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Abstract

We study here preference revision, considering
both themonotoniccase where the original pref-
erences are preserved and thenonmonotoniccase
where the new preferences may override the origi-
nal ones. We use a relational framework in which
preferences are represented using binary relations
(not necessarily finite). We identify several classes
of revisions that preserve order axioms, for exam-
ple the axioms of strict partial or weak orders. We
consider applications of our results to preference
querying in relational databases.

1 Introduction
The notion ofpreferenceis common in various contexts in-
volving decision or choice. Classical utility theory[Fishburn,
1970] views preferences asbinary relations. A similar view
has recently been espoused in database research[Chomicki,
2003; Kießling, 2002; Kießling & K̈ostler, 2002], where pref-
erence relations are used in formulatingpreference queries.
In AI, various approaches to compact specification of prefer-
ences have been explored[Boutilier et al., 2004]. The seman-
tics underlying such approaches typically relies on preference
relations between worlds.

However, user preferences are rarely static[Pu, Faltings,
& Torrens, 2003]. A database user may be disappointed by
the result of a preference query and decide to revise the pref-
erences in the query. In fact, a user may start with a partial
or vague concept of her preferences, and subsequently refine
that concept. An agent may learn more about its task domain
and consequently revise its preferences. Thus, it is natural to
studypreference revision, as we do in the present paper.

In our formulation, preference revision shares some of the
principles, namely minimal change and primacy of new in-
formation, with classical belief revision[Gärdenfors & Rott,
1995]. However, its basic setting is different. In belief re-
vision, propositional theories are revised with propositional
formulas, yielding new theories. In preference revision, bi-
nary preference relations are revised with other preference
relations, yielding new preference relations. Preference re-
lations are single, finitely representable (though possibly in-
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finite) first-order structures, satisfying order axioms. More-
over, belief revision focuses on axiomatic properties of belief
revision operators and various notions of revision minimal-
ity, while preference revision focuses on axiomatic, order-
theoretic properties of revised preferences.

We distinguish betweenmonotonic and nonmonotonic
preference revision. In the former, the original preference re-
lation is fully incorporated into the revised one. In the latter,
the original preference relation may conflict with the revis-
ing relation, leading to the necessity of retracting some of the
original preferences. We focus on two special cases:refine-
mentin which both the original and the revising relation are
preserved (this is analogous toexpansionin belief revision
[Gärdenfors & Rott, 1995]), andoverriding revisionin which
the revising relation may override the original one. We adopt
the notion of minimal change based on symmetric difference
between sets of tuples.

The challenges are: (1) to guarantee that suitable order
properties, for example the axioms of strict partial orders, are
preserved by the revisions, and (2) to obtain unique revisions.
Strict partial orders (and weak orders), apart from being intu-
itive, enjoy a number of attractive properties in the context of
preference queries, as explained later in the paper. So it is de-
sirable for revisions to preserve such orders. The uniqueness
property is also important from the user’s point of view, as
the user typically desires to obtain a single revised preference
relation. The presence of multiple revision candidates neces-
sitates some form of aggregation of or choice among the can-
didates. Fortunately, in the cases studied in this paper there
exist least revisions preserving the appropriate order axioms,
and thus uniqueness is obtained automatically.

We adopt the preference query framework of[Chomicki,
2003] (a similar model was described in[Kießling, 2002]), in
which preference relations between tuples are defined by log-
ical formulas. [Chomicki, 2003] proposed a new relational
algebra operator calledwinnowthat selects from its argument
relation themost preferred tuplesaccording to the given pref-
erence relation.

Example 1 Consider the relationCar(Make, Y ear) and
the following preference relation�C1 betweenCartuples:

within each make, prefer a more recent car.

which can be defined as follows:

(m, y) �C1 (m′, y′) ≡ m = m′ ∧ y > y′.



The winnow operatorωC1 returns for every make the most re-
cent car available. Consider the instancer1 of Car in Figure
1. The set of tuplesωC1(r1) is shown in Figure 2.

