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Abstract finite) first-order structures, satisfying order axioms. More-
- L over, belief revision focuses on axiomatic properties of belief
We study here preference revision, considering  reyisjon operators and various notions of revision minimal-
both themonotoniccase where the original pref- ity, while preference revision focuses on axiomatic, order-
erences are preserved and tienmonotonicase theoretic properties of revised preferences.
where the new preferences may override the origi- We distinguish betweemmonotonic and nonmonotonic
nal ones. \We use a relational framework in which preference revision. In the former, the original preference re-
preferences are represented using binary relations  |atjon s fully incorporated into the revised one. In the latter,
(not necessarily finite). We identify several classes  he griginal preference relation may conflict with the revis-
of revisions that preserve order axioms, for exam- 4 relation, leading to the necessity of retracting some of the
ple the axioms of strict partial or weak orders. We  griginal preferences. We focus on two special casefine-
consider applications of our results to preference  mentin which both the original and the revising relation are
querying in relational databases. preserved (this is analogous éapansionin belief revision
[Gardenfors & Rott, 1998, andoverriding revisionin which
1 Introduction the revising relqti_on may override the original one. We adopt
. ] ) ) _the notion of minimal change based on symmetric difference
The notion ofpreferences common in various contexts in- petween sets of tuples.
volving decision or choice. Classical utility thedfyishburn, The challenges are: (1) to guarantee that suitable order
1970 views preferences asinary relations A similar view  properties, for example the axioms of strict partial orders, are
has recently been espoused in database resp@hdimicki, preserved by the revisions, and (2) to obtain unique revisions.
2003; KieRling, 2002; KieRling & Kstler, 2002, where pref-  Syrict partial orders (and weak orders), apart from being intu-
erence relations are used in formulatipgference queries jtive, enjoy a number of attractive properties in the context of
In Al, various approaches to compact specification of preferpreference queries, as explained later in the paper. So it is de-
ences have been exploributilier et al, 2004. The seman-  sjrable for revisions to preserve such orders. The uniqueness
tics underlying such approaches typically relies on preferencgroperty is also important from the user’s point of view, as
relations between worlds. ) the user typically desires to obtain a single revised preference
However, user preferences are rarely stéflo, Faltings, relation. The presence of multiple revision candidates neces-
& Torrens, 2008, A database user may be disappointed bysitates some form of aggregation of or choice among the can-
the result of a preference query and decide to revise the preffidates. Fortunately, in the cases studied in this paper there
erences in the query. In fact, a user may start with a partiagxist least revisions preserving the appropriate order axioms,
or vague concept of her preferences, and subsequently refiggd thus uniqueness is obtained automatically.
that concept. An agent may learn more about its task domain we adopt the preference query framework 6homicki,
and consequently re_v_ise its prefer_ences. Thus, itis natural togog (a similar model was described [iKieRling, 2002), in
studypreference revisioras we do in the present paper. which preference relations between tuples are defined by log-
In our formulation, preference revision shares some of thgca| formulas. [Chomicki, 2003 proposed a new relational
principles, namely minimal change and primacy of new in-a|gebra operator callesinnowthat selects from its argument

formation, with classical belief reViSidIGérdenforS & Rott, relation themost preferred tup|eaccording to the given pref-
1995. However, its basic setting is different. In belief re- grence relation.

vision, propositional theories are revised with propositional . .
prop prop Example 1 Consider the relationCar(Make,Y ear) and

formulas, yielding new theories. In preference revision, bi- follow ¢ lati betweercartunles:
nary preference relations are revised with other preferenc@e ollowing preference refatios ¢, betweert-artuples:

relations, yielding new preference relations. Preference re-  Wwithin each make, prefer a more recent car.
lations are single, finitely representable (though possibly inwhich can be defined as follows:
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The winnow operatapc, returns for every make the most re- Definition 2.1 Given a relation schem#&(A; --- A;) such

cent car available. Consider the instanceof Car in Figure  thatU;, 1 < i < k, is the domain (eitheD or Q) of the

1. The set of tuples, (1) is shown in Figure 2. attribute A4;, a relation - is a preference relation oveR if it
isasubset ofU; x -+ x Ug) x (Uy X «-+ x Ug).

