]. Moreover, the power of rela-
tional databases can be used to find the optimal outcomes
of preferences represented as binary relations [4, 9]. At the
same time, the CP-network model is very simple and intu-
itive. It represents a complex preference over objects using a
set of atomic preferences each of which is a preference over a
single object attribute given that the values of the other at-
tributes are equal (the ceteris paribus principle). This set of
atomic preferences is represented as a directed graph (some-
times called the preference graph) whose nodes are atomic
preferences, and edges between nodes correspond to condi-
tional preferences over attributes - i.e. the values of the
parent attributes influence the preferences over the child at-
tributes.

The hierarchical CP-network model, which is introduced
in this paper, addresses some semantical and representa-
tional limitations of CP-networks: 1) it allows continuous
attributes by representing conditional preference tables as
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binary preference relations, 2) the attributes in hierarchi-
cal CP-networks are prioritized : any attribute in preference
graph is more important than its descendants; 3) the ceteris
paribus principle can be selectively relaxed.

According to [1], in some CP-network instances edges be-
tween attributes in preference graph correspond to attribute
priorities.

Example 1. Let a CP-net N1 over the problem with two
attributes X = {X1, X2} be defined as in Figure 1.
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Figure 1: CP-net N1 from Example 1

The CP-net N1 induces a total ordering of all the out-
comes (Figure 1.b) which implies that the most important is
to satisfy the preferences over the attribute X1, then over the
attribute X2 (the outcomes with values X1 = xa

1 are always
preferred to those with X1 = xb

1).

However, attribute prioritization does not hold for all CP-
network instances. In particular, it is not always the case
that violation of a preference is worse than violation of two
or more descendant preferences.

Example 2. Let CP-net N2 over the problem with three
attributes X = {X1, X2, X3} be defined as in Figure 2. The
entailed preference arcs are skipped in Figure 2.b for simplic-
ity. However they can be obtained by performing the transi-
tive closure of the graph.
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Figure 2: CP-net N2 for Example 2

Models in which descendant preferences are less important
then their ancestors are natural for frameworks in which
preferences are iteratively constructed by a user in a top-
down manner; namely, when a new preference is added as
a leaf node or a node starting a new preference subgraph.
In this case, the nodes added as less important preferences
(leaf nodes) are guaranteed not to violate more important,
already introduced ancestor preferences.

Another drawback of CP-networks [12] is that sometimes
the ceteris paribus semantics is too strict, and when one in-
troduces a preference over an attribute, it’s not always pos-
sible to say that this preference has to be of the everything
else being equal kind.

Example 3. Assume a person wants to buy a car. Let
a car seller have a database of cars which are described by
the attributes {make, year, price, mileage, engine-type}. At
the same time, the person only cares about the attributes
{make, year, price, mileage}. However, in the CP-network
framework there is no way to specify that engine-type is ir-
relevant: if a CP-network has a conditional preference table
over engine-type, then engine-type is relevant; if it does not,
then one outcome will be preferred to another according to
the CP-network only if the engine-types of the outcomes are
the same.

According to the definition of CP-networks [1], each at-
tribute involved in a CP-network is categorical. At the
same time, there are many problems in which continuous
attributes arise and for which it would be useful to have an
approach similar to CP-networks.

Due to these limitations, the preferences from Example
4 below cannot be represented as a CP-network. However,
they can be represented using hierarchical CP-networks, as
we show in Example 5.

Example 4. Assume a user wants to buy a car, and her
preference over make has the same importance as the pref-
erence over year, price, and mileage. At the same time,
assume that year is more important than price and mileage.

Let the preference be constructed in a top-down manner
from more to less important variables. So the first prefer-
ence introduced by the user is over make: given two cars
with the same age, price and mileage, she prefers VW to
Kia, and Kia to all the other makes. The second preference
is over year: given two cars of the same make, she would
buy the newer one. The third preference is over mileage: if
the makes, ages, and prices are the same, but the cars are
relatively new (year ≥ 2004), she prefers the one with less
mileage (less than 60000). However, if the makes, ages, and
prices are the same, but the cars are old (year < 2004), she
prefers the one with the mileage less than 80000. The last
preference is over price: if two cars have the same make,
age, and mileage, but are new (year ≥ 2006), she prefers
the cheaper one. However, given two cars with the same
make, age, and mileage, but not new (year < 2006), she
prefers to spend not more then 80000 on it.

The paper is organized as follows. Section 2 contains the
definition of hierarchical CP-networks and a discussion of
some of their properties. In Section 3, we describe an al-
gorithm constructing a preference formula representing the
order induced by a hierarchical CP-network. This allows to
work with hierarchical CP-networks in the database context.
Section 4 contains the complexity analysis of the preference
formula constructed by the algorithm. Section 5 concludes
the paper with a discussion of related and future work.