Make Year
t1 VW 2002
t2 VW 1997
t3 Kia 1997

Figure 1: The Car relation

Make Year
t1 VW 2002
t3 Kia 1997

Figure 2: The result of winnow

Example 2 Example 1 provides a motivation for studying
preference revision. Seeing the result of the queryωC1(r1), a
user may realize that the preference relation�C1 is not quite
what she had in mind. The result of the query may contain
some unexpected or unwanted tuples, for examplet3. Thus
the preference relation needs to be modified, for example by
refining it with the following preference relation�C2 :

(m, y) �C2 (m′, y′) ≡ m = ′′VW′′∧m′ 6= ′′VW′′∧y = y′.

The resulting refinement will contain both�C1 and�C2 . The
tuple t3 is now dominated byt2 and will not be returned to
the user.

In the terminology used in research on preference rea-
soning in AI [Boutilier et al., 2004], a relational database
instance corresponds to the set offeasible outcomesand
the winnow operator picks the undominated (best) outcomes
from this set, according to the given preferences. A pref-
erence setting can be affected by a change in preferences
or a modification of the set of possible outcomes. In this
research, we address the former problem; the latter one,
database update, has been extensively studied in database re-
search. Moreover, we limit ourselves to preference revisions
in which new preference information is combined, perhaps
nonmonotonically, with the old one. We assume that the do-
mains of preferences do not change in revisions.

2 Basic notions
We are working in the context of the relational model of data.
Relation schemas consist of finite sets of attributes. For con-
creteness, we consider two infinite, countable domains:D
(uninterpreted constants, for readability shown as strings) and
Q (rational numbers), but our results, except where explic-
itly indicated, hold also for finite domains. We assume that
database instances are finite sets of tuples. Additionally, we
have the standard built-in predicates.

2.1 Preference relations
We adopt here the framework of[Chomicki, 2003].

Definition 2.1 Given a relation schemaR(A1 · · ·Ak) such
that Ui, 1 ≤ i ≤ k, is the domain (eitherD or Q) of the
attributeAi, a relation� is a preference relation overR if it
is a subset of(U1 × · · · × Uk)× (U1 × · · · × Uk).

Although we assume that database instances are finite, in
the presence of infinite domains preference relations can be
infinite.

Typical properties of a preference relation� include:

• irreflexivity: ∀x. x 6� x;
• transitivity: ∀x, y, z. (x � y ∧ y � z) ⇒ x � z;
• negative transitivity: ∀x, y, z. (x 6� y ∧ y 6� z) ⇒ x 6�

z;
• connectivity: ∀x, y. x � y ∨ y � x ∨ x = y;
• strict partial order (SPO) if� is irreflexive and transi-

tive;

• interval order(IO) if � is an SPO and satisfies the con-
dition∀x, y, z, w. (x � y∧z � w) → (x � w∨z � y);

• weak order(WO) if � is a negatively transitive SPO;

• total order if � is a connected SPO.

Every total order is a WO; every WO is an IO.

Definition 2.2 A preference formula (pf)C(t1, t2) is a first-
order formula defining a preference relation�C in the stan-
dard sense, namely

t1 �C t2 iff C(t1, t2).

An intrinsic preference formula (ipf)is a preference formula
that uses only built-in predicates.

By using the notation�C for a preference relation, we
assume that there is an underlying pfC. Occasionally, we
will limit our attention to ipfs consisting of the following two
kinds of atomic formulas (assuming we have two kinds of
variables:D-variables andQ-variables):

• equality constraints: x = y, x 6= y, x = c, or x 6= c,
wherex andy areD-variables, andc is an uninterpreted
constant;

• rational-order constraints: xθy or xθc, where
θ ∈ {=, 6=, <, >,≤,≥}, x and y areQ-variables, and
c is a rational number.

An ipf all of whose atomic formulas are equality (resp.
rational-order) constraints will be called anequality (resp.
rational-order) ipf. Clearly, ipfs are a special case of general
constraints[Kuper, Libkin, & Paredaens, 2000], and define
fixed, although possibly infinite, relations.

