
Output-sensitive Evaluation of Prioritized Skyline Queries

Niccolò Meneghetti
Dept. of Computer Science

and Engineering
University at Buffalo

Buffalo, NY 14260-2000
niccolom@buffalo.edu

Denis Mindolin
Bloomberg L.P.

731 Lexington Avenue
New York, NY 10022

dmindolin1@bloomberg.net

Paolo Ciaccia
DISI

University of Bologna
Mura Anteo Zamboni, 7

40126 Bologna Italy
paolo.ciaccia@unibo.it

Jan Chomicki
Dept. of Computer Science

and Engineering
University at Buffalo

Buffalo, NY 14260-2000
chomicki@buffalo.edu

ABSTRACT
Skylines assume that all attributes are equally important,
as each dimension can always be traded off for another. Pri-
oritized skylines (p-skylines) take into account non-compen-
satory preferences, where some dimensions are deemed more
important than others, and trade-offs are constrained by the
relative importance of the attributes involved.

In this paper we show that querying using non-compensa-
tory preferences is computationally efficient. We focus on
preferences that are representable with p-expressions, and
develop an efficient in-memory divide-and-conquer algorithm
for answering p-skyline queries. Our algorithm is output-
sensitive; this is very desirable in the context of preference
queries, since the output is expected to be, on average, only
a small fraction of the input. We prove that our method is
well behaved in both the worst- and the average-case sce-
narios. Additionally, we develop a general framework for
benchmarking p-skyline algorithms, showing how to sam-
ple prioritized preference relations uniformly, and how to
highlight the effect of data correlation on performance. We
conclude our study with extensive experimental results.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages—Query lan-
guages; H.2.4 [Database Management]: Systems—Query
processing

General Terms
Algorithms, Experimentation, Performance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
Copyright c© 2015 ACM 978-1-4503-2758-9/15/05 ...$15.00.
http://dx.doi.org/10.1145/2723372.2723736.

Keywords
preference, preference query, skyline, p-skyline, Pareto ac-
cumulation, Prioritized accumulation

1. INTRODUCTION
Output-sensitive algorithms are quite popular in compu-

tational geometry. Starting from the classical results on
convex hulls by Kirkpatrick and Seidel [26] and Chan [9],
output-sensitive solutions have been explored in several prob-
lem domains. Let’s denote the input- and the output-size by
n and v, respectively. An output-sensitive algorithm is de-
signed to be efficient when v is a small fraction of n. More
specifically, its asymptotic complexity should depend explic-
itly on v, and gracefully degrade to the level of the best
known output-insensitive algorithms when v ∈ Ω(n). Pref-
erence queries [11, 12, 22] provide an interesting domain
for output-sensitive algorithms. Starting from a large set of
tuples, the goal is to extract those that maximize a given
binary preference relation. Preference queries are not aimed
at retrieving tuples that perfectly match user’s interests, but
rather at filtering out those that clearly do not. Hence, if
preferences are modeled properly, the user should expect to
see only a fairly limited number of results.

The most basic preferences a user can express are those
that depend on a single attribute: for example, a user may
state that she prefers cheap cars over expensive ones, or that
she is more comfortable driving with the manual transmis-
sion rather than with the automatic one. Single-attribute
preferences are easy to elicit and we will assume they are
known a priori.

Several ways exist to combine simple, one-dimensional
preferences into composite, multi-dimensional ones. A pop-
ular approach is to look for tuples that are Pareto-optimal.
A tuple is Pareto-optimal when no other tuple Pareto-domi-
nates it, being better in one dimension and no worse in all
the other dimensions. Within the database community, the
set of tuples satisfying Pareto-optimality is called a skyline
[7, 13]. It is important to notice that skylines always allow
to trade off one dimension for another: even if a tuple is
dominated in several dimensions, it can still be part of the
skyline as long as it guarantees an arbitrarily small advan-
tage on some other dimensions. In other words, one dimen-

sion can always compensate for another. It has been proved
that skylines contain all the tuples maximizing any arbitrary
scoring function1. Hence, if we assume that users make their
decisions according to some hidden utility function, under
reasonable assumptions we are guaranteed that their pre-
ferred tuple will belong to the skyline. The first output-
sensitive algorithm for skyline queries is due to Kirkpatrick
and Seidel [25].

Prioritized-skylines [22, 29] take a rather different ap-
proach: single-dimensional preferences are composed accord-
ing to a specific priority order, that is dictated by the user.
For example: let’s assume a customer is looking for a cheap,
low-mileage vehicle, and she would prefer to have a man-
ual transmission as long as there is no extra charge for it.
Such customer exhibits preferences over three dimensions
(price, mileage and transmission), but the preference on
price is deemed more important than the one on transmis-
sion type. In other words, the user is not willing to negotiate
on price if the only reward is to obtain a better transmission.
Notice that we have no reason to assume that the prefer-
ence on mileage is either more or less important than any
of the other two. Prioritized skylines are a special-case of
non-compensatory decision making, a phenomenon that has
been extensively studied in economics and psychology [31,
16, 17]. A non-compensatory preference arises whenever a
user refuses to negotiate a trade-off between attributes (for
example: a higher price for a better transmission), deem-
ing one dimension infinitely more important than the other.
P-skylines allow to model this kind of preferences naturally.
Semantically, they generalize skylines: when the user consid-
ers all the attributes to be equally important, the p-skyline
contains only Pareto-optimal tuples. A p-skyline query al-
ways returns a subset of the skyline; in practice, it usually
returns just a small portion of it.

The main contribution of this paper is to develop a novel
output-sensitive algorithm for p-skyline queries. We show
the problem is O

(
n logd−2 v

)
in d ≥ 4 dimensions, and

O (n log v) in two and three dimensions. Hence, our work
generalizes the results in [25] to the context of p-skylines.
Our solution differs significantly from [25], as we show how
to exploit the semantics of prioritized preferences for devis-
ing an effective divide-and-conquer strategy. Additionally,
we prove the algorithm is O (n) in the average case.

We conclude our work presenting extensive experimental
results on real-life and synthetic data. Apart from the nice
asymptotic properties, our algorithm proves to be practical
for processing realistically sized data sets. For our evalua-
tions we use data sets with up to one million records and up
to 20 attributes. To the best of our knowledge our bench-
marks are in line with most of the studies of skyline queries
in the literature.

2. NOTATION AND RELATED WORK
In this document we adopt the following typographic con-

ventions: sets of tuples (or operators returning set of tuples)
are written as capital letters (like D, B, W or M(D)), sets
of attributes are written in calligraphic font (like A, C or E),
actual attributes are written in boldface font (for example:
A1,A2, . . .).

1Assuming the function is defined on all dimensions.

A a relation schema
D a relation instance
A1,A2, . . . attributes
t1, t2, . . . tuples
π a p-expression
�π the strict partial order induced by π
Msky(D) the skyline of D
Mπ(D) the p-skyline of D, w.r.t. π
n the size of the input (# of tuples)
v the size of the output (# of tuples)
d the number of relevant attributes
W �π B no tuple in W is better than (or

indistinguishable from) any tuple in B

Γπ ,Γrπ the p-graph of π and its trans. reduction
Var(π) the attributes appearing in π
Succπ(Ai) immediate successors of Ai in Γrπ
Descπ(Ai) descendants of Ai in Γrπ
Preπ(Ai) immediate predecessors of Ai in Γrπ
Ancπ(Ai) ancestors of Ai in Γrπ
Rootsπ attributes having no ancestors in Γrπ
Betterπ(t′, t) attributes where t′ is preferred to t
T opπ(t′, t) topmost attributes in Γrπ where t and t′

disagree
dAi

the depth of Ai, the length of the longest
path in Γrπ from any root to Ai

Cd(v, n) worst-case complexity of skyline queries
Fd(b, w) w.c. complexity of screening queries
C∗d (v, n) w.c. complexity of p-skyline queries
F ∗d (b, w) w.c. complexity of p-screening queries

For the convenience of the reader the above table sum-
marizes the most common notations used throughout the
paper. All notational conventions are formally introduced
and explained in more details in the following sections.