2. NOTIONS
In this paper we adopt the notations from both approaches:

CP-networks and binary preference relations.
Assume we have a problem over outcomes described by n

attributes X = {X1, ..., Xn} such that each attribute Xi is
associated with a domain D(Xi) (categorical or continuous).
Let us denote the set of all possible outcomes as D

D = D(X1) × ... ×D(Xn),

and the set of all possible assignments to the set of attributes
U ⊆ X as

D(U) =
�

X∈U

D(X).

Then given an outcome o ∈ D, we denote the value of an
attribute X ∈ X of o as o.X. A relation instance is a finite
set of outcomes.

We limit our attention to preference relations that are
strict partial orders (SPOs): transitive and irreflexive binary
relations.

2.1 Hierarchical CP-network
Let a conditional preference table CPT (X) associated with

an attribute X ∈ X be defined as a triple

CPT (X) = (ΦX , WX , UX)

in which WX ⊂ X , UX ⊂ X such that UX ∩ WX = ∅,
X 6∈ UX , X 6∈ WX , and ΦX = {ϕ1, ..., ϕk}.

Let ϕ be defined as uϕ : Rϕ where uϕ is a relation such
that uϕ ⊆ D(UX), Rϕ is a strict partial order over D(X),
and for all pairs of different ϕ1, ϕ2 ∈ ΦX , we have uϕ1

∩



uϕ2
= ∅. Let Puϕ be a finite formula representing the re-

lation uϕ, and a PRϕ be a finite formula representing the
relation Rϕ. In the complexity analysis, we will assume
that Puϕ and PRϕ are such that they can be evaluated in
polynomial time for given valuations of the free variables.

Define for each ϕ a binary relation over outcomes

ϕ∗ = {(uxwy, ux′w′y) :u ∈ D(UX), uϕ(u); w, w′ ∈ D(WX);
y ∈ D(YX); (x, x′) ∈ Rϕ}

where YX = X − ({X}∪WX ∪UX). We define the binary
relation induced by conditional preference table CPT (X) as
CPT ∗(X) = �ϕ∈ΦX

ϕ∗. Thus from the expression for ϕ∗ it
follows that the preference over attribute X is conditionally
dependent on the attributes from UX . Moreover, the pref-
erence over the attribute X is independent of the attributes
from WX . In other words, instead of the CP-network prin-
ciple everything else being equal we use the everything else
being equal except for the attributes WX principle which was
introduced in [12].

Summarizing the notation introduced so far: UX , WX ,
and YX are such that 1) UX∩WX = ∅; 2) X 6∈ UX , X 6∈ WX ;
3) YX = X − ({X} ∪ WX ∪ UX).

Proposition 1. ϕ∗ and CPT ∗(X) are strict partial or-
ders.

Definition 1. Let Γ be a set of conditional preference
tables for the attributes XΓ ⊆ X

Γ = {CPT (X) : X ∈ XΓ}.

We define the preference order �Γ induced by Γ as the tran-
sitive closure of �CPT (X)∈Γ CPT ∗(X)

�Γ≡ TC( �
CPT (X)∈Γ

CPT
∗(X)).

Note that our definition of the order induced by Γ is differ-
ent from the definition of the order entailed by CP-network
[1].

Definition 2. [1] Let Γ be a set of conditional preference
tables. Let � be a total order over D. Then � is said to
satisfy CPT (X) if for all o, o′ ∈ D : (o, o′) ∈ CPT ∗(X)
implies o � o′. A total order � is said to satisfy Γ if it
satisfies every CPT (X) ∈ Γ.

Proposition 2. Let the order �′
Γ entailed by the hier-

archical CP-network Γ be the intersection of all total orders
satisfying Γ. Then the order �Γ induced by Γ and the order
�′

Γ entailed by Γ are equivalent.

Proof: Prove that every linear extension of �Γ is a total
order satisfying Γ and vice versa. Let � be a linear ex-
tension of �Γ, i.e. TC(�X∈XΓ

CPT ∗(X)) ⊆�. It implies

�
X∈XΓ

CPT ∗(X) ⊆�. Thus � satisfies Γ.

Let � be a total order satisfying Γ, i.e. �X∈XΓ
CPT ∗(X)

⊆ �. � being an SPO implies TC(�X∈XΓ
CPT ∗(X)) ⊆�.

Therefore � is a linear extension of �Γ.