Make | Year Although we assume that database instances are finite, in
ti | VW 12002 the presence of infinite domains preference relations can be
ta | VW | 1997 infinite.
t3 | Kia 1997 Typical properties of a preference relatisrinclude:

Figure 1: The Car relation o irreflexivity: Va. z 3 x;

o transitivity: Vo, y, z. (x = y Ay = 2) = x> z;

e negative transitivity Ve, y, z. (z £ y Ay ¥ z) = x
Make | Year 2

t1 | VW 2002
ts | Kia 1997

e connectivity Ve, y. x = yVy = xVr=y;
e strict partial order (SPO) if > is irreflexive and transi-
Figure 2: The result of winnow tive;
o interval order(lO) if > is an SPO and satisfies the con-
Example 2 Example 1 provides a motivation for studying dition Vi, y, z, w. (z = yAz = w) — (x = wVz = y);
preference revision. Seeing the result of the quefy(r1), a o weak order(WO) if >~ is a negatively transitive SPO;
user may realize that the preference relatiep, is not quite e total orderif - is a connected SPO.

what she had in mind. The result of the query may contain ) _ ,
some unexpected or unwanted tuples, for examplérhus ~ EVery total order is a WO; every WO is an 10.

the preference relation needs to be modified, for example bpefinition 2.2 A preference formula (i (¢, £,) is a first-
refining it with the following preference relationc, : order formula defining a preference relation in the stan-

dard sense, namel
(m,y) =c, (m'sy') =m ="VW"nm' #"VW' Ny =y, g

. ! . . t1 ¢ to iff C(t1,ta).
The resulting refinement will contain bath-, and>¢,. The oo (t1,t2)

tuple t3 is now dominated by, and will not be returned to  Anintrinsic preference formula (ipfs a preference formula
the user. that uses only built-in predicates.

In the terminology used in research on preference rea- By using the notation-o for a preference relation, we
soning in Al [Boutilier et al, 2004, a relational database assume that there is an underlying(@f Occasionally, we
instance corresponds to the set fehsible outcomesnd  Will limit our attention to ipfs consisting of the following two
the winnow operator picks the undominated (best) outcomekinds of atomic formulas (assuming we have two kinds of
from this set, according to the given preferences. A prefvariables:D-variables and)-variables):
erence setting can be affected by a change in preferences, equality constraintsz = y, 2 # y, 2 = ¢, orz # ¢,
or a modification of the set of possible outcomes. In this  \herez andy areD-variables, and is an uninterpreted
research, we address the former problem; the latter one, ¢onstant:
database update, has been extensively studied in database re- . .
search. Moreover, we limit ourselves to preference revisions ® 'ational-order constraints 6y or zfc, where
in which new preference information is combined, perhaps ¢ € 1= 7 <.>. <, 2}, = andy are Q-variables, and
nonmonotonically, with the old one. We assume that the do- ¢ IS @ rational number.

mains of preferences do not change in revisions. An ipf all of whose atomic formulas are equality (resp.
rational-order) constraints will be called aguality (resp.
2 Basic notions rational-order) ipf. Clearly, ipfs are a special case of general

constraintdKuper, Libkin, & Paredaens, 2000and define
We are working in the context of the relational model of data.fixed although possibly infinite, relations.
Relation schemas consist of finite sets of attributes. For con- Every preference relation generates an indifference rela-
creteness, we consider two infinite, countable domais: tion ~: two tuplest; andt, areindifferent(t; ~ t,) if neither
(uninterpreted constants, for readability shown as strings) anid preferred to the other one, i.e;, % ty andt, ¥ t,. We
Q (rational numbers), but our results, except where explicwill denote by~ the indifference relation generated by-.
itly indicated, hold also for finite domains. We assume that Composite preference relations are defined from simpler
database instances are finite sets of tuples. Additionally, wenes using logical connectives. We focus on two basic ways
have the standard built-in predicates. of composing preference relations:

