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ABSTRACT
Skyline queries are a popular way to obtain preferred
answers from the database by providing only the order-
ings of attribute values. The result of a skyline query
consists of those input tuples for which there is no input
tuple having better or equal values in all the attributes
and a better value in at least one attribute. In this arti-
cle, we summarize the basic notions and properties of
skyline queries, and discuss their extensions and gener-
alizations. In particular, we consider skyline algorithms
and skyline cardinality issues.

1. INTRODUCTION
Multi-criteria analysis [16] is a common approach

to address the needs of decision-making applica-
tions. In some such settings a set of dimensions
and a set of alternatives, both finite, are given. For
example, a car shopper considers the price, make,
model and mileage of the car, as well as the vehicles
currently in stock. The analysis identifies the best,
most preferred alternatives, which are obtained by
eliminating those that are dominated by other al-
ternatives. Under Pareto efficiency, the dominance
relationship has a particularly simple structure: an
alternative o1 dominates an alternative o2 if o1 is
better than or equal to o2 in all dimensions and bet-
ter than o2 in at least one dimension. (An equiva-
lent formulation requires that o1 and o2 be different,
and o1 be better than or equal to o2 in all dimen-
sions.)

In the database context, the concepts of multi-
criteria decision analysis have a very natural inter-
pretation. The dimensions correspond to attributes,
and the alternatives, to the objects present in the
database. Pareto dominance leads to skyline queries.

Example 1.1. A prospective student, choosing a

∗Database Principles Column. Column edi-
tor: Pablo Barceló, Department of Computer Sci-
ence, Universidad de Chile, Santiago, Chile. E-mail:
pbarcelo@dcc.uchile.cl.

school, takes into account the financial support pro-
mised by the school, as well as its percentile rank
among all schools. We represent the relevant data
using a relation School(Id,Rank,Support), which
is depicted in Table 1 and plotted in Figure 1.

id rank support
t1 96 5,000
t2 95 6,000
t3 89 8,000
t4 87 9,000
t5 86 10,000
t6 84 14,000
t7 81 14,500

id rank support
t8 96 3,000
t9 93 3,500
t10 92 2,500
t11 88 4,500
t12 85 7,000
t13 83 6,500
t14 80 11,000

Table 1: Student database

Suppose the student does not have a scoring func-
tion that assigns a numeric score to each school:
such functions are difficult to construct. However,
the student can still determine whether a school is
dominated by some other school providing better sup-
port and having the same or higher rank, or hav-
ing a higher rank and providing the same or bet-
ter support. The dominated schools represent infe-
rior choices and can be eliminated. The remaining
schools are nondominated and form the skyline of
the input. The skyline contains all the best choices,
in a precise sense. In this case, the skyline con-
sists of the tuples t1, t2, t3, t4, t5, t6, and t7 (the black
dots).

The notion of skyline queries was pioneered in
[8]. Subsequently, the interest in this area has ex-
ploded: [8] has garnered over 1200 citations (Google
Scholar, May 2013). The research has uncovered
interesting properties of skylines, designed efficient
algorithms for computing skyline queries, and pro-
duced numerous generalizations and extensions of
the basic framework. Unfortunately, the sheer vol-
ume of publications on skylines and related topics
prevents us from covering here all interesting issues
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Figure 1: Student database (plotted)

studied in this area.
The needs of decision-making applications have

been calling for designing new classes of queries that
go beyond skyline queries. Richer classes of prefer-
ences and forms of query results have been studied.
The research is motivated not only by semantic con-
cerns but also by the observation, confirmed both
analytically and experimentally, that skyline sizes
may get impractically large.

It is important to keep in mind the distinctions
between (1) Pareto dominance, (2) skyline queries
that return all the non-Pareto-dominated objects,
(3) skylines: the results of skyline queries, and (4)
skyline algorithms that compute skylines.

The plan of the paper is as follows. In Section 2,
we introduce the basic notions of Pareto dominance
and study its basic properties. In Section 3, we
consider skyline queries and their variants. Section
4 contains a survey of skyline algorithms. In Sec-
tion 5, we address the issue of skyline cardinality.
Section 6 shows generalizations and adaptations of
Pareto dominance to various contexts. In Section
7, we consider some issues that we believe will be
of importance in future research on skylines: uncer-
tainty and elicitation of dominance relations. We
conclude in Section 8.

2. DOMINANCE RELATIONS

2.1 Pareto dominance
We present here first a basic formal model of

Pareto dominance (also called Pareto preference).
Later, we will show how Pareto dominance can be
generalized and extended.

Let A = {A1, ..., Ad} be a finite set of attributes
(a relation schema). The number d is the dimension
of Pareto dominance. Every attribute Ai ∈ A is
associated with an infinite domain DAi (here: real
numbers). We work with the universe of tuples U =

∏
Ai∈ADAi . A dominance (preference) relation is a

subset of U × U . Given a tuple t ∈ U , we denote
the value of its attribute Ai by t[Ai]. This notation
can be easily generalized to sets of attributes.

Every attribute Ai ∈ A is associated with one of
the standard orderings of the reals, > or <, denoted
by >Ai

. For simplicity, we assume in this paper that
>Ai is > (larger is better). The Pareto dominance
relation �pto is defined as

t �pto s ≡ t 6= s ∧
∧
Ai∈A

t[Ai] ≥Ai
s[Ai],

or, equivalently, as

t �pto s ≡
∨
Ai∈A

t[Ai] >Ai
s[Ai]

∧
∧
Ai∈A

t[Ai] ≥Ai s[Ai].

These are strict versions; there is also a non-strict
version obtained in the standard way:

t �pto s ≡
∧
Ai∈A

t[Ai] ≥Ai
s[Ai].