Every preference relation� generates an indifference rela-
tion∼: two tuplest1 andt2 areindifferent(t1 ∼ t2) if neither
is preferred to the other one, i.e.,t1 6� t2 andt2 6� t1. We
will denote by∼C the indifference relation generated by�C .

Composite preference relations are defined from simpler
ones using logical connectives. We focus on two basic ways
of composing preference relations:

• union:

t1 (�1 ∪ �2) t2 iff t1 �1 t2 ∨ t1 �2 t2;



• prioritized composition(where∼1 is the indifference re-
lation generated by�1):

t1 (�1 ��2) t2 iff t1 �1 t2 ∨ (t1 ∼1 t2 ∧ t1 �2 t2).

We also consider transitive closure:

Definition 2.3 Thetransitive closureof a preference relation
� over a relation schemaR is a preference relationTC(�)
overR defined as:

(t1, t2) ∈ TC(�) iff t1 �n t2 for some n > 0,

where:

t1 �1 t2 ≡ t1 � t2
t1 �n+1 t2 ≡ ∃t3. t1 � t3 ∧ t3 �n t2.

Clearly, in general Definition 2.3 leads to infinite formulas.
However, as shown in[Chomicki, 2003], in the cases that
we consider in this paper the preference relation�C∗ will in
fact be defined by a finite formula (this is because transitive
closure can be expressed as a terminating Datalog program).

2.2 Winnow
We define now an algebraic operator that picks from a given
relation the set of themost preferred tuples, according to a
given preference relation.

Definition 2.4 [Chomicki, 2003] If R is a relation schema
and� a preference relation overR, then thewinnow operator
is written asω�(R), and for every instancer of R:

ω�(r) = {t ∈ r | ¬∃t′ ∈ r. t′ � t}.

If a preference relation is defined using a pfC, we write sim-
ply ωC instead ofω�C

. A preference queryis a relational
algebra query containing at least one occurrence of the win-
now operator.

2.3 Preference revision
The basic setting is as follows: We have a preference rela-
tion� and revise it with arevisingpreference relation�0 to
obtain arevisedpreference relation�′. We also call�′ a re-
vision of �. We limit ourselves to preference relations over
the same schema.

The revisions are characterized by a number of different
parameters:

• axiom preservation: what order axioms are preserved in
�′;

• content preservation: what preference relations are pre-
served in�′;

• ordering(of revisions).

Definition 2.5 A revision�′ of � with �0 is:

• a transitive (resp. SPO, WO)revision if�′ is transitive
(resp. an SPO, a WO);

• a monotonicrevision if �⊆�′;

• a refinement revision (refinement for short) if
� ∪�0 ⊆�′;

• anoverridingrevision if �0 �� ⊆�′.

A refinement is monotonic. An overriding revision does
not have to be monotonic because it may fail to preserve�.

We order revisions using the symmetric difference (	).

Definition 2.6 Assume�1 and �2 are two revisions of a
preference relation� with a preference relation�0. We say
that�1 is closerthan�2 to� if �1 	� ⊂ �2 	�.

Definition 2.7 A minimal (resp. least)revision of � with
�0 is a revision that is minimal (resp. least) in the closeness
order among all revisions of� with�0.

Similarly, we talk about least transitive refinements (or
overriding revisions), least SPO (or WO) refinements or over-
riding revisions etc. If we consider only refinements or over-
riding revisions of a fixed preference relation, closeness re-
duces to set containment. Also, for finite domains the least
element in a class of revisions minimizes the partial-order dis-
tance[Bogart, 1973] to the original relation�.

Example 3 Consider the preference relation �=
{(a, b), (b, c), (a, c)} representing the preference or-
der a � b � c, and the following revision of�,
�1= {(b, a), (b, c), (a, c)}. The revision�1 is the least
SPO overriding revision of� with�0= {(b, a)}. It achieves
the effect of swappinga and b in the preference order. The
partial-order distance of� and �1 is 2.

To further describe the behavior of revisions, we define
preference conflicts.