2.1 Preference relations ¢ union

We adopt here the framework EEhomicki, 2003. t1 (=1 U=2) taiff &y =1 £ Vg o to;



e prioritized compositiorfwhere~ is the indifference re- A refinement is monotonic. An overriding revision does
lation generated by ): not have to be monotonic because it may fail to preserve
) We order revisions using the symmetric differeneg.(
tq (>1 > %2) tyiff t1 =1 ta V (tl ~1ta Nt1 o tg).
Definition 2.6 Assume~; and =5 are two revisions of a
We also consider transitive closure: preference relation- with a preference relatio-y. We say
Definition 2.3 Thetransitive closuref a preference relation that>-1iscloserthan’-, to - if -1, © > C =5 © -
>~ over a relation schem& is a preference relatio’C(>~)  Definition 2.7 A minimal (resp. leastjevision of = with
over i? defined as: o is a revision that is minimal (resp. least) in the closeness
(t1,t2) € TC(>) iff t1 =" 5 for some n > 0, order among all revisions of- with .
Similarly, we talk about least transitive refinements (or

where: overriding revisions), least SPO (or WO) refinements or over-
t1 =1ty =t1 = to riding revisions etc. If we consider only refinements or over-
ty ="ty = 3ts. bty >t Aty =" to. riding revisions of a fixed preference relation, closeness re-

duces to set containment. Also, for finite domains the least

Clearly, in general Definition 2.3 leads to infinite formulas. glement in a class of revisions minimizes the partial-order dis-
However, as shown ifiChomicki, 2003, in the cases that tance[Bogart, 197310 the original relation-.

we consider in this paper the preference relatign. will in . .
fact be defined by a finite formula (this is because transitive=x@mple 3 Consider  the preference relation =

closure can be expressed as a terminating Datalog program}(%:0): (b;¢), (a; )} representing the preference or-
era > b > ¢ and the following revision of-,

2.2 Winnow =1= {(b,a),(b,c),(a,c)}. The revision>; is the least
PO overriding revision of with o= {(b,a)}. It achieves
he effect of swapping and b in the preference order. The

partial-order distance of- and > is 2.

To further describe the behavior of revisions, we define
preference conflicts

We define now an algebraic operator that picks from a give
relation the set of thenost preferred tuplesaccording to a
given preference relation.

Definition 2.4 [Chomicki, 2003 If R is a relation schema
and: a preference relation oveR, then thevinnow operator

is written asw,- (R), and for every instance of R: Definition 2.8 A conflict between a preference relation-
, , and a preference relation > is a pair (¢1,t2) such that
we(r) ={ter| -3t er.t -t} t; =0tz and ty = #;. A hidden conflictbetween = and

If a preference relation is defined using afwe write sim- >0 IS @ pair (t1,%;) such thatt; o ¢, and there exist

ply we instead ofw, .. A preference querys a relational ~ $1:- -5k k > 1, such thatty = s > --- > s >~ t; and

algebra query containing at least one occurrence of the wirfa o Sk o - o s1 o te

now operator. A hidden conflict is a conflict (if- is an SPO) but not neces-
sarily vice versa.

2.3 Preference revision .

. L ) Example 4 If o= {(a,b)} and == {(b,a)}, then(a,b) is
The basic setting is as follows: We have a preference relag confiict which is not hidden. If we add, ¢) and (c, a) to
tion - and revise it with aevisingpreference relation-o to . “han the conflict is also a hidden c07nflicst1(: ’C)_ If
obtain arevisedpreference relation’. We also call-" are- e frther add(c, b) or (a,c) to »o, then the conflict is not
visionof . We limit ourselves to preference relations OVer pidden anymore’ ’
the same schema. '

The revisions are characterized by a number of different In this paper, we focus on refinement and overriding revi-
parameters: sions because in our opinion they capture two basic ways of

: : . . revising preferences. A refinement does not retract any pref-

e axiom preservatiorwhat order axioms are preservedin o onces or resolve conflicts: it only adds new preferences ne-
~ cessitated by order properties. So for a refinement to satisfy

e content preservatiarwhat preference relations are pre- SPO properties, all conflicts need to be avoided. An over-

served in-’; riding revision, on the other hand, can override some of the
e ordering(of revisions). original preferences if they conflict with the new ones. Over-
. . . ) riding can deal with conflicts which are not hidden and solves
Definition 2.5 A revision-" of - with - is: all of them in the same fashion: it gives higher priority to new
e atransitive (resp. SPO, WQgvision if -’ is transitive  preference information (i.exo). Both refinement and over-
(resp. an SPO, a WO); riding revisions preserve the revising relatieg.