2.1 Modeling Preferences
Several frameworks have been proposed for modeling pref-

erences in databases, many of which are surveyed in [34]. In
this paper we follow the qualitative approach [11, 22, 12], as
we assume user’s wishes are modeled as strict partial orders.
We denote by A = {A1,A2, . . .} a finite set of attributes
defining a relation schema, and by U the set of all possible
tuples over such schema. Without lack of generality, we as-
sume attributes can be either discrete or range over the set
of rational numbers. A preference is a strict partial order �
over U , a subset of U × U being transitive and irreflexive.
The assertion t′ � t (t′ dominates t) means the user prefers
t′ over t, i.e. she’s always willing to trade the tuple t for the
tuple t′ if she is given the chance. Given a relation instance
D ⊆ U and a preference �, a preference query retrieves all
the maximal elements of the partially ordered set (D,�).
Following the notation of [25], we denote by M�(D) the set
of all these maximal tuples:

M�(D) = {t ∈ D | @ t′ ∈ D s.t. t′ � t}

Every preference � induces an indifference relation (∼): t′ ∼
t holds whenever t′ � t and t � t′. A preference � is a weak
order when ∼ is transitive. A weak order extension of � is
simply an arbitrary weak order containing �. Two tuples
t′ and t are indistinguishable with respect to � when they
agree on all attributes that are relevant for deciding �. In
such case we write t′ ≈ t. We denote by t′ � t the fact that
t′ is either better than or indistinguishable from t. If D and
D′ are two relation instances, we write D′ � D when there
is no pair of tuples (t′, t) in D′ ×D such that t′ � t.

Declaring a preference by enumerating its elements is im-
practical in all but the most trivial domains. Kießling [22]
suggested to define preferences in a constructive fashion, by
iteratively composing single-attribute preferences into more
complex ones. From his work we borrow two composition
operators, namely the Pareto accumulation (⊗) and the Pri-
oritized accumulation (&). Denote �1 and �2 two strict
partial orders; their Pareto accumulation �1⊗2 is defined as
follows

∀ t′, t t′ �1⊗2 t ⇐⇒
(
t′ �1 t ∧ t′ �2 t

)
∨(

t′ �2 t ∧ t′ �1 t
)

In other words, t′ �1⊗2 t holds when t′ is better according
to one of the preferences �1 and �2, and better or indis-
tinguishable from t according to the other. Hence, the two
preferences are equally important. The prioritized composi-
tion of �1 and �2 is defined as follows

∀ t′, t t′ �1&2 t ⇐⇒ t′ �1 t ∨
(
t′ ≈1 t ∧ t′ �2 t

)
Clearly �1&2 gives more weight to the first preference, as �2

is taken into consideration only when two tuples are indistin-
guishable w.r.t. �1. Both operators are associative and the
Pareto accumulation is commutative [22]. Several standard
query languages have been extended to support preference
constructors like the Pareto- and the Prioritized accumula-
tion, including SQL [24], XPATH [23], and SPARQL [33].
To the best of our knowledge we are the first to develop
an output-sensitive algorithm supporting both of these con-
structors.

A p-expression [29] is a formula denoting multiple appli-
cations of the above operators. P-expressions respect the
following grammar:

pExpr → paretoAcc | prioritizedAcc | attribute
paretoAcc → pExpr ⊗ pExpr

prioritizedAcc → pExpr & pExpr
attribute → A1|A2| . . .

where all non-terminal symbols are lower-case and each ter-
minal symbol is either a composition operator (⊗ or &) or a
single-attribute preference, with the restriction that no at-
tribute should appear more than once. A single-attribute
preference (also denoted by �Ai) is simply an arbitrary to-
tal order defined over the attribute’s domain. Without lack
of generality, we will assume users rank values in natural
order (i.e. they prefer small values to larger ones), unless
stated differently. With a little abuse of notation, we will
use single-attribute preferences for ranking either tuples or
values, depending on the context.

Example 1. Assume that a dealer is offering the follow-
ing cars

id P (price) M (mileage) T (transmission)
t1 $ 11,500 50,000 miles automatic
t2 $ 11,500 60,000 miles manual
t3 $ 12,000 50,000 miles manual
t4 $ 12,000 60,000 miles automatic

and that we are looking for a cheap vehicle, with low mile-
age, possibly with manual shift. Notice that while the first
car is Pareto-optimal for price and mileage, if we want a
manual transmission we need to give up either on getting
the best price or the best mileage. Depending on our priori-
ties, we can model our preferences in different ways. All the
following are well-formed and meaningful p-expressions:

1. P

2. (P ⊗M) & T

3. (P & T)⊗M

4. M & T & P

Expression (1) states that we care only about price. If that
is the case, we should buy either t1 or t2. Expression (2)
states that we are looking for cars that are Pareto-optimal
w.r.t. price and mileage, and that we take into consideration
transmission only to decide between cars that are indistin-
guishable in terms of price and mileage. In this case t1 is the
best option. Expression (3) is more subtle: we are looking
for cheap cars, with low mileage and manual transmission,
but we are not willing to pay an extra price for the man-
ual transmission. In this case we should buy either t1 or t2,
since t1 dominates t3 and t4. Finally, expression (4) denotes
a lexicographic order: amongst the cars with the lowest mile-
age, we are looking for one with manual transmission, and
price is the least of our concerns. In this case we should buy
t3.

Given a p-expression π we denote by �π the preference
relation defined by it. Notice that �π is guaranteed to be
a strict partial order [22]. We denote by Var(π) the set of
attributes that appear inside π, i.e. those that are relevant
for deciding �π. Notice that t′ ≈π t holds iff t′ and t agree
on every attribute in Var(π); in the following we will simply
say that t and t′ are indistinguishable w.r.t. attributes in
Var(π).

Definition 1. Given a relation instance D ⊆ U and a p-
expression π, a p-skyline query returns the set Mπ(D) of the
maximal elements of the poset (D,�π).

The computational complexity of p-skyline queries de-
pends strongly on the size of the input, the size of the out-
put, and the number of attributes that are relevant to decide
�π. Hence, our analysis will take in consideration mainly
three parameters: n, the number of tuples in the input, v
the number of tuples that belong to the p-skyline, and d,
the cardinality of Var(π).

Every p-expression π implicitly induces a priority order
over the attributes in Var(π). Mindolin and Chomicki [29]
modeled these orders using p-graphs, and showed how they
relate to the semantics of p-skyline preferences. We will fol-
low a similar route designing our divide-and-conquer strat-
egy for p-skyline queries. Hence, we need to introduce some
of the notation used in [29].

Definition 2. A p-graph Γπ is a directed acyclic graph
having one vertex for each attribute in Var(π). The set
E(Γπ) of all edges connecting its vertices is defined recur-
sively as follows:

• if π is a single-attribute preference, then E(Γπ) ≡ ∅
• if π = π1 ⊗ π2 then E(Γπ) ≡ E(Γπ1) ∪ E(Γπ2)

• if π = π1 & π2 then E(Γπ) ≡ E(Γπ1) ∪ E(Γπ2) ∪
(Var(π1)× Var(π2))

Intuitively, a p-graph Γπ contains an edge from Ai to Aj

iff the preference on Ai is more important than the one
on Aj . Notice that p-graphs are transitive by construction
and, since p-expressions do not allow repeated attributes,
they are guaranteed to be acyclic. In order to simplify the
notation in the following sections we will not use p-graphs

directly, but we will refer mostly to their transitive reduc-
tions2 Γrπ (see Figure 1). In relation to Γrπ we define the
following sets of attributes:

Succπ(Ai) immediate successors of Ai

Descπ(Ai) descendants of Ai

Preπ(Ai) immediate predecessors of Ai

Ancπ(Ai) ancestors of Ai

Rootsπ nodes having no ancestors

We will denote by dAi the depth of Ai, i.e. the length of the
longest path in Γrπ from any root to Ai (roots have depth
0).

Example 2. A customer is looking for a low-mileage (M)
car; amongst barely used models, she is looking for a car that
is available near her location (D) for a good price (P), pos-
sibly still under warranty (W). In order to obtain a compre-
hensive warranty she is willing to pay more, but not to drive
to a distant dealership, since regular maintenance would re-
quire her to go there every three months. All else being equal,
she prefers cars equipped with heated seats (H) and manual
transmission (T). Her preferences can be formulated using
the following p-expression:

M & ((D&W)⊗P) & (T ⊗H)

Figure 1(a) shows the corresponding p-graph and Figure 1(b)
its transitive reduction. Notice the p-graph is not a weak
order, thus the attributes cannot be simply ranked.

M

P D

H

W

T

(a) Γπ

M

P D

H

W

T

(b) Γrπ

Figure 1: (a) the p-graph of the expression M & ((D&W) ⊗
P) & (T ⊗H) and (b) its transitive reduction.

The following result from [29] highlights the relation between
p-graphs and the semantics of p-skylines:

Proposition 1. [29] Denote by t and t′ two distinct tu-
ples, by Betterπ(t′, t) the set of attributes where t′ is pre-
ferred to t, and by T opπ(t′, t) the topmost elements in Γrπ
where t and t′ disagree. The following assertions are equiv-
alent:

1. t′ �π t
2. Betterπ(t′, t) ⊇ T opπ(t′, t)

3. Descπ(Betterπ(t′, t)) ⊇ Betterπ(t, t′)

In other words, t′ �π t holds iff the two tuples are dis-
tinguishable and every node in the p-graph for which t is
preferred has an ancestor for which t′ is preferred. We will
take advantage of this result in Sections 4 and 6.
2Since every p-graph is a finite strict partial order, the tran-
sitive reduction Γrπ is guaranteed to exist and to be unique:
it consists of all edges that form the only available path be-
tween their endpoints.