Definition 2.8 A conflict between a preference relation�
and a preference relation�0 is a pair (t1, t2) such that
t1 �0 t2 and t2 � t1. A hidden conflictbetween � and
�0 is a pair (t1, t2) such thatt1 �0 t2 and there exist
s1, . . . sk, k ≥ 1, such thatt2 � s1 � · · · � sk � t1 and
t1 6�0 sk 6�0 · · · 6�0 s1 6�0 t2.

A hidden conflict is a conflict (if� is an SPO) but not neces-
sarily vice versa.

Example 4 If �0= {(a, b)} and�= {(b, a)}, then(a, b) is
a conflict which is not hidden. If we add(b, c) and (c, a) to
�, then the conflict is also a hidden conflict (s1 = c). If
we further add(c, b) or (a, c) to �0, then the conflict is not
hidden anymore.

In this paper, we focus on refinement and overriding revi-
sions because in our opinion they capture two basic ways of
revising preferences. A refinement does not retract any pref-
erences or resolve conflicts: it only adds new preferences ne-
cessitated by order properties. So for a refinement to satisfy
SPO properties, all conflicts need to be avoided. An over-
riding revision, on the other hand, can override some of the
original preferences if they conflict with the new ones. Over-
riding can deal with conflicts which are not hidden and solves
all of them in the same fashion: it gives higher priority to new
preference information (i.e.,�0). Both refinement and over-
riding revisions preserve the revising relation�0.

We now characterize those combinations of� and�0 that
avoid all (or only hidden) conflicts.

Definition 2.9 A preference relation� is compatible(resp.
semi-compatible) with a preference relation�0 if there are
no conflicts (resp. no hidden conflicts) between� and�0.



Compatibility is symmetric and implies semi-compatibility
for SPOs. Semi-compatibility is not necessarily symmet-
ric. Examples 1 and 2 show a pair of compatible rela-
tions. The compatibility of� and�0 does not requirethe
acyclicity of � ∪ �0 or that one of the following hold:
�⊆�0, �0⊆�, or � ∩ �0= ∅. For the former, consider
�= {(a, b), (c, d)} and�0= {(b, c), (d, a)}. For the latter,
consider�= {(a, b), (b, c), (a, c)} and�0= {(a, b), (a, d)}.

A semi-compatible relation�0 may conflict with a given
preference relation�. However, in each such case, i.e., when
t1 �0 t2 and t2 � t1, all the ways of derivingt2 � t1 by
transitivity have at least one pair of tuples in conflict with
some pair of tuples in�0, and are therefore blocked.

All the properties listed above, including both variants of
compatibility, are decidable for equality or rational order ipfs.
For example, semi-compatibility is expressed by the condi-
tion �−1

0 ∩TC(�−�−1
0 ) = ∅ where�−1 is the inverse of

the preference relation�.
The compatibility (resp. semi-compatibility) of� and�0

is a necessarycondition for the refinements (resp. overrid-
ing revisions) of� with �0 to be SPOs. In the next section,
we will see that those are notsufficientconditions: further
restrictions on the preference relations will be introduced.

3 Preservation of order axioms
We prove now a number of results that characterize refine-
ment and overriding revisions of of preference relations. The
results are of the form:

Given that the original preference relation� and the revising
relation�0 satisfy certain order axioms, what kind of order
axioms does the revision�′ satisfy?

To capture minimal change of preferences, we typically
studyleastrevisions. The revision setting helps to overcome
the limitations ofpreference composition[Chomicki, 2003]
where it is shown that common classes of orders (SPOs,
WOs) are often not closed w.r.t. basic preference composition
operators like union or prioritized composition. In the results
that follow, we obtain closure under least revisions thanks to
(1) restricting� and�0, and (2) guaranteeing transitivity by
explicitly applying transitive closure where necessary.

3.1 General properties
Lemma 3.1 For compatible� and�0,�0 ∪ � = �0 ��.

Lemma 3.2 The preference relation� ∪�0 (resp.�0 ��)
is contained in every refinement (resp. overriding revision) of
� with�0 and is, therefore, the least refinement (resp. least
overriding revision) of� with�0.