We now characterize those combinations-oind >~ that
avoid all (or only hidden) conflicts.

refinement revision finement for short) if . . .
°ca remne e/. evision _ ¢efinement for - short Definition 2.9 A preference relation- is compatible(resp.
=U»y C>; . . . . B
- o . semi-compatiblewith a preference relation-q if there are
e anoverridingrevision if - > > C-'. no conflicts (resp. no hidden conflicts) betweeand .

e amonotonicrevision if = C >';



Compatibility is symmetric and implies semi-compatibility all the preference relations defined[iieRling, 2002 and
for SPOs. Semi-compatibility is not necessarily symmet-in the language Preference S@KieRling & Kostler, 2002
ric. Examples 1 and 2 show a pair of compatible rela-are SPOs. Moreover, i is an SPO, then the winnow_(r)
tions. The compatibility of- and >, does not requirdhe is nonempty if (a finite) is nonempty. The fundamental al-
acyclicity of = U ¢ or that one of the following hold: gorithms for computing winnow require that the preference
=C>g, =9C>, Of >= N =g= 0. For the former, consider relation be an SP@Chomicki, 2003. Also, in that case in-
== {(a,b), (c,d)} and>o= {(b,¢), (d,a)}. For the latter, cremental computation of revised preference queries becomes
consider-= {(a,b), (b,¢), (a,c)} and=¢= {(a,b), (a,d)}. possible (Proposition 5.1).

A semi-compatible relation-o may conflict with a given In order to obtain the least SPO revisions, we have to make
preference relatios-. However, in each such case, i.e., whensure thal'C (> U o) andT'C(>- > () are irreflexive (they
ty =g tz andty > t1, all the ways of derivings > ¢, by are transitive by definition).
transitivity have at least one pair of tuples in conflict with

p . Theorem 3.1 For every compatible preference relatio
some pair of tuples in-q, and are therefore blocked. Y b b hs

o> : . . and ~( such that one is an interval order (I0) and the other
All the properties listed above, including both variants ofan SPO, the preference relatiofC/(~ U =) is the least

compatibility, are decidable for equality or rational order ipfs. spq yefinement of- with >,. Additionally, if the 10 is a

For example, semi-compatibility is expressed by the condlwo thenT'C/(= U ) =

. 1 1 s - ) 0) = > U >op.

tion ;" NTC(>—>,") = 0 where>""is the inverse of _ _

the preference relation. It seems that the 10 requirement in Theorem 3.1 cannot be
The compatibility (resp. semi-compatibility) of and>~,  Weakened without needing to strengthen the remaining as-

is a necessarnygcondition for the refinements (resp. overrid- sumptions. If neither of- and’- is an 10, then we can find

ing revisions) of- with > to be SPOs. In the next section, Such elements,, yi, z1, w1, z2, Y2, 22, wo that

we will see that those are nstfficientconditions: further

L : : 1 = Y1, 21 > Wi, 5
restrictions on the preference relations will be introduced. L7 YL AL WL T WL 2
and
3 Preservation of order axioms T2 0 Y2, 22 =0 W2, Tz Fo W2, 22 o Yo

We prove now a number of results that characterize refinelf We can choosgn = s, 21 = ya, w1 = 25, andz; = ws,

ment and overriding revisions of of preference relations. Théhen we getacycle inU-o. Note that in this case: (1) and
results are of the form: ¢ are still compatible, and (2) there is no SPO refinement of

= with .