2.2 Skyline queries
A skyline query can be seen as a special case of p-skyline

query: the Pareto-optimality criterion over an arbitrary set
of attributes {Ai,Aj ,Ak, . . .} can be formulated as follows

Ai ⊗Aj ⊗Ak ⊗ . . .

From now on we will denote by sky the above expression, and
by Msky(D) the result of a skyline query. Clearly, the mean-
ing of this notation will depend on the content of Var(sky).

Proposition 2. [29] Let π and π′ be two p-expressions
such that Var(π) = Var(π′). The following containment
properties hold

�π⊂�π′⇔ E(Γπ) ⊂ E(Γπ′) (1)

�π=�π′⇔ E(Γπ) = E(Γπ′) (2)

From Proposition 2 we can directly infer that Mπ(D) ⊆
Msky(D) as long as Var(π) = Var(sky).

Skyline queries have been very popular in the database
community. Over several years a plethora of algorithms have
been proposed, including Bnl [7], Sfs [14], Less [20], SaLSa
[2], Bbs [30], and many others. For the purpose of this paper
we briefly review Bnl, together with its extensions. Bnl
(block-nested-loop) allocates a fixed-size memory buffer able
to store up to k tuples, the window, and repeatedly performs
a linear scan of the input; during each iteration i each tuple
t is compared with all the elements currently in the window.
If t is dominated by any of those, it is immediately discarded,
otherwise all the elements of the window being dominated
by t are discarded and t is added to the window. If there
is not enough space, t is written to a temporary file Ti. At
the end of each iteration i all the tuples that entered the
window when Ti was empty are removed and added to the
final result; the others, if any, are left in the window to be
used during the successive iteration (i+1), that will scan the
tuples stored in Ti. The process is repeated until no tuples
are left in the temporary file.

Sfs (sort-filter-skyline) improves Bnl with a pre-sorting
step; at the very beginning the input is sorted according to
a special ranking function, ensuring that no tuple dominates
another that precedes it. The resulting algorithm is pipelin-
eable and generally faster than Bnl. Less (Linear Elim-
ination Sort for Skyline [20]) and SaLSa (Sort and Limit
Skyline algorithm [2]) improve this procedure by applying
an elimination filter and an early-stop condition.

Skylines have been studied for several decades in com-
putational geometry, as an instance of the maximal vector
problem [28, 6, 25]. The first divide and conquer algorithm
is due to Kung, Luccio and Preparata [28] and is similar
to the one used in this paper: the general idea is to split
the data set in two halves, say B and W , so that no tuple
in W is indistinguishable from or dominates any tuple in B
(W �sky B); then, the skyline of both halves is computed re-
cursively, obtaining Msky(B) and Msky(W). The last step is
to remove from Msky(W) all tuples dominated by some ele-
ment in Msky(B). This operation is called screening. Let W ′

be the set of tuples from Msky(W) that survive the screen-
ing, the algorithm returns the set Msky(B)∪W ′, containing
each and every skyline point. The base case for the recursion
is when B and W are small enough to make the computation
of the skyline trivial.

In [3] Bentley et al. developed a similar, alternative algo-
rithm, and in [4] proposed a method that is provably fast in

the average-case. Kirkpatrick and Seidel [25] were the first
to propose an output-sensitive procedure. More recently,
[32] developed a divide-and-conquer algorithm that is effi-
cient in external memory, while several results have been
obtained using the word-RAM model [18, 10, 1]. Following
[25] we denote by Cd(v, n) the worst-case complexity of sky-
line queries, and by Fd(b, w) the worst-case complexity of
screening, assuming b = |B| and w = |W |. The following
complexity results were obtained in [25, 27, 28]. In this pa-
per we will prove similar results in the context of p-skylines.

Proposition 3. [25] The following upper-bounds hold on
the complexity of the maximal vector problem:

1. Cd(v, n) ≤ O (n) for d = 1

2. Cd(v, n) ≤ O (n log v) for d = 2, 3

3. Cd(v, n) ≤ O
(
n logd−2 v

)
for d ≥ 4

4. Cd(v, n) ≤ O (n) when v = 1

Proposition 4. [25, 27, 28] The following upper-bounds
on the complexity of the screening problem hold:

1. Fd(b, w) ≤ O (b+ w) for d = 1

2. Fd(b, w) ≤ O ((b+ w) log b) for d = 2, 3

3. Fd(b, w) ≤ O
(
(b+ w) logd−2 b

)
for d ≥ 4

4. Fd(b, w) ≤ O (w) when b = 1

3. OUTPUT-SENSITIVE P-SKYLINE
In this section we present our output-sensitive algorithm

for p-skyline queries. We first introduce a simple divide
and conquer algorithm, named Dc, showing the problem
is O

(
n · logd−2 n

)
. Later we extend it, making it output-

sensitive and ensuring an asymptotic worst-case complexity
of O

(
n · logd−2 v

)
. Before discussing our algorithms in de-

tail, we need to generalize the concept of screening to the
context of p-skylines:

Definition 3. Given a p-expression π and two relation in-
stances B and W , such that W �π B, p-screening is the
problem of detecting all tuples in W that are not dominated
by any tuple in B, according to �π.

Extending the notation of [27], we denote by
[
B
W

]
π

the prob-
lem of p-screening B and W , and by F ∗d (b, w) its worst-
case complexity3. In Section 4 we will show F ∗d (b, w) is
O
(
(b+ w) · (log b)d−2

)
. For the moment we take this result

as given. We denote by C∗d (v, n) the worst-case complexity
of p-skylines, where n and v are the input- and the output-
size.

The complete code of Dc is given in the Figure on the
right. Similarly to the divide and conquer algorithm by
[28], the strategy of Dc is to split the input data set into
two chunks, B and W , so that no tuple in W dominates or is
indistinguishable from any tuple in B (W �π B). The algo-
rithm then computes recursively the p-skyline of B, Mπ(B),
and performs the p-screening of W against Mπ(B), i.e. it
prunes all tuples in W that are dominated by some element
of Mπ(B). Eventually, it recursively computes the p-skyline
of the tuples that survived the p-screening, and returns it,
together with Mπ(B), the p-skyline of B.

3As in Section 2: d = |Var(π)|, b = |B| and w = |W |.

Algorithm Dc (divide & conquer)

Input: a p-expression π, a relation instance D0
Output: the p-skyline Mπ(D0)

1: procedure Dc(π, D0)

2: return DcRec(π,D0,Rootsπ , ∅)

3: procedure DcRec(π, D, C, E)

4: if C = ∅ or |D| ≤ 1 then return D

5: select an attribute A from the candidates set C
6: if all tuples in D assign the same value to A then

7: E ′ ← E ∪ {A}
8: C′ ← C \ {A}
9: C′′ ← C′ ∪ {V ∈ Succπ(A) : Preπ(V) ⊆ E ′}

10: return DcRec(π,D, C′′, E ′)
11: else

12: (B,W,m∗)← SplitByAttribute(D,A)
13: B′ ← DcRec(π,B, C, E)
14: W ′ ← PScreen(π,B′,W, C \ {A}, E)
15: W ′′ ← DcRec(π,W ′, C, E)

16: return B′ ∪W ′′

17: procedure SplitByAttribute(D, A)

18: Select m∗ as the median w.r.t. �A in D
19: Compute the set B = {t ∈ D | t �A m∗}
20: Compute the set W = {t ∈ D | m∗ �A t}
21: return (B,W,m∗)

In order to understand how Dc works, it is important to
understand how the input data set is split into B and W :
the goal is to ensure that no tuple in B is dominated by (or
indistinguishable from) any tuple in W . The general idea
is to select an attribute from Var(π), say A, and compute
the median tuple m∗ w.r.t. �A , over the entire data set;
then we can put in B all tuples that assign to A a better
value than the one assigned by m∗, and put in W all the
other tuples. If we want to be sure that W �π B holds,
we need to make sure that the preference on attribute A
is not overridden by some other, higher-priority attribute.
Hence, we need to choose A so that all tuples in both B
and W agree w.r.t. all the attributes in Ancπ(A). In order
to choose A wisely, Dc keeps track of two sets of attributes,
namely E and C, ensuring the following invariants hold:

I1 : If an attribute belongs to E then no pair of tuples in
D can disagree on the value assigned to it. In other
words: all tuples in D are indistinguishable w.r.t. all
attributes in E .

I2 : An attribute in A \ E belongs to C if and only if all its
ancestors belong to E .

