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Abstract. We investigate the problem of querying (regular) sets of
XML documents represented with tree automata and we consider n-ary
tree automata queries whose expressive power captures MSO on trees.
Because finite automata can represent infinite sets of documents, we pro-
pose the notions of universal and existential query answers, answers that
are present resp. in all and some documents. We study complexity of
query answering and show that computing existential query answers is
in PTIME if we assume the arity of the query to be a fixed parameter.
On the other hand, computing universal query answers is EXPTIME-
complete, but we show that it is in PTIME if we assume that the query
is fixed (data complexity). Finally, we argue that the framework cap-
tures problems central to many novel XML applications like querying
inconsistent XML documents. In particular, we demonstrate how to use
our framework to compute consistent query answers in XML documents
that do not satisfy the schema. This solution significantly extends our
previous results in this area.

1 Introduction

In this paper we investigate the problem of querying potentially large sets of
XML documents having a small compact representation by a finite tree automa-
ton. Our work is inspired by the problem of evaluating a query in a document
that possibly does not satisfy the schema. Since the satisfaction of the schema is
usually assumed during formulation of a query, evaluation of the query against
a document that does not satisfy the schema may yield incorrect and misleading
answers. This problem has been previously recognized in the setting of relational
databases [3] and the proposed framework of repairs and consistent query an-
swers (CQA) has been adapted to semi-structured databases [18, 10, 11]. A repair
is a document satisfying the schema and obtained from the original document
by a minimal number of standard edit operations [1, 5]: inserting, deleting, and
modifying an element of the document. An answer is consistent (also called valid)
if it is an answer to the query in every repair.

Our research shows that the set of repairs of a document is a regular lan-
guage that has a compact representation by a finite (weighted) tree automata.
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This reduces the problem of querying the set of repairs to a more general prob-
lem of querying a regular set of documents represented by a tree automaton.
Because the set of documents represented by an automaton can be very large,
an approach where we return the collection of the sets of answers in every tree
may be simply inappropriate for many applications. Consequently, we propose
two ways of computing answers to queries in sets of documents: (i) universal
answers that are present in every document and (ii) existential answers that are
present in some document. Obviously, universal answers capture consistent an-
swers. We also note that the existential answers capture the notion of possible
answers, i.e. the answers that are present in some repair [10], often considered
next to consistent answers in the framework of CQA. Another motivation to
study the problem of querying regular sets of documents is that there are other
frameworks where the queries are evaluated not on the instance itself but rather
on the set of instances obtained by some (often nondeterministic) process from
the original one. An example is XML data exchange [4]: the queries are formu-
lated against target schema whose instances (called solutions) are obtained from
a source instance with a set of source-to-target dependencies specifying how the
parts of the source instance translate to an instance in target schema. In the
data exchange scenario, the notion of universal and existential answers coincide
resp. with certain and maybe answers [15]. It is, however, yet to be seen if the
set of solutions can be represented by a tree automaton.

Now, we briefly summarize our contributions:

– We define the problem of universal and existential querying of sets of docu-
ments represented by a finite tree automaton with attribute values and we
consider n-ary queries expressed with tree automata.

– We thoroughly study the complexity of computing existential and universal
answer. For computing existential answers, we show that its combined com-
plexity is NP-complete, but its complexity parametrized by the arity of the
query is FPT (Fixed Parameter Tractable) [9]. This result is not surprising
as the number of answers to an n-ary query can be exponential in n. Com-
puting universal answers is, however, EXPTIME-complete in terms of both
the combined and parametric complexity. On the other hand we show that
its data-complexity is PTIME.

– We show how to compute consistent query answers by constructing a repair
automaton that defines the set of all repairs of a document w.r.t. a schema
(expressed with a tree automaton). This extends our previous results [18, 17]
in several directions: (i) we consider n-ary automata queries whose expressive
power captures MSO as compared to a restricted class of unary Core XPath
queries, (ii) schema can be expressed using tree automata which are strictly
more expressive than DTDs, (iii) we show that data complexity of computing
consistent answer to any n-ary automata query is PTIME, (iv) we consider
a more general set of editing tree operations that allow to operate on inner
nodes as compared to operations on leaves only.