Given that the original preference relationand the revising Examp|e 5 Consider again the preference re|ati@rb1:
relation - satisfy certain order axioms, what kind of order ., , ,
axioms does the revision’ satisfy? (m,y) =c, (m',y) =m=m' ANy >y
. ) Suppose that the new preference information is captured as
To capture minimal change of preferences, we typlcally>c which is an 10 but not a WO:
studyleastrevisions. The revision setting helps to overcome™
the limitations ofpreference compositiofChomicki, 2003 (m,y) =c, (M',y') = m="VW" Ay =1999
where it is shown that common classes of orders (SPOs, A m ="Kia" Ay = 1999.
WOs) are often not closed w.r.t. basic preference compositio . .
operators like union or prioritized composition. In the resuItsihdeggrgézgltﬁgsolgg Wh'Ch properly contains-c, U'-c;,
that follow, we obtain closure under least revisions thanks 0 : Ca-
(1) restricting>- and>, and (2) guaranteeing transitivity by ~ (m,y) =¢, (m’,y)=m=m'Ay >y
explicitly applying transitive closure where necessary. Vm="VW" Ay >1999 Am’ ="Kia” Ay’ < 1999.

3.1 General properties For dealing with overriding revisions compatibility can be

Lemma 3.1 For compatible— and =g, s U > — > & > replaced by a _Iess restricti\_/_e conditiossemi-c_ompatibility

' ' ' because prioritized composition already provides a way of re-
Lemma 3.2 The preference relation U > (resp.>q > =) solving some conflicts.
is contained in every refinement (resp. overriding revision) of.l_
> with ¢ and is, therefore, the least refinement (resp. Ieastt
overriding revision) of > with >.

heorem 3.2 For every preference relations and - such
hat > is an 10, is an SPO and- is semi-compatible with
-0, the preference relatio’C(>~( > >) is the least SPO
Lemma 3.3 The preference relatioril’C'(~U =) (resp.  overriding revision of = with >.

TC(~ & ) is contained in every transitive refinement Again, violating any of the conditions of Theorem 3.2 may

(resp. every overriding revision) of with -y and is, there- A . - - .
fore, the least transitive refinement (resp. least transitiveIead toasituation in Wh'Ch. no SPQ overndmg revision exists.
If >¢ is a WO, the requirement of semi-compatibility and

overriding revision) of = with . ; -
9 ) 0 the computation of transitive closure are unnecessary.

3.2 Strict partial order revisions Theorem 3.3 For every preference relations, and - such

SPOs have several important properties from the user’s poiribat’-o is a WO and- an SPO, the preference relation,
of view, and thus their preservation is desirable. For instance; iS the least SPO overriding revision of with .



Proposition 3.1 For the preference relations defined us- 3. >( can be represented using a real-valued functign
ing equality or rational order ipfs, the computation of Then.’—= » U is a weak order preference relation that
TC(>U»o) andTC (> > o) terminates. can be represented using any real-valued functidrsuch
The computation of transitive closure is done in a com-thatforallz, v'(z) = a-u(x) +b-uo(x) + c wherea, b > 0.
pletely database-independent way using Constraint Datalogurprisingly, the compatibility requirement cannot in gen-
techniquegKuper, Libkin, & Paredaens, 2000 eral be replaced by semi-compatibility if we replaceby

Example 6 Consider Examples 1 and 5. We can infer that > in Theorem 3.5. This follows from the fact that the lex-
" " e icographic composition of one-dimensional standard orders
t1 = ("VW",2002) ¢, ("Kia",1997) = ts, over R is not representable using a utility functi¢fish-
burn, 1970. Thus, preservation eépresentabilitys possible

because o .
only under compatibility, in which caseg > = = >¢ U >
("VW" 2002) =¢, ("VW",1999), (Lemma 3.1) and the revision is monotonic.
I 1 e 11 We conclude this section by showing a general scenario in
("VW7,1999) ¢, ("Kia”, 1999), which the refinement of WOs occurs in a natural way. As-
and o o sume that we have a numeric utility functiarnrepresenting
("Kia”,1999) =¢, ("Kia"”,1997). a (WO) preference relation. The indifference relation
The tuples”VW”,1999) and ("Kia”,1999) are notin the ~ generated by- is defined as:
database. T~y = u(gj) = u(y)
3.3 Weak order revisions Suppose that the user discovers thas too coarse and needs

19 be further refined. This may occur, for example, when
@dy are tuples and the functiom takes into account only
ome of their components. Another functionp may be de-

Weak orders are practically important because they captu
the situation where the domain can be decomposed into laye

such that the layers are totally ordered and all the elemen hed to take into account other components@ndy (such

in one layer are mutually indifferent. This is the case, for ; ;
example, if the preference relation can be represented usinngQmponentS are calldddden attribute$Pu, Faltings, & Tor-

numeric utility function. If the preference relation is a WO, rens, 2008 The revising preference refation, is now:
a particularly efficient (essentially single pass) algorithm for x>0y = u(z) =u(y) Aug(z) > uo(y).

computing winnow is applicablgchomicki, 2003. Itis easy to see that, is an SPO compatible with but not
Theorem 3.4 For every compatible WO preference relations necessarily a WO. Therefore, by Theorem 3.1 the preference
= and =g, the preference relation- U >~ is the least weak relation > U - is the least SPO refinementefwith >.

order refinement of- with .