Clearly, attribute A is always chosen from C. Let’s see
how Dc works in more detail: at the beginning E is empty
and C contains all the root nodes of Γrπ; at every iteration the
algorithm selects some attribute A from C and finds the me-
dian tuple m∗ in D w.r.t. �A . If all tuples in D assign to A
the same value, the algorithm updates C and E accordingly
and recurs (lines 7-10). Otherwise (lines 12-16) m∗ is used
to split D into B and W : B contains all the tuples preferred
to m∗, W those that are indistinguishable from or domi-
nated by m∗, according to �A . Clearly W �A B holds by
construction, and W �π B is a direct consequence of invari-
ants I1 and I2. Hence, the algorithm can compute Mπ(B)

recursively (line 13), perform the p-screening
[
Mπ(B)
W

]
π

(line

14), and compute the p-skyline of the remaining tuples (line
15). The procedure PScreen at line 14 will be discussed in
Section 4.

Example 3. Let’s see how Dc would determine the p-
skyline for the data set of Example 1, with respect to the
p-expression π = (P & T)⊗M. The p-graph of π contains
three nodes and only one edge, from P to T. The following
diagram shows the invocation trace of the procedure DcRec.
Each box represents an invocation, its input, output and a
short explanation of the actions performed. For the lack of
space we omit the invocations that process only one tuple.

DcRec[1]
D = {t1, t2, t3, t4}
C = {P,M}; E = ∅
Select P from C
B ← {t1, t2}; W ← {t3, t4}
Output:{t1, t2}

DcRec[2]
D = {t1, t2}
C = {P,M}; E = ∅
Select P from C
E ′ ← {P}; C′′ ← {M,T}
Output:{t1, t2}

DcRec[3]
D = {t1, t2}
C = {M,T}; E = {P}
Select M from C
B ← {t1}; W ← {t2}
Output:{t1, t2}

PScreen[4]
B = {t1, t2}
W = {t3, t4}
C = {M}; E = ∅
Output:∅

During the first invocation, the original set of cars is split
into two halves, with respect to price. The algorithm then
recurs on the first half, {t1, t2}, in order to compute its p-
skyline. The second invocation performs no work, except
updating C and E: attribute P is moved from C to E, and
attribute T enters C. The third invocation computes the
p-skyline of {t1, t2}, splitting w.r.t. mileage (no tuple is
pruned). Back to the first invocation of DcRec, the pro-
cedure PScreen is used for removing from {t3, t4} all tu-
ples dominated by some element in {t1, t2}. Both t3 and t4
are pruned. Since no tuple survived the screening, the algo-
rithm directly returns {t1, t2} without making an additional
recursive call.

The complexity analysis for Dc is straightforward. If we
denote by T (n) its running time and we assume |B| ' |W |
at every iteration, the following upper bound holds for some
fixed constant k0

T (n) ≤ k0n+ 2 · T
(n

2

)
+ F ∗d−1

(n
2
,
n

2

)
where the linear term k0n models the time spent by the
SplitByAttribute procedure; notice the p-screening oper-
ation at line 14 doesn’t need to take attribute A into consid-
eration, hence only d−1 attributes need to be taken into ac-
count. Since we assumed F ∗d (b, w) is O

(
(b+ w) · (log b)d−2

)
,

we can apply the master theorem [5, 15] and conclude that

T (n) ≤ O
(
n · logd−2 n

)
We show now how to make Dc output-sensitive. Before

Algorithm Osdc (output-sensitive divide & conquer)

Input: a p-expression π, a relation instance D0
Output: the p-skyline Mπ(D0)

1: procedure Osdc(π, D0)

2: return OsdcRec(π,D0,Rootsπ , ∅)

3: procedure OsdcRec(π, D, C, E)

4: if C = ∅ or |D| ≤ 1 then return D

5: select an attribute A from the candidates set C
6: if all tuples in D assign the same value to A then

7: E ′ ← E ∪ {A}
8: C′ ← C \ {A}
9: C′′ ← C′ ∪ {V ∈ Succπ(A) : Preπ(V) ⊆ E ′}

10: return OsdcRec(π,D, C′′, E ′)
11: else

12: (B,W,m∗)← SplitByAttribute(D,A)

13: p∗ ← PSkylineSP(π,B)
14: B′ ← PScreenSP(π, {p∗}, B \ {p∗})
15: W ′ ← PScreenSP(π, {p∗},W)

16: B′′ ← OsdcRec(π,B′, C, E)
17: W ′′ ← PScreen(π,B′′,W ′, C \ {A}, E)
18: W ′′′ ← OsdcRec(π,W ′′, C, E)

19: return {p∗} ∪B′′ ∪W ′′′

moving to the algorithm, we introduce some basic complex-
ity results for C∗d (v, n) when v = 1 and for F ∗d (b, w) when
b = 1.

Lemma 1. Given a relation instance D ⊆ U and a p-
expression π, locating a single, arbitrary element of Mπ (D)
takes linear time.

Proof. We can use an arbitrary weak order extension of
�π and locate a maximal element p∗ ∈ D in linear time. It
is easy to see p∗ must belong to Mπ (D). From now on, we
will denote this procedure as PSkylineSP(π,D).

As a corollary to Lemma 1 we can state that C∗d (1, n) ≤
O (n). A similar result holds for p-screening:

Lemma 2. F ∗d (1, w) ≤ O (w) for any positive d and w.

Proof. If B contains only one element, then we can eas-
ily perform p-screening in linear time: we only need one
dominance test for each element of W . From now on, we
will refer to this procedure as PScreenSP(π,B,W).

Now that we have defined the two procedures PScreenSP
and PSkylineSP, we can introduce our output-sensitive al-
gorithm, Osdc (see the Figure above). The divide and con-
quer strategy is similar to the one in Dc, except for the
look-ahead procedure at lines 13-15: at each recursion the
algorithm spends linear time to extract a single p-skyline
point p∗ and prune from both B and W all tuples dominated
by it. As a consequence, if at some point in the execution
either B or W contains only a single p-skyline point, then
either B′ or W ′ will be empty, and the corresponding recur-
sive call (line 16 or 18) will terminate immediately (line 4).
We use Algorithm Osdc for proving the following theorem:

Theorem 1. C∗d (v, n) is O
(
n · logd−2 v

)
.

Proof. If we run Osdc, the following upper bound holds
on C∗d (v, n), for some fixed constant k0

C∗d (v, n) ≤ k0n+ C∗d

(
v′,

n

2

)
+ C∗d

(
v′′,

n

2

)
+ F ∗d−1

(
v′,

n

2

)

where v′+ v′′+ 1 = v. The linear term k0n models the time
spent at lines 12-15, the second and the third terms the
recursive calls at lines 16 and 18, while the last term is the
p-screening operation at line 17. In order to keep track of the
partitioning of v into smaller chunks during the recursion, we
need to introduce some additional notational conventions.
Let’s denote by v`,j the size of the j−th portion of v obtained
at depth ` into the recursion. We can organize the different
v`,j variables into a binary tree, as in Figure 2. Clearly, only

v0,0

v1,0 v1,1

v2,0 v2,1 v2,2 v2,3

Figure 2

a finite subtree rooted in v0,0 will cover the variables having
a strictly positive value. The root v0,0 is equal to v and,
for all ` and j, v`,j is either 1 + v`+1,2j + v`+1,2j+1 or zero.
Notice there are exactly v assignments to (`, j) such that
v`,j > 0, and the recursion proceeds up to a level `max such
that v`max+1,j = 0 for all j. Using this notation:

C∗d (v, n) ≤
`max∑
`=0

∑
{j:v`,j>0}

k0
n

2`
+ F ∗d−1

(
v`+1,2j ,

n

2`+1

)
We don’t know `max a priori; depending on the input it
could be anywhere between log v and min(v, logn). On the
other hand, we do know the above sum has exactly v terms,
and that their cost increases when the value of ` decreases.
Therefore, in the worst-case scenario only the first log v lev-
els of recursion are used, i.e. `max = log v.

C∗d (v, n) ≤
log v∑
`=0

[
k0n+ 2` · F ∗d−1

(
v`+1,2j ,

n

2`+1

)]
Assuming F ∗d (b, w) is O

(
(b+ w) · (log b)d−2

)
, there is a con-

stant k1 such that

C∗d (v, n) ≤ k0n log v + k1n ·
log v−1∑
`=0

(log (v`+1,2j))
d−3

Since in the worst-case scenario only the first log v levels of
recursion are used, we have that v`,j ≤ v/2` ≤ n/2`, hence

C∗d (v, n) ≤ k0n log v + k1n ·
log v−1∑
`=0

(log (v)− (`+ 1))d−3

If we set h = log (v)− (`+ 1), we obtain

C∗d (v, n) ≤ k0n log v + k1n ·
log v−1∑
h=0

hd−3

We can conclude that C∗d (v, n) ≤ O
(
n · (log v)d−2

)
4. COMPLEXITY OF P-SCREENING

We can now analyze the complexity of p-screening. We
start from the simple case d ≤ 3. When d = 1 the problem
coincides with regular screening, and it is linear. When d =
2 or d = 3 the following lemmas apply

Lemma 3. F ∗2 (b, w) ≤ O ((b+ w) log b) for any b > 1 and
w > 0.