Lemma 3.3 The preference relationTC(� ∪�0) (resp.
TC(�0 ��)) is contained in every transitive refinement
(resp. every overriding revision) of� with�0 and is, there-
fore, the least transitive refinement (resp. least transitive
overriding revision) of� with�0.

3.2 Strict partial order revisions
SPOs have several important properties from the user’s point
of view, and thus their preservation is desirable. For instance,

all the preference relations defined in[Kießling, 2002] and
in the language Preference SQL[Kießling & Köstler, 2002]
are SPOs. Moreover, if� is an SPO, then the winnowω�(r)
is nonempty if (a finite)r is nonempty. The fundamental al-
gorithms for computing winnow require that the preference
relation be an SPO[Chomicki, 2003]. Also, in that case in-
cremental computation of revised preference queries becomes
possible (Proposition 5.1).

In order to obtain the least SPO revisions, we have to make
sure thatTC(� ∪�0) andTC(� � �0) are irreflexive (they
are transitive by definition).

Theorem 3.1 For every compatible preference relations�
and�0 such that one is an interval order (IO) and the other
an SPO, the preference relationTC(� ∪�0) is the least
SPO refinement of� with �0. Additionally, if the IO is a
WO, thenTC(� ∪�0) = � ∪�0.

It seems that the IO requirement in Theorem 3.1 cannot be
weakened without needing to strengthen the remaining as-
sumptions. If neither of� and�0 is an IO, then we can find
such elementsx1, y1, z1, w1, x2, y2, z2, w2 that

x1 � y1, z1 � w1, x1 6� w1, z1 6� y1

and
x2 �0 y2, z2 �0 w2, x2 6�0 w2, z2 6�0 y2.

If we can choosey1 = x2, z1 = y2, w1 = z2, andx1 = w2,
then we get a cycle in�∪�0. Note that in this case: (1)� and
�0 are still compatible, and (2) there is no SPO refinement of
� with �0.

Example 5 Consider again the preference relation�C1 :

(m, y) �C1 (m′, y′) ≡ m = m′ ∧ y > y′.

Suppose that the new preference information is captured as
�C3 which is an IO but not a WO:

(m, y) �C3 (m′, y′) ≡ m = ′′VW′′ ∧ y = 1999
∧ m′ = ′′Kia′′ ∧ y′ = 1999.

ThenTC(�C1 ∪ �C3), which properly contains�C1 ∪�C3 ,
is defined as the SPO�C4 :

(m, y) �C4 (m′, y′) ≡ m = m′ ∧ y > y′

∨m = ′′VW′′ ∧ y ≥ 1999 ∧m′ = ′′Kia′′ ∧ y′ ≤ 1999.

For dealing with overriding revisions compatibility can be
replaced by a less restrictive condition,semi-compatibility,
because prioritized composition already provides a way of re-
solving some conflicts.

Theorem 3.2 For every preference relations� and�0 such
that�0 is an IO,� is an SPO and� is semi-compatible with
�0, the preference relationTC(�0 ��) is the least SPO
overriding revision of� with�0.

Again, violating any of the conditions of Theorem 3.2 may
lead to a situation in which no SPO overriding revision exists.

If �0 is a WO, the requirement of semi-compatibility and
the computation of transitive closure are unnecessary.

Theorem 3.3 For every preference relations�0 and� such
that�0 is a WO and� an SPO, the preference relation�0 �

� is the least SPO overriding revision of� with�0.



Proposition 3.1 For the preference relations defined us-
ing equality or rational order ipfs, the computation of
TC(� ∪�0) andTC(� � �0) terminates.

The computation of transitive closure is done in a com-
pletely database-independent way using Constraint Datalog
techniques[Kuper, Libkin, & Paredaens, 2000].