We define now hierarchical CP-networks. Let H(X) =
{(Y, X) : Y ∈ UX}, where H(X) can be viewed as a di-
rected graph with incoming edges going from the attributes
Y ∈ UX to a single attribute X. These edges correspond

to the conditional preference of attribute X on attributes
Y ∈ UX . Then we define the preference graph of Γ as
HΓ = �X∈XΓ

H(X).
Working with preference graph HΓ, let us use the fol-

lowing notation: AncΓ(X) = { ancestors of X in HΓ },
Anc-selfΓ(X) = { ancestors of X in HΓ or X }, DescΓ(X) =
{ descendants of X in HΓ }, SiblΓ(X) = XΓ − (DescΓ(X)∪
AncΓ(X)∪{X}), PaΓ(X) = { parents of X in HΓ}, ChΓ(X) =
{ children of X in HΓ }.

Definition 3. A set of conditional preference tables Γ is
called a hierarchical CP-network if

1. for every X in XΓ, WX = �Z∈ChΓ(X)({Z} ∪ WZ);

2. if an attribute X has no child attributes in HΓ, then
WX = X − XΓ.

From Definition 3 it follows that for each attribute X in
the preference graph of a hierarchical CP-network Γ, WX =
DescΓ(X) ∪ (X − XΓ). As a result, a preference over any
attribute is more important than the preferences over this
attribute’s descendants in HΓ.

Definition 3 also implies that a preference graph HΓ of a
hierarchical network is acyclic, otherwise WX of some at-
tribute X involved in a cycle would contain attribute X
leading to a contradiction.

The formula representation Pϕ∗ of ϕ∗ is defined as

Pϕ∗ (o, o′) = [�Z∈Anc(X)∪Sibl(X) o.Z = o′.Z]∧

Puϕ(o.UX ) ∧ Puϕ(o′.UX ) ∧ PRϕ(o.X, o′.X),

according to Definition 3. The formula representation
PCPT∗(X) of CPT ∗ is defined as

PCPT∗(X)(o, o
′) = �

ϕ∈ΦX

Pϕ∗(o, o′),

or using the expression for Pϕ∗(o, o′),

PCPT∗(X)(o, o
′) = [�Z∈Anc(X)∪Sibl(X) o.Z = o′.Z]∧�

ϕ∈ΦX
Puϕ(o.UX) ∧ Puϕ(o′.UX)∧

PRϕ(o.X, o′.X).

Let

QCPT∗(X)(o, o
′) =

�
ϕ∈ΦX

Puϕ(o.UX) ∧ Puϕ(o′.UX)∧
PRϕ(o.X, o′.X).

Then

PCPT∗(X)(o, o
′) = [�Z∈Anc(X)∪Sibl(X) o.Z = o′.Z]∧

QCPT∗(X)(o, o
′).

Note that since Puϕ and PRϕ are finite formulas and
can be evaluated in polynomial time, Pϕ∗ , PCPT∗(X), and
QCPT∗(X) are finite formulas and can be evaluated in poly-
nomial time as well. We introduce formula QCPT∗(X) here
since it plays an important role further in the paper.

In our model, a conditional preference table CPT (X) is
graphically represented as a two-column table in which a row
corresponds to a single ϕ ∈ ΦX . The first column of each
row holds the formula Puϕ , and the second column holds the
formula PRϕ . Compared to conditional preference tables of
the traditional CP-network model, hierarchical CPTs differ
in the following:



• the first column of a CP-net CPT is required to store a
single assignment to UX , while a hierarchical CPT has
there a formula Puϕ . As a result, since Puϕ represents
the relation uϕ, hierarchical CPTs can be defined for
infinite domain attributes UX ;

• the second column of a CP-net CPT (X) is required
to store a total order of D(X). In our approach, the
second column holds a formula PRϕ representing an
SPO relation over D(X). Therefore hierarchical CPTs
can be defined for infinite domain attributes X:

Example 5. Take Example 4. A hierarchical CP-network
Γ which corresponds to the preference from this example is
shown in Figure 3. Note that according to Example 4 the
preferences over the attributes y and m are unconditional,
i.e. there is no attribute in XΓ whose value influences the
preference over y or m. Therefore Uy = Um = ∅ and the
first columns of CPT (y) and CPT (m) are skipped (shown
filled with dashes).

p

y

ml

m

CPT (m)

- m

- [o.m = vw ∧ o′.m = kia]∨

[o.m ∈ {kia, vw} ∧ o′.m 6∈ {kia, vw}]

CPT (p)

y p

y ≥ 2006 o.p < o′.p

y < 2006 o.p ≤ 8000 ∧ o′.p > 8000

CPT (y)

- y

- o.y > o′.y

CPT (ml)

y ml

y ≥ 2004 o.ml < 60000 ∧ o′.ml ≥ 60000

y < 2004 o.ml < 80000 ∧ o′.ml ≥ 80000

Figure 3: Hierarchical CP-net for Example 5.

Note that hierarchical CP-networks do not subsume CP-
nets, although it may appear to be so. In CP-nets, WX = ∅
but this may violate the first condition of Definition 3.