Proof. A p-expression with only two attributes can be
either a lexicographical order or a regular skyline. In the
first case p-screening takes O (b+ w) time, in the second it
takes O ((b+ w) log b) time, as per Proposition 4.

Lemma 4. F ∗3 (b, w) ≤ O ((b+ w) log b) for any b > 1 and
w > 0.

Proof. A p-expression π over three attributes can come
in five possible forms:

Case 1 When π = A1 ⊗A2 ⊗A3 p-screening consists of a
regular screening in three dimensions: its complexity
is O ((b+ w) · log b), as per Proposition 4.

Case 2 When π = A1 & A2 & A3, p-screening can be done
in O (b+ w) time, since π represents a lexicographical
order. In O (b) time we can find a maximal element p∗

in B, in additional O (w) time we can check for each
t ∈W whether p∗ �π t holds.

Case 3 When π = A1 & (A2 ⊗A3) we can proceed as fol-
lows: let a∗1 be the best value for attribute A1 amongst
all tuples in B, let Wb, We and Ww contain all the tu-
ples in W assigning to A1 a value respectively better,
equal and worse than a∗1; we have that[

B

W

]
π

= Wb ∪

[
MA1(B)

We

]
A2⊗A3

Since MA1(B), Wb, We and Ww can be computed in
linear time, the overall complexity is dominated by the
two-dimensional screening, that takesO ((b+ w) log b),
as per Proposition 4.

Case 4 When π = (A1 ⊗ A2) & A3 we can proceed as
follows: first we compute the set

W ′ =

[
B

W

]
A1⊗A2

in O ((b+ w) log b) time, then we sort B by the lexico-
graphic order �A1&A2&A3 ; given an assignment to A1

and A2 finding the best value for A3 in B takes only
O (log b), therefore pruning all the remaining domi-
nated points from W ′ takes O (w log b).

Case 5 When π = (A1 & A2) ⊗ A3 we can proceed as
follows: let k be the number of distinct values for A1 in
B, we can partition both B and W into k subsets, such
that Bk �A1 Bk−1 �A1 . . . �A1 B1 and4 Bi+1 �A1

Wi �A1 Bi−1, for each i in {1, . . . , k}; then, for each
i and j in {1, . . . , k} such that i ≤ j we perform the
screening of Wj against Bi. When i = j the screening
is 2-dimensional, and takes O (|Bi ∪Wj | log |Bi|) time;
when i < j the screening is 1-dimensional and takes
O (|Bi ∪Wj |) time. All the 1-dimensional screenings
take O (b+ w) overall, while the 2-dimensional ones
take O ((b+ w) log b).

4Here we assume B0 = Bk+1 = ∅

A

m∗

Wb

Ww ∪We

Bb

Bw

Figure 3: Dividing p-screening into simpler subproblems. Each
box represents a set of tuples, each arrow a p-screening operation.

Algorithm PScreen (see the Figure on the right) shows how
to perform p-screening in O

(
(b+ w) logd−2 b

)
when d ≥ 3.

The algorithm is inspired by the one proposed by Kung, Luc-
cio and Preparata [28]: in order to perform the p-screening[
B
W

]
π
, we split B in two halves, namely Bb and Bw, ensuring

that no tuple in Bw dominates or is indistinguishable from
any tuple in Bb (Bw �π Bb). We can obtain Bb and Bw with
the same strategy we used in Dc: we select an attribute A,
making sure that all tuples in both B and W agree w.r.t all
the attributes in Ancπ(A). Then we find the median tuple
m∗ w.r.t. �A and split B accordingly. Clearly Bw �π Bb
holds, as all tuples in Bb are better than all tuples in Bw
w.r.t. �A , while the preference on A is not overridden by
other higher-priority attributes. Then we proceed splitting
W into three chunks: the set Wb of tuples being preferred
to m∗ (according to �A), those being indistinguishable from
m∗ (We) and those being dominated (Ww). Since we chose
A so that all tuples in both B and W agree w.r.t. all at-
tributes in Ancπ(A), we are guaranteed that no tuple in
Bw can dominate (or be indistinguishable from) any tuple
in Wb

5. Hence, the problem of p-screening B and W is re-
duced to following three smaller sub-problems, as depicted
in Figure 3:

(i)

[
Bb
Wb

]
π

(ii)

[
Bb

Ww ∪We

]
π

(iii)

[
Bw

Ww ∪We

]
π

We can solve these three sub-problems by recursion. The
recursion will stop when we run out of attributes (d ≤ 3)
or tuples (|B| ≤ 1). Notice that for sub-problem (ii) we
do not need to take attribute A into consideration, hence,
for that recursion branch, we reduced the dimensionality by
one unit. In order to choose attribute A properly, PScreen
adopts the same strategy of Dc: it keeps track of two sets
of attributes, C and E , ensuring the following invariants:

I1 : If an attribute belongs to E then no pair of tuples in
B∪W can disagree on the value assigned to it. That is,
all tuples in B ∪W are indistinguishable with respect
to all attributes in E .

I2 : An attribute in A \ E belongs to C if and only if all its
ancestors belong to E .

We can now analyze the pseudo-code of PScreen in more
detail. Lines 19-24 define the core logic of the recursion,
lines 4-17 handle the base-cases, while lines 25-29 contain
auxiliary methods. The algorithm takes as input two sets
of tuples, B and W , such that W �π B. At each iteration
the algorithm selects an attribute A from C (line 9), and

5Notice that for every pair of tuples (t′, t) in Bw × Wb

attribute A belongs to both T opπ(t′, t) and Betterπ(t, t′).
From Proposition 1 we can conclude that Bw �π Wb holds.

tests whether the tuples in B are distinguishable w.r.t. A.
If they are, the block at lines 19-24 is executed, otherwise
the one at lines 11-17.

Algorithm PScreen

Input:
a p-expression π
two relation instances, B and W , s.t. W �π B

Output: the set W ′ of all tuples in W that are not dominated
by any tuple in B

1: procedure PScreen(π, B, W)
2: return PScreenRec(π,B,W,Rootsπ , ∅)

3: procedure PScreenRec(π, B, W , C, E)
4: if C is empty then return ∅
5: else if |B| = 1 then
6: return PScreenSP(π,B,W)
7: else if |C ∪ Descπ(C)| ≤ 3 then
8: apply Lemma 4 and return
9: select an attribute A from the candidates set C

10: if all tuples in B assign the value a to A then

11: (Wb,We,Ww)← SplitByValue(W,A, a)
12: C′ ← C \ {A}
13: W ′w← PScreenRec(π,B,Ww, C′, E)
14: E ′ ← E ∪ {A}
15: C′′ ← C′ ∪ {V ∈ Succπ(A) : Preπ(V) ⊆ E ′}
16: W ′e ← PScreenRec(π,B,We, C′′, E ′)
17: returnW ′w ∪W ′e ∪Wb

18: else

19: (Bb, Bw,m
∗) ← SplitByAttribute(B,A)

20: (Wb,We,Ww)← SplitByValue(W,A,m∗)
21: W ′b ← PScreenRec(π,Bb,Wb, C, E)
22: W ′w ← PScreenRec(π,Bw,Ww ∪We, C, E)
23: W ′′w ← PScreenRec(π,Bb,W

′
w, C \ {A}, E)

24: returnW ′b ∪W
′′
w

25: procedure SplitByValue(D, A, m∗)
26: Compute the set Db = {t ∈ D | t[A] �A m∗}
27: Compute the set De = {t ∈ D | t[A] ≈A m∗}
28: Compute the set Dw = {t ∈ D | m∗ �A t[A]}
29: return (Db, De, Dw)

Let’s analyze the first case. At line 19 B is split into Bb and
Bw, at line 20 W is split into Wb, We and Ww. At lines
21, 22 and 23 the algorithm recurs three times, in order to
solve the three sub-problems discussed above. We can now
analyze the base-cases: when C is left empty (line 4), all tu-
ples in W are dominated by all tuples in B, so the algorithm
returns the empty set; when B contains only one element,
the algorithm applies the procedure from Lemma 2 (lines
5-6); when only three attributes are left to be processed,
the algorithm applies Lemma 4. When it is not possible to
split B, since all its tuples agree on some value a for A, the
algorithm splits W into three sets (Wb, We and Ww) con-
taining tuples that are respectively better, indistinguishable
from and worse than a, w.r.t. �A . Then it proceeds to solve[
B
Ww

]
π

and
[
B
We

]
π
. Notice C and E are updated at lines 12,

14 and 15 in order to satisfy the invariants I1 and I2.