Strictly speaking, �pto denotes a different rela-
tion for different schemas A. In the cases where it is
necessary to disambiguate the set of attributes over
which dominance is defined, we will add an appro-
priate subscript. In practical applications, some re-
lation attributes may be irrelevant for Pareto dom-
inance: see the attribute id in Example 1.1. For
simplicity, we do not consider such attributes.

From an algebraic perspective, Pareto dominance
can be defined using a binary accumulation opera-
tor ⊗ (also called Pareto) combining the attribute
orders >Ai , i = 1, . . . , d:

�ptoA = >A1 ⊗ >A2 ⊗ · · ·⊗ >Ad

where �ptoAi
=>Ai

and �ptoXY =�ptoX ⊗ �ptoY is de-
fined as

t[XY ] �ptoXY s[XY ] ≡
t[X] �ptoX s[X] ∧ t[Y ] �ptoY s[Y ]

∨ t[X] �ptoX s[X] ∧ t[Y ] �ptoY s[Y ]

for XY ⊆ A and X ∩ Y = ∅.
Pareto accumulation is associative and commuta-

tive.

2.2 Properties
Representation. Clearly, �pto is irreflexive and
transitive. However, it is not negatively transitive
(its complement does not have to be transitive), and
thus �pto fails to be a weak order, as in the example
below:



(2, 0) 6�pto (0, 2), (0, 2) 6�pto (1, 0), (2, 0) �pto (1, 0).

The lack of the weak order property implies that
�pto cannot be represented using any scoring func-
tion. Formally, a scoring function f represents the
dominance relation �f such that

t �f s ≡ f(t) > f(s).

To show that �f is a weak order, suppose t �f s.
Then f(t) > f(s). So for every w, f(t) > f(w) or
f(w) > f(s), and thus t �f w or w �f s. Therefore,
t 6�f w and w 6�f s imply t 6�f s.
Robustness. One way of characterizing the ro-
bustness of �pto is through invariance with respect
to the transformations of the underlying space. A
function g is Pareto-invariant if for all tuples t and
s, t �pto s implies g(t) �pto g(s).

A useful related notion is that of monotonicity. A
function f mapping U into some Cartesian product
of domains V is monotone if for all tuples t and s,
t �pto s implies f(t) �pto f(s).

One can define special classes of monotone func-
tions, for example shifting (addition of a vector of
constants) and scaling (multiplication by a vector
of constants). Shifting is Pareto-invariant. Scal-
ing by an all-positive vector is also Pareto-invariant.
However, scaling by a vector that has a zero compo-
nent is not necessarily Pareto-invariant, as Example
2.1 shows. So monotonicity does not imply Pareto-
invariance.

Example 2.1. Consider the tuples t = (3, 1) and
s = (2, 1), and the scaling vector (c1, c2) = (0, 1).
Clearly, t �pto s but

(c1 · t[A1], c2 · t[A2]) 6�pto (c1 · s[A1], c2 · s[A2]).

3. SKYLINE QUERIES

3.1 Skyline using winnow
There is more than one way to incorporate the no-

tion of Pareto dominance into a relational query lan-
guage. We call all such queries Pareto queries. Ar-
guably, the simplest and the most widely used kind
of a Pareto query is the relational operator with
the meaning “Retrieve all the nondominated tuples
in the input relation.” We use the term winnow
for this operator, and the notation ω�(R) where �
is a dominance relation and R a database relation
schema [10]. Typically � is defined by a logic for-
mula. The semantics of winnow is as follows:

ω�(r) = {t ∈ r | ¬∃t′ ∈ r. t′ � t}

where r is an instance of R. A skyline query is
a special instance of winnow in which � is �pto,

and is written as skyA(R) (where A is the set of
all attributes of R). The result skyA(r) of a sky-
line query for an instance r of R is called a sky-
line: skyA(r) = ω�pto(r). The size of the skyline is
denoted by ` = |skyA(r)|. Intuitively, the Pareto-
dominated tuples are inferior and should not be of
interest to the user.

3.2 Maxima of scoring functions
As Theorem 3.1 below shows, a skyline consists of

the maxima of monotone scoring functions. Thus,
even if the scoring function is not known, the highest-
scoring tuple is guaranteed to be in the skyline.
This result was already mentioned in the original
skyline paper [8]. A proof appeared in the full ver-
sion of [13]. We present a different proof here.

Theorem 3.1.

∀r. ∀t ∈ r. t ∈ skyA(r) iff ∃f ∈M.

∀t′ ∈ r. t′ 6= t⇒ f(t) > f(t′),

where M is the set of all monotone scalar-valued
functions over U .

Proof. ⇐ Assume RHS holds and t /∈ skyA(r).
Then there is t′ 6= t such that t′ �pto t. By the
monotonicity of f , f(t′) ≥ f(t). A contradiction.
⇒ Assume t ∈ skyA(r). Without lack of general-

ity, we can assume all attribute values are strictly
positive: a simple shifting operation can make all
the tuples strictly positive; the composition of a
translation with a monotone function is again a
monotone function. It is easy to see that for ev-
ery t′ 6= t, there is an attribute Ai such that t[Ai] >
t′[Ai] (otherwise t would not be in the skyline). The
function f is defined for every t′ as

f(t′) = min
i
{ t
′[Ai]

t[Ai]
| i = 1, . . . , d}.

Thus f(t) = 1 and f(t′) < 1 for t′ 6= t. Also, f is
monotone.

3.3 Algebraic laws
Algebraic laws relating query operators serve as

a foundation of query optimization. Such laws can
be used as rewrite rules to produce different, pre-
sumably more efficient formulations of queries. One
of the basic insights of this field is that it is use-
ful to push low-cost, size-reducing operators like
relational algebra selection below high-cost, size-
increasing operators like join. Such a transforma-
tion usually reduces the size of intermediate query
results and the overall cost of evaluating the query.

The above intuition applies to skyline queries as
well. A skyline query (winnow) is a high-cost oper-
ation, so it pays to push a selection below it.