2.2 Subnet of a hierarchical CP-network
Loosely speaking, a subnet of a hierarchical CP-network

Γ is just a subset of the conditional preference tables from
Γ. However not any subset of Γ is a subnet. Its formal
definition is given further.

Definition 4. Let ∆ and Γ be two hierarchical CP-net-
works such that

1. X∆ ⊂ XΓ: all attributes used in the network ∆ are also
used in the network Γ;

2. if some attribute X from XΓ is in X∆ then all ancestors
of X from HΓ are in X∆;

3. Given two conditional preference tables CPT∆(X) and
CPTΓ(X) for an attribute X ∈ ∆∩Γ correspondingly,
the first and the third components (namely, ΦX and
UX) of the two conditional preference tables are equal.
The WX component of CPT∆(X) is set to Desc∆(X)∪
(X−X∆), i.e. it is set according to the preference graph
H∆ of ∆.

Then ∆ is called a subnet of a hierarchical CP-network
Γ.

The notion of subnet of a hierarchical CP-network will be
used further in the paper to construct a preference formula
representing the order induced by a hierarchical preference
network.

3. FROM HIERARCHICAL CP-NETS TO
PREFERENCE FORMULAS

Dealing with preferences, the two most common tasks are
1) given two outcomes, find the more preferred one, and 2)
find the optimal outcomes from the given set of outcomes.

The first problem is called dominance testing. In the CP-
network approach, this problem can be solved in polynomial
time in the number of attributes when a preference graph
is a directed tree or polytree. If the graph is directed-path
singly-connected, dominance testing is NP-complete, and it
is in NP if the number of paths between any pair of nodes
in the graph is polynomially bounded [1]. In the hierarchi-
cal CP-network framework, this problem can be solved in
polynomial time in the size of the hierarchical CP-network
description by the following proposition which is analogous
to a result in [12].

Proposition 3. Let Γ be a hierarchical CP-net. Let o, o′

be two outcomes. Let Diff = {X1, ..., Xl} ⊆ XΓ be the
attributes in whose values o and o′ are different, and Top be
the set of all nodes from Diff which have no ancestors in
Diff . Then

o �Γ o
′ ⇔ ∀X ∈ Top : QCPT∗(X)(o, o

′)

As shown in [12], the problem of finding the optimal out-
comes can be also solved by Proposition 3 by taking every
outcome and checking if there is any outcome dominating
it. Thus the optimal outcomes can be computed in time
polynomial in the size of the network description and the
number of outcomes.

To find the optimal outcomes in the relational database
framework, the winnow operator [4] can be used. It is an al-
gebraic operator which picks from a given relation (contain-
ing all possible outcomes) the set of the most preferred out-
comes, according to a given preference relation. Formally, it
is defined as follows.

Definition 5. If R is a relation schema and � a prefer-
ence relation over R, then the winnow operator is written
as ω�(R), and for every instance r of R:

ω�(r) = {t ∈ r | ¬∃t
′ ∈ r. t

′ � t}

From Definition 5, it follows that using the winnow opera-
tor requires the order induced by a hierarchical CP-network
to be represented as a binary preference relation.

According to Proposition 3, one of the ways to construct
a preference formula representing the order induced by a
hierarchical CP-network Γ is by 1) taking every nonempty
subset Diffi of XΓ, 2) for every Diffi, finding the corre-
sponding Topi, 3) for every Diffi, writing down the formula

Di(o, o
′) = (�X∈X−Diffi

o.X = o′.X)∧
(�X∈Diffi−Topi

o.X 6= o′.X)

(�X∈Topi
QCPT∗(X)(o, o

′)),



and 4) finding the disjunction of all Di(o, o
′), which will be

the order induced by Γ.
However, the formulas constructed by this algorithm will

be clearly exponential in the size of the hierarchical CP-
network description, since the algorithm requires enumerat-
ing all nonempty subsets of XΓ.

At the end of this section, we present another algorithm,
Algorithm 1, for constructing a preference formula repre-
senting the order induced by a hierarchical CP-network. Al-
gorithm 1 produces polynomial-size preference formulas for
a large class of hierarchical CP-networks.

3.1 Disassembling a hierarchical CP-network
into a set of connectives and subnets

To construct a preference formula for a hierarchical CP-
net Γ, we consider its preference graph HΓ as a set of many-
to-one connectives and parallel subnets. The preference for-
mula construction algorithm provided at the end of this sec-
tion is iterative. It starts from the set of parallel subnets
each of which consists of a topmost node of HΓ. Each step
of the algorithm joins two or more parallel subnets of Γ
and/or extends the existing subnets with a node from XΓ.

3.1.1 Parallel subnets

. . .