Theorem 2. F ∗d (b + w) ≤ O
(
(b+ w) logd−2 b

)
for any

d > 3, b and w.

Proof. We show that the above upper bound holds if
we apply Algorithm PScreen to perform p-screening. The
proof is by induction on d, and will use the simplifying as-
sumptions that (i) b = 2m for some positive m and (ii)
the splitting operation at line 19 divides B into two almost
equally sized halves. Since we proved the base case d = 3 in

Lemma 4, the rest of the proof has a similar structure to the
one proposed in [27, 28]. During each recursion Algorithm
PScreen splits the set W in two parts; using a notation
similar to the one presented in Figure 2, from now on we
will denote by w`,j the size of the j-th portion of W ob-
tained at depth ` in the recursion. Clearly w0,0 = |W |, and

for each ` in {0, 1, . . . , log b− 1} the sum
∑2`

j=1 w`,j is equal

to |W |. It is easy to see the following upper bound holds on
F ∗d , for some fixed constant k0

F ∗d (b, w0,0) ≤ k0(b+ w0,0) + F ∗d−1 (b, w0,0) (3)

+ F ∗d

(
b

2
, w1,0

)
+ F ∗d

(
b

2
, w1,1

)
the linear term k0(b+w0,0) models the time spent for finding
the median m∗ and split B and W accordingly (lines 19 and
20), and the other three terms model the recursive calls at
lines 21,22, and 23. Inequality 3 holds during each recursion,
therefore

F ∗d

(
b

2`
, w`,j

)
≤ k0

(
b

2`
+ w`,j

)
+ F ∗d−1

(
b

2`
, w`,j

)
(4)

+ F ∗d

(
b

2`+1
, w`+1,2j

)
+ F ∗d

(
b

2`+1
, w`+1,2j+1

)
We can apply (4) to the last two terms of (3) and repeat the
operation until we obtain the following

F ∗d (b, w) ≤
log b−1∑

ˆ̀=0

2
ˆ̀∑

k=1

k0

(
b

2ˆ̀
+ wˆ̀,k

)

+

log b−1∑
ˆ̀=0

2
ˆ̀∑

k=1

F ∗d−1

(
b

2ˆ̀
, wˆ̀,k

)

+

2log b−1∑
k=0

F ∗d (1, wlog b−1,k)

By inductive hypothesis, we can assume

F ∗d−1 (b, w) ≤ O
(

(b+ w)(log b)d−3
)

Also, from Lemma 2 we know F ∗d (1, w) is O (w). Therefore,
there exist constants k0, k1 and k2 such that, for every b and
w, the following holds

F ∗d (b, w) ≤ k0 · (b+ w) log b

+ k1 ·
log b−1∑

ˆ̀=0

2
ˆ̀∑

j=1

(
b

2`
+ wˆ̀,j

)
·
(

log
b

2`

)d−3

+ k2 · w

Solving the sum over j, we get

F ∗d (b, w) ≤ k0 · (b+ w) log b

+ k1 · (b+ w) ·
log b−1∑

ˆ̀=0

(
log b− ˆ̀

)d−3

+ k2 · w

If we set h = log b− ˆ̀, we obtain

F ∗d (b, w) ≤ k0 · (b+ w) log b

+ k1 · (b+ w) ·
log b∑
h=1

hd−3 + k2 · w

Since
∑log b
h=1 h

d−3 is O
(
(log b)d−2

)
, it follows that

F ∗d (b, w) ≤ O
(

(b+ w) · (log b)d−2
)

This concludes our proof.

5. AVERAGE-CASE ANALYSIS
The average-case performance for regular skyline algo-

rithms has been studied extensively in several papers [20, 4,
6]. The most usual assumption is that the data is distributed
so that each attribute is independent from the others (statis-
tical independence) and the probability of two tuples agree-
ing on the same value for the same attribute is negligible
(sparseness). These two assumptions are usually called, col-
lectively, component independence (or CI, as in [6]). Under
the CI assumption Less has been shown to be O (n) in the
average-case, while Sfs resulted to be O (n logn) [20]. In
this section we show how to modify Osdc, in order to en-
sure a linear average-case complexity. We start by making
two key observations:

Observation 1 Over all the preference relations that can
be expressed using p-expressions, the skyline relation
�sky represents a worst-case scenario for an output-
sensitive algorithm like Osdc. This follows directly
from the containment property (Proposition 2): it is
easy to see that for every �π we have that Mπ(D) ⊆
Msky(D) holds as long as Var(π) = Var(sky).

Observation 2 Buchta [8] proved that, under the CI as-
sumption, the expected size of Msky(D) is Hd−1,n, the
(d− 1)-th order harmonic of n. Godfrey [19] observed
that, if we drop the assumption of sparseness, the size
of Msky(D) is likely to decrease.

Hence, computing regular skylines over data sets respecting
the CI assumption is a corner-case scenario for an output-
sensitive p-skyline algorithm, in the sense that introducing
priorities between attributes or dropping the sparseness as-
sumption would only improve the algorithm’s performance.
In order to show that our procedure is well-behaved in the
average-case, we will prove it is well-behaved under the as-
sumptions discussed above. More specifically, we will show
how to make a simple modification to Osdc and ensure an
average performance of O (n) for skyline queries under the
CI assumption. The general idea is to follow a two-stage
approach, similar to the one proposed in [4]:

1. During the first phase a linear scan prunes all the
points dominated by a virtual tuple t∗, that is cho-
sen so that the probability that no point dominates it
is less than 1/n, and the average number of points not
dominated by it is o(n). Such t∗ can be chosen using
the strategy presented in [4].

2. With probability (n−1)/n the virtual tuple t∗ is dom-
inated by a real tuple in D, and so the algorithm can
compute the final answer by running Osdc only on the
o(n) points that survived the initial linear scan.

0

200

400

-0.05 0.00 0.05 0.10 0.15 0.20

Pearson’s correlation coefficient

av
g

re
sp

.
ti

m
e

(s
) algorithm

BNL

LESS

OSDC

Performance vs. data
correlation

0

5000

10000

15000

20000

0 10 20

output size (% of the total)

av
g

re
sp

.
ti

m
e

(s
) algorithm

BNL

LESS

OSDC

Performance vs. selectivity
(complete)

0

1000

2000

3000

0 2 4 6 8

output size (% of the total)

av
g

re
sp

.
ti

m
e

(s
) algorithm

BNL

LESS

OSDC

Performance vs. selectivity
(magnified)

Figure 4: The effect of data correlation and query selectivity on performance (synthetic data sets)

3. With probability 1/n the final answer needs to be com-
puted by running Osdc over the whole data set D.

It is easy to see that the amortized, average cost of this
procedure is O (n), while the worst-case complexity is still
O
(
n logd−2 v

)
.

6. P-SKYLINES IN EXTERNAL MEMORY
In the past scan-based skyline algorithms like Bnl, Sfs,

SaLSa or Less have generated a considerable interest in
the database community. While all these algorithms ex-
hibit a sub-optimal worst-case performance of O(n2), they
are known to be well-behaved in the average-case scenario,
and, for larger values of d, to be even more practical than
divide-and-conquer algorithms like [6] (we refer the reader
to [20] for an exhaustive discussion of the topic). Addition-
ally, scan-based algorithms are easy to embed into existing
database systems, as they are easily pipelinable, and support
execution in external memory (where they still exhibit a sub-
optimal, quadratic worst-case performance, as discussed in
[32]). In this section we show how to adapt two scan-based
skyline algorithms, Sfs and Less, in order to support p-
skyline queries. Our goal is twofold: on one hand we want
to show that Osdc is faster than the scan-based solutions,
a part for its nice asymptotic properties (this will be done
in the Section 7); on the other hand we want to develop
a p-skyline algorithm that supports execution in external
memory.

Both Sfs and Less sort the input dataset so that no tuple
can dominate another preceding it; to achieve a similar result
with prioritized preferences, we propose to presort the input
w.r.t. the following weak order extension of �π

�ext
π = �sum0 & �sum1 & . . . & �sumd−1 (5)

Each �sumi is defined as follows:

t′ �sumi t ⇐⇒
∑

A∈Var(π):dA=i

t′[A] <
∑

A∈Var(π):dA=i

t[A]

That is, t′ �sumi t holds when the sum over all attributes
at depth i computed for t′ is lower than the same sum com-
puted for t. After the sorting step, if t′ �ext

π t holds tuple t′

is going to be processed before tuple t.

Theorem 3. The relation �ext
π defined above is a weak

order extension of �π.