Theorem 3.2. [10] If for every t and s such that
t �pto s α(s) implies α(t), then for every relation
instance r

σα(skyA(r)) = skyA(σα(r)).

In Example 1.1, the selection σRank>80 commutes
with the skyline query but the queries σRank<80 and
σRank=80 do not.

Other algebraic laws involving skyline and more
general queries are studied in [10, 11, 26, 31].

3.4 Subspace skylines
In addition to the full-space skyline skyA(R), sub-

space skylines skyB(R) for B ⊂ A [17] are also con-
sidered in order to extract more information from
the input dataset. For example, subspace skylines
show which points excel in specific dimensions and
which have all-around strength.
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Figure 2: Subspace skylines

Example 3.1. We use the setting of Example 1.1.
In Figure 2, the two one-dimensional subspace sky-
lines are circled with ovals, and the two-dimensional
skyline elements are black. Interestingly, a subspace
skyline does not have to be contained in higher-di-
mensional skylines, unless no attribute values can
be shared by different objects [17].

Subspace skylines lead to new, interesting classes of
queries. The skyline membership query determines
the subspaces where a given object is in the sub-
space skyline. The skycube query returns the sky-
lines in all the nonempty subspaces.

3.5 Other query classes
It is remarkable that Pareto dominance, a single

kind of dominance relation, has been used to de-
fine many new classes of queries [41]. We briefly
survey some of those classes here. Constrained sky-
line queries are skyline queries applied to the result

of a selection. Ranked skyline queries are skyline
queries whose output is ranked using a scoring func-
tion. When the scoring function returns the number
of objects dominated by the given object, we have
enumerating queries; when only top-k objects are
returned, the queries are k-dominating. Finally, k-
skyband queries return the objects dominated by at
most k other objects. Clearly, skyline queries are
0-skyband.

4. SKYLINE ALGORITHMS
The skyline of a relation instance r with n tuples

and attributesA = {A1, ..., Ad} can be näıvely com-
puted in O(n2d) time, which is O(n2) if the relation
schema is fixed. The quadratic bound holds since
a standard nested-loops (NL) join algorithm, which
compares a tuple t to each other tuple s, clearly
suffices to determine if t ∈ skyA(r).

The NL algorithm always requires Θ(n2) time.
This is also the worst-case performance of any al-
gorithm that is applicable to arbitrary dominance
relations � and oblivious of the d-dimensional Eu-
clidean space in which the tuples lie (as NL indeed
is): If ∀t, s ∈ r it is the case that t 6� s and s 6� t,
thus ω�(r) = r, then all pairs of tuples will be com-
pared. Based on this observation, it can be argued
that there are (at least) two features that can be
used to escape the quadratic lower bound (or at
least to reduce costs on the average) and that NL
ignores: transitivity of the dominance relation and
the attribute orders >Ai

, i = 1, . . . , d. Further, it is
advisable to look at output-sensitive algorithms, for
which the performance depends on the skyline size,
since the case of small-to-medium skylines is the
most interesting one from a practical viewpoint.

In the following we provide a concise picture of
the major approaches adopting such ideas and oth-
ers as well. It is important to bear in mind that
the problem of computing the skyline is equivalent
to the maximal vectors problem studied in compu-
tational geometry, for which several algorithms are
known. Here we do not cover them in detail, both
for space reasons and for the absence of experimen-
tal validation on large databases.

4.1 Using transitivity
BNL. The BNL (block nested-loops) algorithm [8]
is a practical way of implementing the NL approach
in a database system. BNL allocates a buffer (win-
dow) W in main memory, and sequentially scans r.
For each newly read tuple t, it compares t to the
tuples in W . If ∃s ∈W.s �pto t, then t is discarded,
otherwise t is inserted into W and the tuples in W
dominated by t are removed. In case W saturates,



a temporary file F is used to store those tuples that
overflow. At the end of this process, all tuples that
were inserted in W when F was still empty can be
output. Another pass then starts in which F is used
as the input, and the process repeats until no over-
flow occurs.

Empirical evaluation of BNL shows its high de-
pendency on how the tuples are distributed, the
worst case being when they are negatively corre-
lated. BNL effectiveness also largely depends on
the order in which the tuples are processed and
on the window size. Indeed, for an unlimited win-
dow size, |W | ≥ n, BNL might still require Θ(n2)
time regardless of the skyline size. This can be
seen by considering the case in which tuples are or-
dered as 〈t1, t2, . . . , tn〉, tn �pto ti, i = 1, . . . , n − 1,
and no other dominance relationship exists (thus
skyA(r) = {tn}). At the other extreme, |W | = 1
guarantees that at most O(`n) comparisons will be
performed, where ` = |skyA(r)|. However the ac-
tual running time might be negatively influenced
by having a small window, since I/O costs will in-
crease. Notice that, although BNL has been empir-
ically analyzed and its performance contrasted to
that of several other algorithms, a complete under-
standing of this algorithm’s behavior is still lacking.
For instance, the scenario in which a large amount
of space in main memory is available and a small
window is used, with the rest of available memory
used to cache F , has not been considered yet.
SFS. The SFS (Sort-Filter-Skyline) algorithm [12,
13] is similar to BNL, but it first topologically sorts
r using a monotone function f . In the resulting
order 〈t1, t2, . . . , tn〉 it is therefore guaranteed that
i < j ⇒ tj 6�pto ti. This property leads to three
major improvements with respect to BNL: 1) SFS
is progressive, since t ∈ W implies t ∈ skyA(r),
and therefore t can be immediately output; 2) the
number of passes is optimal, d|`|/|W |e; and, 3) if
t and s are both dominated tuples, then they will
not be compared to each other. As a consequence of
3), SFS will not execute more than O(`n+ n log n)
comparisons (n log n being paid for sorting r).
LESS and SaLSa. There are two orthogonal di-
rections along which SFS can be improved, and
these yield the LESS and SaLSa algorithms, re-
spectively. The basic idea of LESS [23] is to an-
ticipate the dominance tests in the sorting phase,
so as to discard some dominated tuples earlier, and
consequently to reduce the sorting costs. SaLSa [4]
extends SFS by avoiding to read the whole sorted
input relation. Let 〈t1, t2, . . . , tn〉 be the order in
which tuples are read, with ti (i < n) being the last
fetched tuple. Since the function f used to sort tu-