Again, for overriding revisions, we can relax the compati-4 Checking axiom satisfaction
bility assumption. This immediately follows from the fact If none of the results described so far implies that the least
that WOs are closed with respect to prioritized compositiortransitive refinement of with > is an SPO, then this con-
[Chomicki, 2003. dition can often be explicitly checked. Specifically, one has
Proposition 3.2 For every WO preference relations and ~ t©: (1) compute the transitive closui&C' (- U ), and (2)
=0, the preference relation-o > >~ is the least weak order check whether ’Fhe obtalr_1ed relation is |rreerX|v_e. .
overriding revision of = with . From Proposition 3.1, it fqllows that for equa_hty and ratio-
. o ] - nal order ipfs the computation @fC'(> U () yields some
A basic notion in utility theory is that akpresentabilityof  finite ipf C(¢,, ¢,). Then the second step reduces to checking

preference relations using numeric utility functions: whetherC(t, t) is unsatisfiable, which is a decidable problem
Definition 3.1 A real-valued functionu over a schemak  for equality and rational order ipfs.
represents preference relation- over R iff Example 7 Consider Examples 1 and 2. Neither of the pref-

erence relations-¢, and =, is a weak or interval order.
Therefore, the results established earlier in this paper do not

Being a WO is a necessary condition for the existence ofpply. The preference relatiorc.= TC(>¢, U>=¢,) is
a numeric representation for a preference relation. Howeverefined as follows:
it is not sufficient for uncountable ordefishburn, 197D (myy) =cw (M y) = m=m/ Ay >3/
It is natural to ask whether the existence of numeric rep- Vi ="VW" Am' £"VW" Ay >
resentations for the preference relationsand -, implies ) o . .
the existence of such a representation for the least refinemefhte preference relatios ¢ is irreflexive (this can be effec-
~'= (> U =). This is indeed the case. tively checked). blt also properly gontalﬁscl U T]Cz* be-

causet; >c. t3 butt; ¥, ts andt; Yo, ts. The query
Th.eorem 3.5 Assume that- and -, are WO preference re- we (Car) evaluated in the instance, (Figure 1) returns
lations such that onlv th
y the tuplet;.

1. » and -, are compatible, Similar considerations apply to overriding revisions and
2. > can be represented using a real-valued function WOs.

Vi, to [tl = to iff u(tl) > u(tg)}



5 lIterating monotonic preference revision 7 Conclusions and future work

Consider the scenario in which we iterate monotonic prefWe have presented a general framework for revising pref-

erence revision to obtain a sequence of preference relatiofence relations and established a number of order axiom

-1 -, such that each is an SPO ard C --- C>,, preservation results for specific classes of revisions. In the
) ) = = .

: : : P «i~nfuture, we plan to consider more general classes of revisions
(Recall that refinement is monotonic but overriding revision d databases with restricted domains, e.g., Boolean. An-

not necessarily so.) Assume that those. fe"’?‘“O”S are used gt?her direction is the design ofravision languagén which
extract the best tuples from a fixed relation instanc&uch  giterent parameters of preference revision can be explicitly
evaluation provides feedback to the user about the quality o§pecified by the user. Connectionsiterated belief revision
the given preference relation and may be helpful in constructtDarwiche & Pearl, 1997should also be explored.
ing its subsequent refinements.
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1997 considers revising a ranking (a WO) of a finite set of [PU, Faltings, & Torrens, 2003Pu, P; Faltings, B.; and Torrens, M.
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o wy,(r) C wsy, (r);

o w.,(ws, (r)) = we,(r)if =1 and>, are SPOs.