∆1 ∆2 ∆k

∆

Figure 4: Parallel subnets

Proposition 4. Let ∆1, ..., ∆k be some subnets of Γ and
�∆1

, ...,�∆k
be SPO relations representing the orders in-

duced by ∆1, ..., ∆k correspondingly. Let P�∆1
, ..., P�∆k

be
formula representations of �∆1

, ...,�∆k
correspondingly. Let

also ∆ be a subnet of Γ such that X∆ = X∆1
∪...∪X∆k

. Then
the formula P ′

�∆
defined as

P ′
�∆

(o, o′) ≡ (P�∆1
(o, o′) ∨ �Z∈X∆1

o.Z = o′.Z) ∧ ...∧
(P�∆k

(o, o′) ∨ �Z∈X∆k
o.Z = o′.Z)∧

¬�Z∈X∆
o.Z = o′.Z

defines an SPO, and P ′
�∆

≡ P�∆
.

By Proposition 4, if we know preference formulas repre-
senting the orders induced by a set of parallel subnets, we
can easily find a preference formula representing the order
induced by the union of these subnets.

Note that according to Proposition 4, the subnets ∆1, ..., ∆k

are not required to be disjoint (i.e. if some subnet ∆i con-
tains an attribute, then the other subnets can also contain
the same attribute).

Example 6. Take the hierarchical CP-network from Ex-
ample 5. It can be considered as a union of two subnets ∆1

consisting of the attributes {p, y, ml}, and ∆2 consisting of
a single attribute {m}.

Then according to Proposition 4, the preference formula
representing the order induced by Γ is

P�Γ
(o, o′) ≡ (P�∆1

(o, o′)
�

o.p = o′.p ∧ o.y = o′.y ∧ o.ml = o′.ml)�
(P�∆2

(o, o′)
�

o.m = o′.m) �
¬[o.p = o′.p ∧ o.y = o′.y∧
o.ml = o′.ml ∧ o.m = o′.m]

where P�∆1
is a preference formula representing the order

induced by ∆1, and P�∆2
is a preference formula represent-

ing the order induced by ∆2 which is defined as

P�∆2
≡ o.m = vw ∧ o′.m = kia

�
o.m ∈ {kia, vw} ∧ o′.m 6∈ {kia, vw}

3.1.2 Many-to-one connectives
Let ∆1, ..., ∆k be some subnets of Γ. Let also Xe be such

an attribute from XΓ − (X∆1
∪ ... ∪ X∆k

) that

• each parent of Xe in HΓ is in one of X∆1, ...,X∆k;

• if an attribute Y ∈ X∆i is a parent of Xe in HΓ, then
all the other nodes in X∆i

are the ancestors of Y in
H∆i (i.e. Y is the bottom most node of H∆i

).

Then the set of ∆1, ..., ∆k along with Xe is called many-
to-one connective.

. . .

Xe

∆1 ∆2 ∆k

Figure 5: Many-to-one connective

Proposition 5. Let a set of subnets ∆1, ..., ∆k of Γ and
an attribute Xe ∈ XΓ be a many-to-one connective and �∆1

, ...,�∆k
be SPO relations representing the orders induced by

∆1, ..., ∆k correspondingly. Let P�∆1
, ..., P�∆k

be formula
representations of �∆1

, ...,�∆k
correspondingly. Let also ∆

be such a subnet of Γ that X∆ = X∆1
∪ ... ∪ X∆k

∪ {Xe}.
Then the formula P ′

�∆
defined as

P ′
�∆

(o, o′) ≡ (P�∆1
(o, o′) ∨ [�Z∈X∆1

o.Z = o′.Z]) ∧ ...∧
(P�∆k

(o, o′) ∨ [�Z∈X∆k
o.Z = o′.Z])∧

¬[�X∆1∪...∪X∆k
o.Z = o′.Z]

�
[�Z∈X∆1∪...∪X∆k

o.Z = o′.Z] ∧ QCPT∗(Xe)(o, o
′)

defines an SPO, and P ′
�∆

≡ P�∆
.

By Proposition 5, if we know preference formulas repre-
senting the orders induced by all components of a many-
to-one connective, we can easily find a preference formula
representing the order induced by the entire connective.

Note that if the preference graph of a hierarchical CP-
network Γ can be represented as a set of DAGs in which each
node has at most one outgoing edge, Propositions 4 and 5
are enough to iteratively construct a preference formula for
Γ. Namely, for each DAG in the set, perform the following
steps 1) start with the subnets each of which consists of a
single topmost attribute of the DAG, 2) iteratively merge
and extend the existing subnets by one child node in each
iteration (i.e. apply Proposition 5), 3) finally, apply Propo-
sition 4 to the parallel subnets with no descendant nodes.
However this algorithm is not always applicable because a
hierarchical CP-network can have attributes with more than
one outgoing edge (e.g. Γ from Example 5).