ples is monotone, it is ∀j > i.f(ti) ≥ f(tj), thus all
unread tuples correspond to points in a bounded re-
gion BR. (This requires that the attribute domains
be bounded from below, which is always true if one
considers active domains.) Therefore, if there ex-
ists tj (j ≤ i) such that tj Pareto-dominates BR,
that is, ∀s ∈ BR.tj �pto s, then the algorithm can
be halted since no more tuples will enter the sky-
line. Theoretical analysis reveals an interesting fact
about the limiting capability of SaLSa.

Theorem 4.1. [4] Let m ≤ n be the number of
tuples that SaLSa reads. For any data distribution,
the expected value of m/n monotonically decreases
with n.

Remark: Although none of the described algo-
rithms can avoid a quadratic cost in the worst case
in which the skyline has size Θ(n), their average-
case behavior is indeed much better, as also con-
firmed by experimental observations and analytical
results. For instance, the analysis in [24] proves
that LESS has a linear, O(dn), complexity under
the assumptions of independence of attributes, uni-
form distribution, and low probability of duplicate
attribute values. A similar result is derived for
BNL with either unlimited (|W | ≥ n) or minimal
(|W | = 1) window size, whereas for SFS it is shown
that sorting is, in terms of average performance,
equivalent to reducing the skyline dimensionality by
one. Unfortunately, the simplifying assumptions on
which results like these are based rarely hold to-
gether in real databases.

4.2 Using attribute orders
Since attribute domains are totally ordered, it is

possible to partition them. This idea is at the heart
of divide & conquer approaches, which have been
pioneered in the computational geometry field. We
first detail (Algorithm 1) the basic scheme of Kung
et al. [33] and then discuss the D&C algorithm by
Börzsönyi et al. [8] that was developed for dealing
with large instances that do not fit in main memory.

After partitioning on 2 attributes Ai and Aj , the
sets SHi,Hj , SHi,Lj , SLi,Hj , and SLi,Lj are obtained,
with sets SHi,Lj

and SLi,Hj
that do not need to be

compared. This observation, together with a rather
sophisticated merging scheme, leads to the worst-
case subquadratic bound O(n logd−2 n) (d ≥ 3).
For d = 2, 3 this reduces to O(n log n), which meets
the theoretical lower bound established in [33].

The D&C algorithm shares with the above scheme
the idea of recursive partitioning, but at each step
it generates an m-way partition (rather than a 2-
way one as in [33]), where m is chosen so that each



Algorithm 1 Basic divide & conquer [33]

Input: instance r with schema A = {A1, . . . , Ad}
Output: skyA(r)
1: Partition r using the median mi of some at-

tribute Ai. Let SHi = {t ∈ r.ti ≥ mi} and
SLi

= r \ SHi
;

2: Compute skyA(SHi
) and skyA(SLi

) by recur-
sively applying step 1;

3: Merge skyA(SHi
) and skyA(SLi

), i.e., determine
TLi ⊆ skyA(SLi) s.t. skyA(r) = skyA(SHi)∪TLi .

of the resulting sets can be loaded in main mem-
ory. Although this makes D&C more amenable to
a database scenario, its simplified merging scheme
causes the worst-case complexity to rise back to
O(n2).

If one considers an external memory (EM) model,
in which CPU is free and the cost is measured in
terms of I/O operations, the currently best result is
due to Sheng and Tao [45]. By developing a smart
m-way merging technique, they are able to compute
the skyline with O(n/B logd−2M/B(n/B)) I/Os (d ≥
3), where B (M) is the number of tuples in each
disk block (main memory, respectively).
Remark: Although divide & conquer algorithms

typically exhibit a subquadratic worst-case complex-
ity, this does not imply their superiority over other
approaches in terms of actual running time, to which
many other factors contribute, for example the hid-
den constant factors in O() notation.

4.3 Low-cardinality domains
In many situations, some (or even all) attributes

of interest can only assume values from a limited
set of alternatives, i.e., domains have low cardinal-
ity. For instance, ratings of movies and hotels typ-
ically are integers in a small range, say [1, 5]. Also,
Boolean attributes are typically used to describe the
presence/absence of interesting object features.

Without loss of generality, we assume here that
each combination of skyline attribute values can oc-
cur multiple times and ∀Ai ∈ A.|D(Ai)| = V � n.
The LS-B algorithm [39] first builds the complete
lattice of all the V d value combinations ordered by
Pareto dominance, and marks all elements as not
present (np). It then sequentially reads the input
relation r, and for each tuple t it marks as present
(p) the corresponding lattice element. A simple
level-wise analysis of the lattice is executed to deter-
mine which are the p-values that are also nondom-
inated, and that consequently are in the skyline.
Finally, with a second scan of r all skyline tuples
are computed. (It is needed since tuples may have

other attributes besides those on which the skyline
is computed.) Overall, LS runs in O(dV d + dn)
time, which reduces to O(dn) if V = O(n1/d).

LS-B can also be adapted to work when (exactly)
one attribute, say Ad, has not a low-cardinality do-
main. The idea of the extended algorithm, called
LS, is to store in each lattice element also the lo-
cally optimal value (lov) of Ad for that element.
Since �ptoA =�ptoB ⊗ �ptoAd

, where B = A \ {Ad} and

�ptoAd
=>Ad

, for distinct tuples t and s it is:

t �ptoA s ≡ t[B] �B s[B] ∧ t[Ad] ≥Ad
s[Ad].