Example 6 Consider Examples 1 and 5. We can infer that

t1 = (′′VW′′, 2002) �C4 (′′Kia′′, 1997) = t3,

because

(′′VW′′, 2002) �C1 (′′VW′′, 1999),

(′′VW′′, 1999) �C3 (′′Kia′′, 1999),
and

(′′Kia′′, 1999) �C1 (′′Kia′′, 1997).
The tuples(′′VW′′, 1999) and (′′Kia′′, 1999) are not in the
database.

3.3 Weak order revisions
Weak orders are practically important because they capture
the situation where the domain can be decomposed into layers
such that the layers are totally ordered and all the elements
in one layer are mutually indifferent. This is the case, for
example, if the preference relation can be represented using a
numeric utility function. If the preference relation is a WO,
a particularly efficient (essentially single pass) algorithm for
computing winnow is applicable[Chomicki, 2004].

Theorem 3.4 For every compatible WO preference relations
� and�0, the preference relation� ∪ �0 is the least weak
order refinement of� with�0.

Again, for overriding revisions, we can relax the compati-
bility assumption. This immediately follows from the fact
that WOs are closed with respect to prioritized composition
[Chomicki, 2003].

Proposition 3.2 For every WO preference relations� and
�0, the preference relation�0 � � is the least weak order
overriding revision of� with �0.

A basic notion in utility theory is that ofrepresentabilityof
preference relations using numeric utility functions:

Definition 3.1 A real-valued functionu over a schemaR
representsa preference relation� overR iff

∀t1, t2 [t1 � t2 iff u(t1) > u(t2)].

Being a WO is a necessary condition for the existence of
a numeric representation for a preference relation. However,
it is not sufficient for uncountable orders[Fishburn, 1970].
It is natural to ask whether the existence of numeric rep-
resentations for the preference relations� and�0 implies
the existence of such a representation for the least refinement
�′= (� ∪�0). This is indeed the case.

Theorem 3.5 Assume that� and�0 are WO preference re-
lations such that

1. � and�0 are compatible,

2. � can be represented using a real-valued functionu,

3. �0 can be represented using a real-valued functionu0.

Then�′ = � ∪ �0 is a weak order preference relation that
can be represented using any real-valued functionu′ such
that for all x, u′(x) = a ·u(x)+ b ·u0(x)+ c wherea, b > 0.

Surprisingly, the compatibility requirement cannot in gen-
eral be replaced by semi-compatibility if we replace∪ by
� in Theorem 3.5. This follows from the fact that the lex-
icographic composition of one-dimensional standard orders
over R is not representable using a utility function[Fish-
burn, 1970]. Thus, preservation ofrepresentabilityis possible
only under compatibility, in which case�0 � � = �0 ∪ �
(Lemma 3.1) and the revision is monotonic.

We conclude this section by showing a general scenario in
which the refinement of WOs occurs in a natural way. As-
sume that we have a numeric utility functionu representing
a (WO) preference relation�. The indifference relation∼
generated by� is defined as:

x ∼ y ≡ u(x) = u(y).

Suppose that the user discovers that∼ is too coarse and needs
to be further refined. This may occur, for example, whenx
andy are tuples and the functionu takes into account only
some of their components. Another functionu0 may be de-
fined to take into account other components ofx andy (such
components are calledhidden attributes[Pu, Faltings, & Tor-
rens, 2003]). The revising preference relation�0 is now:

x �0 y ≡ u(x) = u(y) ∧ u0(x) > u0(y).

It is easy to see that�0 is an SPO compatible with� but not
necessarily a WO. Therefore, by Theorem 3.1 the preference
relation � ∪�0 is the least SPO refinement of� with �0.

4 Checking axiom satisfaction
If none of the results described so far implies that the least
transitive refinement of� with �0 is an SPO, then this con-
dition can often be explicitly checked. Specifically, one has
to: (1) compute the transitive closureTC(� ∪�0), and (2)
check whether the obtained relation is irreflexive.

From Proposition 3.1, it follows that for equality and ratio-
nal order ipfs the computation ofTC(� ∪�0) yields some
finite ipf C(t1, t2). Then the second step reduces to checking
whetherC(t, t) is unsatisfiable, which is a decidable problem
for equality and rational order ipfs.