3.1.3 One-to-many connectives
In this section, we present a method which allows to trans-

form a hierarchical network whose preference graph contains
nodes with more then one outgoing edge (one-to-many con-
nective) to a set of parallel subnets whose preference graphs
have no nodes with more than one outgoing edge.

Let ∆1 be a subnet of a hierarchical CP-network of Γ and
Xs be such attribute in H∆1

that all the other attributes
in ∆1 are its ancestors (i.e. Xs is the bottom most node in
H∆1

). Let Xs have k (where k ≥ 1) outgoing edges in HΓ.
Formally, let there exist such attributes Xj , ..., Xj+k ∈ XΓ

that Xs is their parent (possibly one of many parents).
In order to avoid the situation when a node has more than

one outgoing edge, we will make k − 1 copies of the subnet
∆1. As a result, we will make subnets ∆2, ..., ∆k each of
which is a copy of ∆1. Note that the order induced by the
subnet which is a union of ∆1, ..., ∆k will be the same as
the order induced by only ∆1 (by Proposition 4). After
that, we will make each attribute Xs of each of ∆1, ..., ∆k

a parent of only one attribute Xj , ..., Xj+k correspondingly.
As a result, each copy of Xs now has only one outgoing edge.
Note also that this operation does not violate the semantics
of the hierarchical CP-network because the preference over
each of Xj , ..., Xj+k is still conditionally dependent on Xs.
We call this process one-to-many connective elimination.

Example 7. Take the subnet ∆1 from Example 6. It con-
sists of the attributes {p, y, ml} such that y has two outgoing
edges to p and ml. The one-to-many connective elimination
technique splits this subnet into two parallel subnets ∆3 and
∆4 as it is shown in Figure 6.

∆1

y

mlp

∆3 ∆4

p

y y

ml

Figure 6: Eliminating the one-to-many connective
from ∆1.

The hierarchical CP-networks ∆3 and ∆4 are defined as
in Figure 7.

Given a hierarchical CP-network with many-to-one con-
nectives, this technique produces a set of subnets without
one-to-many connectives. Each of the subnets is a hierar-
chical CP-network and thus one can apply Proposition 5 to
construct a preference formula for each of them. Finally,
Proposition 4 can be used to merge the subnets back and
produce a preference formula for it.

3.2 Constructing preference formulas
Below we provide an algorithm for constructing an SPO

preference formula representing the order induced by a hier-
archical CP-network. It takes two parameters: a hierarchi-
cal CP-network Γ and the graph H ′

Γ which is the result of
performing the one-to-many connective elimination on HΓ.

Algorithm 1.
FormulaCons( Γ, H ′

Γ )
1. S = topologically sorted sequence of nodes H ′

Γ;

2. For each node X in S,

∆3 = {CPT∆3
(y), CPT∆3

(p)}

CPT∆3
(y) :

- y

- o.y > o′.y

CPT∆3
(p) :

y p

y ≥ 2006 o.p < o′.p

y < 2006 o.p ≤ 8000 ∧ o′.p > 8000

∆4 = {CPT∆4
(y), CPT∆4

(ml)}

CPT∆4
(y) :

- y

- o.y > o′.y

CPT∆4
(ml) :

y ml

y ≥ 2004 o.ml < 60000 ∧ o′.ml ≥ 60000

y < 2004 o.ml < 80000 ∧ o′.ml ≥ 80000

Figure 7: The hierarchical CP-networks ∆3 and ∆4.

3. if X has no parents in H ′
Γ, PA[X] = {X};

4. else PA[X] = PA[Y1] ∪ ... ∪ PA[Yk] ∪ {X}, where

5. Y1, ..., Yk are the parents of X in H ′
Γ;

6. For each node X from S do

7. If X has no parents in H ′
Γ, then

8. P [X] = P ∗
CPT (X)

9. If X has parents Y1, ..., Yk, then

10. P [X] =(P [Y1] ∨ [�Z∈PA[Y1] o.Z = o′.Z])∧

11. ...
12. (P [Yk] ∨ [�Z∈PA[Yk] o.Z = o′.Z])∨

13. ([�Z∈PA[Y1]∪...∪PA[Yk] o.Z = o′.Z]∧

14. P ∗
CPT (X))

15. Let D be the sequence of all nodes from H ′
Γ

16. with no outgoing edges

17. If |D| = 1, then

18. OUT = P [D[1]]
19. else (|D| = k > 1)
20. OUT = (P [D[1]] ∨ [�Z∈PA[D[1]] o.Z = o′.Z])∧

21. ...
22. (P [D[k]] ∨ [�Z∈PA[D[k]] o.Z = o′.Z])∧

23. (¬[�Z∈PA[D[1]]∪...∪PA[D[k]] o.Z = o′.Z])

24. return OUT ;

Since a preference graph HΓ is acyclic, H ′
Γ is also acyclic.