Consequently, a tuple s can be discarded if: (1)
there exists a lattice element marked p that dom-
inates the element of s and whose lov is at least
as high as s[Ad]; or (2) s[Ad] is strictly less than
the lov of its element (implying that ∃t.t[B] =
s[B] ∧ t[Ad] >Ad

s[Ad]). It is simple to show that
the complexity of LS is the same as that of LS-B.

Unfortunately, no simple extension to the general
case in which a mix of low- and high-cardinality do-
mains coexist seems to be possible. Indeed, if two
attributes have high cardinality, the local skyline
with respect to these attributes should be computed
for each lattice element, a fact that might nullify the
advantages of using a lattice-based approach.

4.4 Index-based approaches
As with any other query type, processing of sky-

line queries can be accelerated if the input data have
been indexed.

The BBS (Branch-and-Bound Skyline) algorithm
[40] assumes that r is indexed by an R-tree, for
which index regions are minimum bounding rect-
angles (MBRs), and that a target (reference) point
p is available. Without loss of generality, let p be
any point such that ∀t.p[Ai] ≥ t[Ai], i = 1, . . . , d,
so that the assumption larger is better still holds.

BBS performs an ordered scan of the index nodes
based on their L1 distance from p, i.e., for a node
N whose region is Reg(N) = [l1, h1]× . . .× [ld, hd],
it is L1(Reg(N), p) =

∑
i |p[Ai] − hi|. Notice that

for each point t ∈ Reg(N) it is guaranteed that
L1(Reg(N), p) ≤ L1(t, p). The region descriptions
of the nondominated index nodes that have not
been accessed yet, as well as the currently nondomi-
nated points retrieved so far, are organized together
in a priority queue PQ, which is kept ordered by
increasing values of L1 distances. Notice that a
point t Pareto-dominates a node N , t �pto N , if
∀i.t[Ai] ≥ hi. (If a bag semantics is assumed, then
at least one inequality needs to be strict.)

Since L1 (as well as any other Lp norm) is a mono-
tone function, as soon as a point t becomes the top



element of PQ it is guaranteed that t belongs to the
skyline. Thus, BBS is progressive. Monotonicity of
L1 is also the key to show that BBS is I/O-optimal,
that is, only the index nodes for which inspection
of the points they contain is necessary to ensure the
correctness of the result are accessed.

An index-based solution based on the Z-order,
which maps multidimensional points to a linear ad-
dress space, is introduced in [34]. The proposed 1-
dimensional index structure, called ZBtree, is based
on the B+-tree principles, in that each node region
is a 1-dimensional interval, i.e., a sequence of Z-
addresses, and intervals do not overlap. Peculiar to
the ZBtree is the policy according to which points
and region descriptions are packed together (in leaf
and non-leaf nodes, respectively), and which aims to
facilitate the pruning of some regions, thus avoiding
dominance tests.

4.5 Distribution and parallelism
Vertical fragmentation. Consider a scenario in
which the d skyline attributes are distributed over
multiple sites, each site thus providing only a partial
view of the alternatives under examination. In the
following we describe the basic case in which each
site stores a single skyline attribute (thus, there are
exactly d sites), the extension to arbitrary verti-
cal decompositions having been recently analyzed
in [48].

The BDS algorithm [3] is based on the frame-
work that Fagin pioneered for the processing of top-
k ranking queries [18, 19], and that since then has
been widely used for retrieving data from multi-
ple sources. According to Fagin’s framework there
are d sorted lists Li, i = 1, . . . , d, with the i-th list
ordered by non-increasing values of attribute Ai,
and all lists managing the same set of n objects
O1, . . . , On. A d-way 1-1 join on the object identi-
fiers then allows the instance r to be reconstructed.
Lists can be accessed either requesting the next el-
ement in the order (sorted access) or by providing
an identifier and requesting the associated attribute
value (random access). The basic steps of BDS are
summarized in Algorithm 2.

The condition that halts the first phase is based
on monotonicity (if an object O has not been seen
in any list, then it is ∀i.Os[Ai] ≥Ai O[Ai], thus
Os �pto O), and is already found in [8]. There,
the above algorithm is considered for computing the
skyline using d B+-trees, i.e., a different scenario
but with the same access model of BDS.

Example 4.1. Consider the example in Table 2,
in which there are d = 3 sorted lists and skyA(r) =
{O2, O7}. After retrieving the first 3 objects from

Algorithm 2 Basic distributed skyline algorithm

Input: instance r vertically partitioned in d sorted
list L1, . . . , Ld

Output: skyA(r)
1: Cyclically perform sorted accesses on the d lists

until (at least) one object, say Os, is retrieved
from all the lists;

2: For all objects O that have been fetched from
at least one list, perform random accesses to
retrieve the missing attribute values;

3: Perform the necessary dominance tests and re-
turn the nondominated objects.

each list BDS can halt, since all unseen objects, like
O1, are dominated by O2.

oid A1

O7 0.9
O3 0.6
O2 0.6
O1 0.5
O4 0.4

oid A2

O2 0.9
O3 0.7
O4 0.6
O1 0.5
O7 0.5

oid A3

O7 1.0
O2 0.8
O4 0.7
O3 0.7
O1 0.6

Table 2: A vertically-partitioned relation

The halt condition coincides with the one used
in the AO algorithm by Fagin [18] for computing
the top-1 object according to an arbitrary mono-
tone scoring function. In light of Theorem 3.1, this
should not be surprising at all. This fact also im-
plies that the analysis in [18] applies to skyline com-
putation, which with arbitrarily high probability,
and assuming attribute independence, will there-
fore require O(n1−1/d) accesses to the lists for any
fixed value of d.
Horizontal fragmentation. When a relation r is
horizontally fragmented over a cluster of P servers,
r = r1 ∪ . . . ∪ rP , the skyline can be computed by
exploiting the identity

skyA(r) = skyA(skyA(r1) ∪ . . . ∪ skyA(rp)),

i.e., by first computing the local skylines and then
merging the results, as the divide & conquer ap-
proaches described in Section 4.2 do. As argued
in [1], this simple scheme has the drawback of re-
quiring logP communication steps, i.e., its synchro-
nization complexity is high and might easily become
the main performance bottleneck. The (first) algo-
rithm described in [1] requires only 2 communica-
tion steps and is also perfectly load-balanced, in
that each server has maximum load O(dn/P ).