Proof. First we want to show that for each pair of tuples
(t′, t) in U2, t′ �ext

π t implies t �π t′. We can denote by i∗

the smallest index i such that (t′ �sumi∗ t). Since the
sum over all attributes at depth i∗ is smaller for t′ rather
than for t, there must be at least one attribute A at depth
i∗ favoring t′ over t. It is easy to see that such A belongs
to T opπ(t′, t); from Proposition 1, point 2, we can conclude
that t �π t′. We are left to prove that �ext

π is a weak order:
this follows directly from (5), noting that each �sumi is a
weak order, and the prioritized composition of weak orders
is a weak order itself.

7. EXPERIMENTAL RESULTS
To the best of our knowledge there is no published work

on measuring p-skyline queries performance. The problem
is difficult, since the response time depends on many factors,
including the topology of the p-graph and data properties
like size, correlation and likelihood of duplicated values.

In the following sections we try to address this issue by
proposing a novel p-skyline testing framework. First we
show how to sample random p-expressions from a uniform
distribution, and how to generate meaningful synthetic data
sets. Later we present our experimental results from both
real and synthetic data sets.

7.1 Sampling random p-expressions
P-expressions can encode a wide variety of preferences:

they can represent lexicographic orders, classical skylines,
or any combination of the two. In order to keep evalua-
tions fair and unbiased we should not polarize benchmarks
on specific preferences. Instead, our goal is to randomly
sample p-expressions from a uniform distribution, ensuring
all preferences are equally represented.

Given the number of attributes d, sampling a random p-
expression means building a random p-graph over d vertices,
ensuring that all legal p-graphs have the same probability
of being generated. We present a result from [29] to charac-
terize the set of p-graphs we want to sample from.

Theorem 4. [29] Given a set of d attributes A, a graph
Γ over A is a p-graph if and only if:

1. Γ is transitive and irreflexive.

2. Γ respects the envelope property:
∀A1,A2,A3,A4 all different in A, (A1,A2) ∈ Γ ∧
(A3,A4) ∈ Γ ∧ (A3,A2) ∈ Γ ⇒ (A3,A1) ∈ Γ ∨
(A1,A4) ∈ Γ ∨ (A4,A2) ∈ Γ.

Iterating over all graphs that respect the above constraints
is practical only for small values of d. For larger values we

-0.047127 -0.000001 0.042979 0.183413 0.212033

0

500

1000

1500

2000

0

100

200

300

0

30

60

90

120

0

2

4

6

0

1

2

3

4

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

of attributes in the p-graph (d)

av
g

re
sp

.
ti

m
e

(s
)

algorithm

BNL

LESS

OSDC

Performance vs. # of attributes in the p-graph

-0.047127 -0.000001 0.042979 0.183413 0.212033

0

5000

10000

15000

0

1000

2000

3000

0

200

400

600

800

0

10

20

30

40

0

5

10

15

20

25

2.5 5.0 7.5 10.0 2.5 5.0 7.5 10.0 2.5 5.0 7.5 10.0 2.5 5.0 7.5 10.0 2.5 5.0 7.5 10.0

of roots in the p-graph

av
g

re
sp

.
ti

m
e

(s
)

algorithm

BNL

LESS

OSDC

Performance vs. # of roots in the p-graph

Figure 5: The effect of the p-graph’s topology on performance (synthetic data sets)

use the following strategy: we convert the constraints into a
boolean satisfaction problem and sample from its solutions
near-uniformly using SampleSAT [35]. SampleSAT performs
a random walk over the possible solutions of a SAT problem,
alternating greedy WalkSAT moves with simulated anneal-
ing steps. The ratio of the frequencies of the two kinds of
steps, denoted by f , determines the trade-off between the
uniformity of the sampling and the time spent to obtain
it. For our tests on synthetic data we used f = 0.5 for
generating 200 p-expressions, with d ranging from 5 to 20
attributes.

7.2 Synthetic data sets
Several papers, starting from [7], showed how data correla-

tion affects the performance of skyline queries. We wanted
to test whether similar considerations apply to p-skylines.
Notice the role of correlation in this context is subtle: de-
pending whether two variables have the same priority or
not, a correlation between them may have different effects.
For this reason we decided to generate synthetic data sets
where each pair of dimensions exhibits approximatively the
same linear correlation. Let’s denote by ~1 a d-dimensional
all-ones vector (1, 1, . . . , 1), and by M a d× d matrix whose
rows form an orthonormal basis for Rd, the first one being
parallel with ~1. Notice that M represents a rotation cen-
tered on the origin. Let MD be a d × d diagonal matrix,
having (α, 1, . . . , 1) as its main diagonal. We propose to
test p-skyline algorithms over a multivariate Gaussian dis-
tribution Nα, centered on the origin, with covariance matrix
Σα = M ×MD ×M−1. According to this distribution each
pair of distinct dimensions exhibits the same correlation, de-
termined by the parameter α. It is important to notice that
Nα, amongst all the distributions where all pairs of vari-
ables have the same correlation, is the one with maximum
entropy, given the parameter α.

For our tests we sampled several data sets, varying the
value of α; each set contains one million tuples over d = 20
attributes. Since p-skylines make sense only when some tu-
ples agree on some attributes, we rounded the data off to
four decimal digits of precision, in order to ensure the pres-

ence of duplicated values. As a result, the uncorrelated data
sets (those with α = 1) have approximatively 7, 000 distinct
values in each column. We compared the performance of
Osdc against Bnl and Less. To keep the comparison fair
we implemented an in-memory version of Bnl, setting the
size of the window to be large enough to store the whole
input. This way, the algorithm could answer each query
with a single iteration. We adapted Less using the strat-
egy discussed in Section 6. We ran it using several different
thresholds on the size of the elimination filter, ranging be-
tween 50 and 10, 000 tuples. For each experiment we report
only the fastest response times. In order to avoid any over-
head, we precomputed the ranking �ext

π . All the algorithms
were implemented using Java, and tested on an Intel Core
i7-2600 (3.4 GHz) machine equipped with 8 GB of RAM.
We ran all the experiments using the Java Runtime Envi-
ronment version 1.7.0, limiting the maximum heap size to 4
GB.

On the average we observed Osdc to be significantly faster
than Less and Bnl. Here we analyze these results in rela-
tion with data correlation, and we study how the topology
of p-expressions affects the performance of each algorithm.
Figure 4 (left) focuses on the effect of data correlation. We
average the response time over all queries, and plot it against
the observed Pearson’s correlation coefficient6. The Figure
shows that Less and Bnl compete with Osdc in presence
of positive data correlation, but their performance decreases
quickly on anti-correlated data. Osdc, on the other hand,
remains mostly unaffected by data correlation.

In Figure 5 we investigate the relation between perfor-
mance and the topology of p-graphs. We group queries ac-
cording to the number of attributes (top) and roots (bot-
tom) in their p-graphs, and we aggregate response times
w.r.t. data correlation. For lack of space we report only
five levels of correlation, the most significant ones. Indepen-
dently from data correlation, Osdc exhibits a distinct per-
formance advantage on queries with more than 10 attributes,

6The correlation coefficient was measured after rounding the
data sets.

0

5

10

15

8 10 12 14

of attributes in the p-graph (d)

av
g

re
sp

.
ti

m
e

(m
s) algorithm

BNL

LESS

OSDC

NBA: performance vs. # of attributes

0

50

100

150

0 1 2 3

output size (% of the total)

av
g

re
sp

.
ti

m
e

(m
s) algorithm

BNL

LESS

OSDC

NBA: performance vs. selectivity

Figure 6: NBA data set (21,959 tuples over 14 attributes)

0

1

2

3

4

5

5 6 7 8 9 10

of attributes in the p-graph (d)

av
g

re
sp

.
ti

m
e

(s
) algorithm

BNL

LESS

OSDC

CoverType: performance vs. # of attributes

0

200

400

600

0.0 2.5 5.0 7.5

output size (% of the total)
av

g
re

sp
.

ti
m

e
(s

) algorithm

BNL

LESS

OSDC

CoverType: performance vs. selectivity

Figure 7: CoverType data set (581,012 tuples over 10 attributes).

especially if there are more than five roots; Less shows a
similar advantage in presence of positive data correlation,
while Bnl results are competitive mostly on queries with
less than five roots. During our experiments we observed
that both p-graph topology and data correlation have a di-
rect influence on the size of the output: highly-prioritized
p-expressions (those with few roots) are likely to produce
smaller p-skylines; similarly, positively correlated data is
likely to produce smaller result-sets. Therefore, we summa-
rize our results by plotting the average response time against
the size of the output (Figure 4, on the right). As expected,
Osdc and Less show a clear advantage for large result-sets
while Bnl remains competitive only for queries returning
few tuples. The lines on the graph represent second-order
polynomial regressions.