Therefore the sequence D constructed in line 15 is nonempty.
The algorithm outputs relation OUT (o, o′) which is an

SPO preference formula representing the order induced by
Γ. Below we provide an example of applying the algorithm
to the hierarchical CP-network from Example 5.

Example 8. Given a hierarchical CP-network Γ and a
preference graph from Example 5, we apply the one-to-many
elimination technique and decompose the preference graph
into two parallel subnets: ∆1 and ∆2 as it is in Example
6. By applying one-to-many elimination technique, ∆1 was
decomposed into ∆3 and ∆4 as it is in Example 7. By propo-
sition 5, the formula P�∆3

representing the order induced by
∆3 is

P�∆3
(o, o′) ≡ o.y > o′.y∨
(o.y = o′.y ∧ (o.y ≥ 2006 ∧ o′.y ≥ 2006 ∧ o.p < o′.p∨
o.y < 2006 ∧ o′.y < 2006 ∧ o.p ≤ 8000 ∧ o′.y > 8000)),



and the formula P�∆4
representing the order induced by

∆4 is

P�∆4
(o, o′) ≡o.y > o′.y ∨ (o.y = o′.y ∧ (

o.y ≥ 2004 ∧ o′.y ≥ 2004∧ o.ml < 60000∧
o′.ml ≥ 60000 ∨ o.y < 2004 ∧ o′.y < 2004∧
o.ml < 80000 ∧ o′.ml ≥ 80000)).

Thus by Proposition 4, the formula P�∆1
representing the

order induced by ∆1 is

P�∆1
(o, o′) ≡ (P�∆3

(o, o′) ∨ o.y = o′.y ∧ o.p = o′.p)∧
(P�∆4

(o, o′) ∨ o.y = o′.y ∧ o.ml = o′.ml)∧
¬(o.y = o′.y ∧ o.p = o′.p ∧ o.ml = o′.ml).

And finally, a preference formula representing the order
induced by Γ can be computed by the expression provided in
Example 6, i.e.

P�Γ
(o, o′) ≡ (P�∆1

(o, o′)
�

o.p = o′.p ∧ o.y = o′.y ∧ o.ml = o′.ml) �
(P�∆2

(o, o′)
�

o.m = o′.m) �
¬[o.p = o′.p ∧ o.y = o′.y∧
o.ml = o′.ml ∧ o.m = o′.m]

4. COMPLEXITY ANALYSIS
The purpose of this section is to provide an analysis of

the size of the preference formula produced by Algorithm 1.
We divide this analysis into two parts:

• the analysis of the size of the constructed preference
formula as a function of the number of nodes in its
preference graph HΓ assuming that HΓ has no one-to-
many connectives;

• the analysis of size of a preference graph H ′
Γ produced

by the one-to-many connective elimination technique
applied to the original preference graph HΓ;

According to Proposition 6 below, the size of the prefer-
ence formula is polynomial in the number of conditional pref-
erence tables in a hierarchical CP-network, given its prefer-
ence graph has no one-to-many connectives.

Proposition 6. The size of the preference formula pro-
duced by Algorithm 1 for a hierarchical CP-network Γ such
that HΓ does not have one-to-many connectives is Θ(|XΓ|

2+
|XΓ|Bmax), where Bmax is the size of the longest formula
QCPT∗(X) among all X ∈ XΓ.

However, given a preference graph HΓ, its version H ′
Γ

without one-to-many connectives may have exponential size
as shown below. Thus in general the size of the preference
formula constructed by Algorithm 1 may be exponential in
the number of conditional preference tables in a hierarchical
CP-network.

Proposition 7. Given a hierarchical CP-network Γ, the
size of the preference graph H ′

Γ produced from HΓ by the
one-to-many elimination technique is Θ(2|XΓ|).

The exponential number of nodes in the preference graph
after eliminating one-to-many connectives is caused by the
fact that the number of copies of each node in the modified
graph (the graph without one-to-many connectives) is

N
′(X) = Nout(X) − 1 + �

Y ∈ChΓ(X)

N
′(Y ),

where Nout(X) is the number of outgoing edges from node
X in HΓ. Therefore, in the worst case, eliminating one-to-
many connectives for each node of HΓ multiplies by c (where
c ≥ 2) the number of nodes in H ′

Γ.

Example 9. Consider a hierarchical CP-network Γn

whose preference graph has n nodes (where n is an even
number) connected as follows: the nodes X1 and X2 have
no outgoing edges; and for any i ∈ [3, n], 1) Xi is a parent
of the nodes Xi−3 and Xi−2, if i is even, and 2) Xi is a
parent of the nodes Xi−2 and Xi−1, if i is odd. An example
of such network is shown below.

X1

X3

X5

X2

X4

X6

Figure 8: Hierarchical CP-net for Example 9.