The algorithm starts from an arbitrary data al-
location, in which each server s manages a local



fragment rs of n/P tuples. In the initial prepro-
cessing phase the servers cooperate to build a grid
of P d cells, which requires a total of dP (P + 1) val-
ues (partition points) to be transmitted over the
network (note that this is independent of n). A
key property of the multidimensional grid, in which
each coordinate is partitioned into P buckets, is
that each bucket is guaranteed to contain O(n/P )
points. Assuming J is the set of nonempty cells, the
preprocessing phase also includes the broadcast of
which cells are in J (there are P d+1 values overall).
Knowing J immediately allows the points within
cells that are strictly dominated by some other cell
in J to be discarded, where cell C strictly dominates
cell D if on each coordinate C has a value strictly
better than D. All cells in J that are not strictly
dominated form the so-called relaxed skyline of r,
Sr(J), and they are guaranteed to contain all the
points in skyA(r).

If C is a cell in the relaxed skyline, and t ∈ C,
then t can only be dominated by points in the cells
of Sr(J) that dominate C. A key observation is that
these are exactly those cells D that share with C at
least one coordinate value (thus, on at least one di-
mension they belong to the same bucket), and have
better values in the other coordinates. Based on
this observation, it is derived that the total number
of points that can dominate any point t in a cell
C is O(dn/P ) = O(n/P ), i.e., an amount of data
that could be processed by a single server. However,
since the number of cells in the relaxed skyline can
be in the order of O(P d−1), it is unfeasible to look
for skyline points on a cell-by-cell basis.

The first step of the algorithm in [1] assigns to
each server s the task of computing the local sky-
lines skyA(ri,s), i = 1, . . . , d, where ri,s = {t ∈ r|t ∈
C = (C1, . . . , Cd) ∧ C ∈ Sr(J) ∧ Ci = s} is the set
of points mapped to those cells C of the relaxed
skyline that on the i-th coordinate fall in bucket s.
The identity

r1 ∩ r2 ∩ skyA(r1 ∪ r2) = skyA(r1) ∩ skyA(r2)

is then used to compute the result, the intuition
being that if t ∈ C, then t ∈ skyA(r) iff it is in the
local skylines skyA(ri,Ci

), i = 1, . . . , d. The second
step of the algorithm computes such intersections
using a randomized load-balanced algorithm.

4.6 Further approaches
Several other algorithms have been developed for

computing the skyline in distributed environments.
In particular, both structured and unstructured peer-
to-peer networks have been considered and specific
techniques for processing skyline queries in such sce-
narios have been developed. A recent survey [27]

enters into the details of these approaches.

5. SKYLINE CARDINALITY

5.1 Average skyline size
Estimating the expected skyline size for a given

data distribution is a key issue for the design of
good cost models for skyline queries. The problem
has been addressed in several papers [7, 9, 22]; here
we report some major results.

Denote by `d,n the expected size of the skyline
for a randomly sampled dataset of n points in d
dimensions. Under the assumption that (i) all the
attributes are statistically independent of each oth-
ers, and (ii) the probability of sampling the same
attribute value twice is negligible, the following re-
currence holds:

`d,n = `d,n−1 +
1

n
· `d−1,n (1)

where the base case is `d,1 = 1.
If we assume that any two different tuples in r can-
not share the same value for the same attribute (i.e.,
no two tuples can be projected to a single point, in
any dimension), then the skyline of r is fully deter-
mined by the order in which tuples appear in each
possible projection over a skyline attribute, and so
is the skyline size. Without lack of generality we can
substitute each attribute value with its rank, as de-
termined by the corresponding projection. There-
fore, a random relation instance r that respects the
conditions (i) and (ii) can be seen as a set of d sta-
tistically independent random orders. For any r we
know there is exactly one tuple having the worst
rank w.r.t. the first attribute A1. Denote by t∗ this
tuple. Since t∗ cannot dominate any other tuple in
r, `d,n is given by the expected number of skyline
points in r − {t∗} (i.e., `d,n−1) plus the probability
that t∗ is a skyline point itself. In order to be non-
dominated in r, t∗ needs to be a skyline point w.r.t.
attributes in A − {A1}. The expected number of
such skyline points is `d−1,n, and every tuple in r
has the same probability of being one of those.

[7] showed that `d,n is O((lnn)d−1); later [9] pro-
vided the closed form

`d,n =

n∑
k=1

(−1)k+1 ·
(
n

k

)
1

kd−1
(2)

and proved the tighter bound Θ((lnn)d−1/(d−1)!).
When the assumption (ii) above is dropped, i.e.,

the same attribute value can appear multiple times
in r, the analysis becomes more complex and leads
to some unexpected results [22]. A first observation
is that the distribution of values over their domains



now matters, with deviations from the uniform case
that lead to reducing the skyline size. A second phe-
nomenon can be observed when values are binned
and all values within the same bin are considered to
be equal when testing dominance (which is equiva-
lent to changing the size of the attribute domains).
If t �pto s before binning, then reducing the domain
size can lead to t 6�pto s only if the two tuples come
to share the same bin on all the coordinates, i.e.,
they become equal on all skyline attributes. On the
other hand, if t 6�pto s before binning, it is possible
to have t �pto s (or s �pto t) if t and s fall in the
same bin on all the coordinates in which t (s, re-
spectively) was worse. The larger is the number of
dimensions d, the more the second effect will pre-
vail over the first, unless the number of bins is very
small. Thus, limiting the size of attributes’ domains
generally reduces the skyline size (since more tuples
will be dominated).
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Figure 3: Diverse skyline. Most representative
items are depicted as squares; ovals pair each sky-
line point with the closest representative item.