7.3 Real data sets
We tested our algorithms over the following real, publicly

available data sets:

NBA NBA7 is a very popular data set for evaluating sky-
line algorithms. We used the following regular season
statistics: gp, minutes, pts, reb, asts, stl, blk, turnover,
pf, fga, fta, tpa, weight, height. After dropping null
values, the data set contains 21,959 tuples. We gener-
ated 8,000 random p-expressions with d ranging from
7 to 14. For this data set we used the assumption that
larger values are preferred.

CoverType Forest Covertype8 contains a collection of car-
tographic observations performed by the US Forest
Service and the US Geological Survey. We extracted

7www.databasebasketball.com
8archive.ics.uci.edu/ml/datasets/Covertype

a data set of 581,012 tuples over 10 attributes. We
generated 6,000 random p-expressions with d ranging
from 5 to 10. For this data set we used the assumption
that smaller values are preferred.

Our results are presented in Figures 6 and 7. In the graphs
on the left response times are aggregated by the number
d of attributes in each p-expression. In the plots on the
right response times are put in relation with the size of
the output. On both data sets our findings confirmed our
average-case analysis and the results we obtained from syn-
thetic data: Osdc outperforms Less and Bnl, especially
when the output-size is over 1% of the input-size.

8. CONCLUSIONS AND FUTURE WORK
In this paper we generalized the results of [25] to the con-

text of p-skylines. We proved that p-skylines can be com-
puted in O

(
n logd−2 v

)
in the worst-case scenario, and in

O (n) in the average-case. Additionally, we proposed a novel
framework for benchmarking p-skyline queries, showing how
to sample p-expressions uniformly, with the purpose of run-
ning unbiased tests. We designed our divide-and-conquer
strategy assuming the input data always fits in the main
memory; it would be interesting to verify whether we can
drop this assumption, and develop an output-sensitive al-
gorithm that runs efficiently in external memory, taking in-
spiration from [32, 21]. Another interesting aspect to inves-
tigate concerns the estimation of the expected size of the
output. Can we exploit the semantics of p-skylines for pre-
dicting the expected output-size of a query? This would be
helpful for choosing the most convenient algorithm for an-
swering it, on a case-by-case basis. We leave the answers to
all these questions open for future work.

9. REFERENCES
[1] P. Afshani. Fast computation of output-sensitive

maxima in a word RAM. In C. Chekuri, editor,
SODA, pages 1414–1423. SIAM, 2014.

[2] I. Bartolini, P. Ciaccia, and M. Patella. Efficient
sort-based skyline evaluation. ACM Trans. Database
Syst., 33(4):31:1–31:49, Dec. 2008.

[3] J. L. Bentley. Multidimensional divide-and-conquer.
Commun. ACM, 23(4):214–229, 1980.

[4] J. L. Bentley, K. L. Clarkson, and D. B. Levine. Fast
linear expected-time algorithms for computing
maxima and convex hulls. In D. S. Johnson, editor,
SODA, pages 179–187. SIAM, 1990.

[5] J. L. Bentley, D. Haken, and J. B. Saxe. A general
method for solving divide-and-conquer recurrences.
SIGACT News, 12(3):36–44, Sept. 1980.

[6] J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D.
Thompson. On the average number of maxima in a set
of vectors and applications. J. ACM, 25(4):536–543,
1978.

[7] S. Börzsönyi, D. Kossmann, and K. Stocker. The
skyline operator. In Proceedings of the 17th
International Conference on Data Engineering, pages
421–430, 2001.

[8] C. Buchta. On the average number of maxima in a set
of vectors. Inf. Process. Lett., 33(2):63–65, 1989.

[9] T. M. Chan. Optimal output-sensitive convex hull
algorithms in two and three dimensions. Discrete &
Computational Geometry, 16(4):361–368, 1996.

[10] T. M. Chan, K. G. Larsen, and M. Pătraşcu.
Orthogonal range searching on the RAM, revisited. In
Proceedings of the Twenty-seventh Annual Symposium
on Computational Geometry, SoCG ’11, pages 1–10,
New York, NY, USA, 2011. ACM.

[11] J. Chomicki. Querying with intrinsic preferences. In
C. S. Jensen, K. G. Jeffery, J. Pokorný, S. Saltenis,
E. Bertino, K. Böhm, and M. Jarke, editors, EDBT,
volume 2287 of Lecture Notes in Computer Science,
pages 34–51. Springer, 2002.

[12] J. Chomicki. Preference formulas in relational queries.
ACM Trans. Database Syst., 28(4):427–466, Dec. 2003.

[13] J. Chomicki, P. Ciaccia, and N. Meneghetti. Skyline
queries, front and back. SIGMOD Record, 42(3):6–18,
2013.

[14] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang.
Skyline with presorting. In ICDE, pages 717–719,
2003.

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms (3. ed.). MIT
Press, 2009.

[16] S. A. Drakopoulos. Hierarchical choice in economics.
Journal of Economic Surveys, 8(2):133–153, 1994.

[17] P. C. Fishburn. Axioms for lexicographic preferences.
The Review of Economic Studies, pages 415–419, 1975.

[18] H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling
and related techniques for geometry problems. In
R. A. DeMillo, editor, STOC, pages 135–143. ACM,
1984.

[19] P. Godfrey. Skyline cardinality for relational
processing. In D. Seipel and J. M. T. Torres, editors,

FoIKS, volume 2942 of Lecture Notes in Computer
Science, pages 78–97. Springer, 2004.

[20] P. Godfrey, R. Shipley, and J. Gryz. Maximal vector
computation in large data sets. In K. Böhm, C. S.
Jensen, L. M. Haas, M. L. Kersten, P.-Å. Larson, and
B. C. Ooi, editors, VLDB, pages 229–240. ACM, 2005.

[21] X. Hu, C. Sheng, Y. Tao, Y. Yang, and S. Zhou.
Output-sensitive skyline algorithms in external
memory. In S. Khanna, editor, SODA, pages 887–900.
SIAM, 2013.

[22] W. Kießling. Foundations of preferences in database
systems. In VLDB, pages 311–322. Morgan
Kaufmann, 2002.

[23] W. Kießling, B. Hafenrichter, S. Fischer, and
S. Holland. Preference XPATH: A query language for
e-commerce. In H. U. Buhl, A. Huther, and
B. Reitwiesner, editors, Wirtschaftsinformatik,
page 32. Physica Verlag / Springer, 2001.

[24] W. Kießling and G. Köstler. Preference SQL - design,
implementation, experiences. In VLDB, pages
990–1001. Morgan Kaufmann, 2002.

[25] D. G. Kirkpatrick and R. Seidel. Output-size sensitive
algorithms for finding maximal vectors. In Symposium
on Computational Geometry, pages 89–96, 1985.

[26] D. G. Kirkpatrick and R. Seidel. The ultimate planar
convex hull algorithm? SIAM J. Comput.,
15(1):287–299, 1986.

[27] H. T. Kung. On the computational complexity of
finding the maxima of a set of vectors. In SWAT
(FOCS), pages 117–121, 1974.

[28] H. T. Kung, F. Luccio, and F. P. Preparata. On
finding the maxima of a set of vectors. J. ACM,
22(4):469–476, 1975.

[29] D. Mindolin and J. Chomicki. Preference elicitation in
prioritized skyline queries. In VLDB J., pages
157–182, 2011.

[30] D. Papadias, Y. Tao, G. Fu, and B. Seeger.
Progressive skyline computation in database systems.
ACM Trans. Database Syst., 30(1):41–82, 2005.

[31] A. Scott. Identifying and analysing dominant
preferences in discrete choice experiments: an
application in health care. Journal of Economic
Psychology, 23(3):383–398, 2002.

[32] C. Sheng and Y. Tao. Worst-case i/o-efficient skyline
algorithms. ACM Transactions on Database Systems
(TODS), 37(4):26, 2012.

[33] W. Siberski, J. Z. Pan, and U. Thaden. Querying the
semantic web with preferences. In I. F. Cruz,
S. Decker, D. Allemang, C. Preist, D. Schwabe,
P. Mika, M. Uschold, and L. Aroyo, editors,
International Semantic Web Conference, volume 4273
of Lecture Notes in Computer Science, pages 612–624.
Springer, 2006.

[34] K. Stefanidis, G. Koutrika, and E. Pitoura. A survey
on representation, composition and application of
preferences in database systems. ACM Trans.
Database Syst., 36(3):19:1–19:45, Aug. 2011.

[35] W. Wei, J. Erenrich, and B. Selman. Towards efficient
sampling: Exploiting random walk strategies. In D. L.
McGuinness and G. Ferguson, editors, AAAI, pages
670–676. AAAI Press / The MIT Press, 2004.