Since the nodes X1 and X2 have no outgoing edges, no new
copies of them will be produced by the one-to-many elimina-
tion. However, for each i ∈ [3, n], the number of copies of
Xi will be N ′(Xi) = 1 + 2N ′(Xi−2). Thus the total num-
ber of nodes in the network obtained from Γn by eliminating
one-to-many connectives is clearly exponential in n.

However, by restricting the structure of a preference graph,
the exponential blowup can be avoided.

Proposition 8. Let Γ be such a hierarchical CP-network
that every node in HΓ has at most one child node with out-
going edges. Then the size of the preference graph H ′

Γ pro-
duced from HΓ by the one-to-many elimination technique is
O(|XΓ|

3).

X2

X3

X4

X5

X1

(a)

X5

X4

X3

X2

X5

X4

X3

X1

X5

X4

X5

(b)

Figure 9: (a) A preference graph of a hierarchi-
cal CP-network satisfying Proposition 8, and (b)
the network resulting from one-to-many connective
elimination

As it follows from the analysis, given any hierarchical CP-
network, performing dominance testing via preference for-
mula constructed by our algorithm will require at most ex-
ponential time. At the same time, as it was discussed above,
using Proposition 3 one can do it in polynomial time. The
same applies to the problem of finding the optimal outcomes.
However, having constructed a preference formula, one can
use hierarchical CP-networks in the relational framework,
where using the winnow operator creates opportunities for
efficient evaluation and algebraic query optimization [3, 4].



5. RELATED AND FUTURE WORK
In this paper, we propose a variant of CP-networks[1] that

addresses some of the limitations of the original proposal.
Namely, preference priority can be expressed i.e. an edge in
a preference graph captures not only conditional dependence
between different attributes but also the relative preference
importance - the higher an attribute is in the preference
graph, the higher priority it has. Moreover, our framework
can be used with infinite domain attributes. We also believe
that the everything else being equal semantics is too strict
and sometimes might not be applicable. By introducing a
new preference with the ceteris paribus semantics, the user is
required to consider all possible values of all other attributes,
which is not always feasible. Thus in such situations, using
our framework will be preferred to using CP-networks.

TCP-networks [2] is an extension of CP-networks which
adds attribute importance to them. In TCP-networks, two
special kinds of arcs are added to preference graphs: 1) an
i-arc from one attribute to another implies that the first
attribute is more important than the second; 2) a ci-arc
between two attributes implies that relative importance of
the connected attributes is dependent on the values of some
other attributes. In contrast to that, relative importance
of attributes in hierarchical CP-networks is dictated by the
preference graph structure, thus i-arcs would be redundant
here. However, to represent conditional attribute impor-
tance, the hierarchical CP-network model needs to be ex-
tended.

The idea of extending CP-networks with irrelevant at-
tributes was introduced in [12]. The class of networks con-
sidered in [12] is more general than hierarchical CP-networks.
In this model, WX is not limited to the set of siblings and de-
scendants of X and can be any subset of X −{X}−Pa(X).
However, [12] does not consider how to deal with infinite
domain attributes, and it does not have the notion of condi-
tional preference table, which is essential for CP-networks.
[12] proves that the orders induced by some classes of the
extended CP-networks are strict partial orders. However,
it does not provide an algorithm of constructing preference
formulas for them.

The observation that the semantics of CP-nets can be cap-
tured using Constraint Datalog programs was first made in
[6]. It was further developed into a method of bridging the
TCP-network framework and the framework of preference
relations in [7]. In [7] a binary preference formula is con-
structed for a given TCP-network using a set of preference
constructors. The preference order is essentially computed
as transitive closure of the union of all relations represent-
ing the orders induced by each conditional preference table.
The transitive closure is computed using Constraint Data-
log. When Constraint Datalog is used to compute transi-
tive closure, one needs to show that the evaluation termi-
nates (which is the case only for some constraint theories
[8]). Moreover, one typically obtains at best exponential
bounds on the resulting formula size. In contrast to that,
we describe classes of hierarchical CP-networks for which our
algorithm can construct polynomial-size preference formula
representations. [7] also gives an example of embedding pref-
erences over infinite domain attributes into TCP-networks,
namely it shows how can one represent CPT(X) of an in-
finite domain attribute X using a limited set of preference
constructors for which a transitive closure Datalog program
terminates. In our work we have no limitations on the class

of SPO preferences formulas used in CPT(X) representation.

In this paper, we define hierarchical CP-networks that are
based on a relaxed ceteris paribus principle (i.e. some other
attributes being equal). An interesting direction of the fu-
ture work is to extend our semantics using the some other
attributes being equivalent principle where instead of equal-
ity attribute values are considered to be equivalent according
to some indifference relation [11]. One should also consider
applying the existing preference modification and construc-
tion techniques [5, 10] to hierarchical CP-networks.
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