5.2 Representative skylines
As can be seen from the earlier discussion, sky-

lines can be very large. In the worst case, a skyline
can be as big as its originating dataset; in the av-
erage case, the size of the skyline grows with the
number of its dimensions. There are several situ-
ations where dealing with a huge skyline may be
impractical: the users may not be able or willing to
browse through thousands of tuples; also, the time
spent delivering the results may adversely affect the
general user experience. Furthermore, a large sky-
line hardly provides any help to a user making a
decision. Hence, in many real-life applications, we
would like to return only a limited number κ of re-
sults that are representative of the whole skyline.
Diverse skylines. The problem of identifying the
κ most representative items of the skyline has been

addressed in several papers. Tao et al. [46] propose
to model it as the κ-center problem: they suggest to
select representative items by minimizing the rep-
resentation error, i.e. the maximum Euclidean dis-
tance between a skyline point and its closest repre-
sentative. The subset of points obtained this way is
called a diverse skyline. Even if computing a diverse
skyline with more than two dimensions is NP-hard,
a simple greedy algorithm, like the one proposed by
Gonzalez [25], can provide a 2-approximate solution
in O(κ · |skyA|). By using the Euclidean distance as
a metric for measuring the similarity between sky-
line points, this approach implicitly assumes that
all dimensions are equally important (for example:
one unit of financial support is as important as one
unit in the universities ranking scale). As a con-
sequence, diverse skylines are not invariant w.r.t.
scaling. Figure 3 shows the κ = 3 most represen-
tative items from the School relation of Example
1.1.
Top-κ RSP. An alternative approach is proposed
by Lin et al. [36]: a set of κ representative items is
selected in order to maximize the number of data
points that are dominated by at least one of them.
That is, we want to select the κ elements of the
skyline that together cover the largest part of the
dataset. The computation of top-κ representative
skyline points (top-κ RSP) is NP-hard even in three
dimensions; nevertheless, it can be easily translated
into the maximum coverage problem and an (1− 1

e )-
approximate solution can be obtained by applying
the corresponding greedy algorithm. Top-κ RSP
are invariant w.r.t. scaling and shifting operations,
but they strongly depend on the points that are not
part of the skyline.
Threshold-based preferences. Das Sarma et al.
[43] exploit additional user preferences for selecting
the most representative skyline points. They as-
sume each user expresses her willingness to click on
a particular result using threshold constraints; they
also propose a probabilistic framework for modeling
these preferences. In the simple case of determin-
istic preferences, a threshold can be represented as
a point in the data space: for example, a student
may be interested only in those universities that are
in the 80th percentile and offer at least 20k dollars
of financial support. It is easy to see that a skyline
point satisfies a threshold if it dominates the corre-
sponding point. Therefore, selecting κ skyline items
that maximize the number of thresholds covered is a
problem very similar to computing top-κ RSP. The
same properties for invariance and complexity hold
for both the approaches.



6. BEYOND PARETO DOMINANCE

6.1 Generalizations
The concept of Pareto dominance is quite restric-

tive. Presumably, users would like to have a richer
language for formulating their preferences. Also,
generalizing Pareto dominance should yield stronger
dominance relations, and thus, fewer nondominated
tuples and smaller query results. Below, we describe
several such generalizations [41].
Grouped dominance. This variant of Pareto dom-
inance requires that subspace dominance with re-
spect to a set of attributes X1 be applied only to the
tuples with identical values in a set of attributes X2,
disjoint from X1. This achieves the effect of group-
ing the tuples by X2. Dominance and skylines are
defined group-by-group.
k-dominance. Another variant of subspace domi-
nance does not fix the subspace but rather consid-
ers all subspaces with cardinality k (usually k < d).
For k-dominance of a tuple t over another tuple s
it is sufficient that t[Aj1 · · ·Ajk ] Pareto-dominates
s[Aj1 · · ·Ajk ] over some attributes Aj1 · · ·Ajk . This
concept of dominance is especially suited to appli-
cations with a very large number of dimensions, as
in recommender systems (each user is a separate
dimension). There, Pareto dominance (over all at-
tributes) may occur rarely, while dominance over
only some k attributes may be more common and
thus more useful.
p-dominance [31, 38]. The notion of p-dominance
(where “p” stands for “prioritized”) builds on the
algebraic definition of Pareto dominance. A differ-
ent binary accumulation operator, &, is proposed.
It is supposed to capture the relative importance of
different attributes. p-dominance relations can now
be defined using an arbitrary nesting of ⊗ and &.
Let �X (resp. �Y ) be a p-dominance relation over
a set of attributes X (resp. Y ). Then their prior-
itized accumulation �prXY = (�X & �Y ) is defined
as

t[XY ] �prXY s[XY ] ≡ t[X] �X s[X]
∨ t[X] = s[X] ∧ t[Y ] �Y s[Y ]

for XY ⊆ A and X ∩ Y = ∅. Note that

�prA = >A1
& >A2

& · · ·& >Ad

is a lexicographic order over U .
Properties. Clearly, subspace dominance, grou-
ped dominance and p-dominance are irreflexive and
transitive. However, k-dominance, being also ir-
reflexive, is not transitive in general.

Example 6.1. Assuming larger values are bet-
ter, the tuple t1 = (1, 2) 1-dominates the tuple t2 =

(2, 1), which in turn 1-dominates t3 = (1, 3). How-
ever, t1 does not 1-dominate t3.