Example 7 Consider Examples 1 and 2. Neither of the pref-
erence relations�C1 and�C2 is a weak or interval order.
Therefore, the results established earlier in this paper do not
apply. The preference relation�C∗= TC(�C1 ∪ �C2) is
defined as follows:

(m, y) �C∗ (m′, y′) ≡ m = m′ ∧ y > y′

∨m = ′′VW′′ ∧m′ 6= ′′VW′′ ∧ y ≥ y′

The preference relation�C∗ is irreflexive (this can be effec-
tively checked). It also properly contains�C1 ∪ �C2 , be-
causet1 �C∗ t3 but t1 6�C1 t3 and t1 6�C2 t3. The query
ωC∗(Car) evaluated in the instancer1 (Figure 1) returns
only the tuplet1.

Similar considerations apply to overriding revisions and
WOs.



5 Iterating monotonic preference revision
Consider the scenario in which we iterate monotonic pref-
erence revision to obtain a sequence of preference relations
�1, . . . ,�n such that each is an SPO and�1⊆ · · · ⊆�n.
(Recall that refinement is monotonic but overriding revision
not necessarily so.) Assume that those relations are used to
extract the best tuples from a fixed relation instancer. Such
evaluation provides feedback to the user about the quality of
the given preference relation and may be helpful in construct-
ing its subsequent refinements.

In this scenario, the sequence of query results is:

r0 = r, r1 = ω�1(r), r2 = ω�2(r), . . . , rn = ω�n(r).

Proposition 5.1 below implies that the sequence
r0, r1, . . . , rn is decreasing:

r0 ⊇ r1 ⊇ · · · ⊇ rn

and that it can be computed incrementally:

r1 = ω�1(r0), r2 = ω�2(r1), . . . , rn = ω�n
(rn−1).

To computeri, there is no need to look at the tuples in
r − ri−1, nor to recompute winnow from scratch. The sets
of tuplesr1, . . . , rn are likely to have much smaller cardinal-
ity thanr0 = r.

Proposition 5.1 [Chomicki, 2003] If �1 and�2 are prefer-
ence relations over a relation schemaR and�1⊆�2, then
for all instancesr of R:

• ω�2(r) ⊆ ω�1(r);
• ω�2(ω�1(r)) = ω�2(r) if �1 and�2 are SPOs.

6 Related work
[Hansson, 1995] presents a general framework for modeling
change in preferences. Preferences are represented syntacti-
cally using sets of ground preference formulas, and their se-
mantics is captured using sets of preference relations. Thanks
to the syntactic representation preference revision is treated
similarly, though not identically, to belief revision, and some
axiomatic properties of preference revisions are identified.
The result of a revision is supposed to be minimally dif-
ferent from the original prefence relation (using a notion of
minimality based on symmetric difference) and satisfy some
additional background postulates, for example specific order
axioms. [Hansson, 1995] does not address the issue of con-
structing revised relations, does not characterize cases when
the desired revised preference relation is unique, nor does it
study the properties of specific classes of preference relations.
On the other hand,[Hansson, 1995] discusses also preference
contraction, and domain expansion and shrinking.[Williams,
1997] considers revising a ranking (a WO) of a finite set of
product profiles with new information, and shows that a new
ranking, satisfying the AGM revision postulates[Gärdenfors
& Rott, 1995], can be computed in a simple way.[Pu, Falt-
ings, & Torrens, 2003] formulates different scenarios of pref-
erence revision and does not contain any formal framework.
[Freund, 2004] describes minimal change revision ofrational
preference relations between propositional formulas.

7 Conclusions and future work
We have presented a general framework for revising pref-
erence relations and established a number of order axiom
preservation results for specific classes of revisions. In the
future, we plan to consider more general classes of revisions
and databases with restricted domains, e.g., Boolean. An-
other direction is the design of arevision languagein which
different parameters of preference revision can be explicitly
specified by the user. Connections toiterated belief revision
[Darwiche & Pearl, 1997] should also be explored.
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