6.2 Dominance in other spaces
Pareto dominance is often used to define domi-

nance in a different space. We consider here dy-
namic and aggregate skyline queries.
Dynamic skyline queries [41]. Assume there
are m functions f1, . . . , fm, each defined over some
subset of A. We can construct a transformed tuple
f(t) = (f1(t), . . . fm(t)) for every tuple t. Now t
dominates s if f(t) Pareto-dominates f(s). A com-
mon application involves functions capturing the 2D
distance of a moving point from some fixed loca-
tions: a point x dominates another point y if for
every given location z, x is not farther from z than
y is.
Aggregate skyline queries. Tuples of function
values (profiles) provide also a succinct way to rep-
resent aggregate properties of sets, e.g. cardinal-
ity or minimum value. The functions map sets to
scalar values. The space of sets may consist of all k-
element subsets of a given set of tuples [28, 35, 52],
or all the tuple groups in a set of tuples [2]. Now
a set T dominates another set S if the profile of T
Pareto-dominates the profile of S. This approach
to set dominance can be generalized to arbitrary
dominance relations [52].

7. FURTHER DIRECTIONS

7.1 Skylines for uncertain data
Generalizations of the concepts of Pareto domi-

nance and skyline to the case of uncertain databases
have recently been attempted according to three dif-
ferent approaches, which we briefly describe here.
Common to all of them is the underlying model of
uncertainty, based on probabilistic tuples and possi-
ble world semantics. In short, each tuple t ∈ r has
an associated existence probability, p(t), and cor-
relations among tuples are captured by a set G of
generation rules. The probabilistic relation r is seen
as representing a set of standard relations, each of
them termed a possible world. A possible world W
is a subset of tuples from r, that respect all the gen-
eration rules in G, and its probability Pr(W ) is the
probability that all and only the tuples in W indeed
exist.

Both [42] and [50] view r as representing a set of
uncertain objects, O1, . . . , Om, and for each object
Oi there is a mutual exclusion rule Gi ∈ G stating
which are the tuples representing Oi’s distribution.
Given a possible world W and a tuple t ∈ W , one
can determine whether t ∈ skyA(W ) or not. Con-



sequently, [42] defines the skyline probability of t as

Prsky(t) =
∑
W :t∈skyA(W ) Pr(W ),

and that of an object O as the sum of the probabil-
ities of its tuples, Prsky(O) =

∑
tj∈O Prsky(tj). The

p-skyline of r, where p is a threshold probability, is
the set of objects O such that Prsky(O) ≥ p. This
approach has also been adopted by [6] in the con-
text of recommender systems based on collaborative
filtering.

The approach of [50] is based on the concept of
usual stochastic order: given two random variables
O1 and O2, O1 stochastically dominates O2 if for
each point x in the domain of definition, the cumu-
lative distribution of O1 at x, O1.cdf(x), satisfies
O1.cdf(x) ≥ O2.cdf(x), with strict inequality for at
least one x. In the multidimensional case and dis-
crete distributions, the cumulative distribution of
object O at point x is the sum of probabilities of
the instances (i.e., tuples) of O that dominate x (or
coincide with it). [50] also describes an alternative
approach based on the lower orthant order.

Finally, [5] introduces the concept of P-domination,
i.e., domination among probabilistic tuples, and con-
sequently defines the skyline of a probabilistic rela-
tion r as the set of those tuples that are not P-
dominated. The idea builds on works dealing with
the ranking of probabilistic tuples for answering
top-k queries, e.g., [51]. There, one considers that
the tuples are ordered by a monotone scoring func-
tion f and a specific ranking semantics is adopted
to properly combine scores and probabilities. For a
given ranking semantics (that is a parameter for P-
domination) one stipulates that t P-dominates s if t
is ranked not worse than s whatever the monotone
scoring function f is.

7.2 Elicitation
A skyline query requires minimal user input: a

designation of the skyline space A and the associ-
ated attribute domains. The orderings associated
with the attributes are standard. If a user pro-
vides more information, however, it is possible to
construct queries that more completely reflect her
intentions.

[29] propose to use superior and inferior exam-
ples to determine missing attribute orderings in an
incomplete Pareto dominance specification. The su-
perior examples POS are the tuples that have to be
in the skyline, and the inferior examples NEG, those
that should not be in the skyline because of being
dominated by a skyline element. The authors show
that determining the existence of a strict partial
order (resp. minimal strict partial order) on an at-

tribute domain that satisfies the above POS/NEG
conditions is NP-complete (resp. NP-hard). They
provide greedy heuristic algorithms, without any
guarantees on their performance.

[38] also use superior and inferior examples, but
for a different purpose. Assuming that attribute
orderings are given, their approach seeks to find
a maximal p-dominance relation that satisfies the
above POS/NEG conditions. They show that the
associated existence problem is NP-complete but
becomes polynomial if only superior examples are
given.

It remains to be seen if richer forms of user input,
for example dominance relationships (does tuple t
dominate tuple s?), could be used for eliciting com-
plete specification of dominance relations. This is
a problem similar to learning orders from examples
[14].

8. CONCLUSIONS
We believe that skyline queries provide a useful,

practical, and flexible query framework for decision-
making applications dealing with large amounts of
data. In this paper, we have tried to showcase some
of the many technical results obtained in this area.
Clearly, many further research opportunities still
exist or remain to be identified. For example, the
connections to decision theory largely remain to be
explored. Although it was not the main focus of the
paper, skyline queries are a specific yet important
case of preference queries, on which a large body of
interdisciplinary literature exists [10, 20, 30, 31].

Among the many topics that we were unable to
cover here are reverse skylines [15], skylines over
joins [49], stream skylines [47], spatial skylines over
moving objects [44], skylines with trade-offs [37],
approximate skylines [32], and skylines in metric
spaces [21]. Together with the topics discussed in
this paper, they bear witness to the continuing vi-
tality of the research on skyline queries.
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