Related work [10] investigates querying XML documents that are valid but
violate functional dependencies. Two repairing actions are considered: updating
element values with a null value and marking nodes as unreliable. Such nodes
are simply omitted in the query answers. Only simple descending path queries
a1/a2/ . . . /an are considered. A polynomial algorithm for computing consistent
and possible answers is presented. [11] considers editing operations operating on
leaves only to define the set of repairs for consistent querying of documents that
violate functional dependencies. A different, set-theoretic, notion of minimality
is used when defining repairs. Both consistent and possible answers are consid-
ered. For restricted classes of functional dependencies and DTDs a polynomial
algorithm is proposed to compute consistent answers to n-ary conjunctions of
path expressions.

[12] considers evaluation of monadic Datalog queries on compressed trees
(represented by a tree automaton) and shows that combined complexity is PSPACE-
complete and data complexity is PTIME. We note that this framework is close to
existential querying: a (finite) set of trees can be gathered in one tree with a new
root symbol. The difference between the complexity results (for unary queries
we have polynomial algorithm in terms of combined and data complexity) comes
from different representations of queries. [16] extends this approach to trees rep-
resented by straight-line context-free grammars which is strictly stronger than
regular languages.

[21] study the problem of checking if a document is within a specified align-
ment distance to the given schema. We note that the edit distance is more general
than the alignment distance which imposes certain conditions on the sequence of
editing operations [6] and hence our approach is more general. A compact repre-
sentation of all repairs (obtained with restricted sequences of editing operations)
as a regular language is also presented.

The paper is organized as follows. Section 2 contains basic XML notions and
streaming tree automata. In Section 3 we define existential and universal answers
to n-ary queries and present algorithm for computing them. In Section 4 we study
computational implications of our framework. Section 5 shows how to use our
framework to compute consistent query answers. Because of space limitations
the proofs are omitted; they can be found in the appendix available at [19].

2 Basic notions

2.1 Trees and streams

We model XML documents using ordered unranked trees whose nodes are labeled
with elements of a finite set of symbols Σ. Every node is additionally labeled
with an attribute whose value is drawn from an infinite set Λ. We denote the set
of all trees by T . The size of t, denoted by |t|, is the number of nodes of t.

In our framework only the attribute values are used to define query answers.
The attributes of a tree can store unique node identifiers and we call such trees



standard. In general, however, the attribute can store (possibly repeated) data
values.

In this paper we work mainly with the serialized version of trees, i.e. well-
formed sequences of opening and closing tags (corresponding to a preorder
traversal of the tree) with attribute values associated to the opening tags. The
set of all tags is Σ♦ = {〈a〉|a ∈ Σ} ∪ {〈/a〉|a ∈ Σ}. When working with a serial-
ized version of a tree e1, . . . , en we write tag(ei) for the tag of ei and att(ei) for
the attribute value of ei. Given a tree t its serialized version is denoted by t̄. We

cl0

al1 bl2 al3 bl4 al5

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12

tag 〈c〉 〈a〉 〈/a〉 〈b〉 〈/b〉 〈a〉 〈/a〉 〈b〉 〈/b〉 〈a〉 〈/a〉 〈/c〉
att l0 l1 – l2 – l3 – l4 – l5 – –

Fig. 1. An example of a tree t0 and the corresponding tag sequence

use also unranked terms over the signature Σ × Λ to represent trees. Figure 1
contains an example of a tree t0 = cl0(al1 , bl2 , al3 , bl4 , al5) and its serialization.

2.2 Streaming tree automata

To capture regular tree languages we use streaming tree automata [13] which
are Visibly Pushdown Automata [2] working on serializations of unranked trees.
They are allow to capture Extended DTDs [14] which makes them equivalent
to standard (ranked) tree automata working on encodings of unranked trees [8].
We choose this model because it is better fitted to capture repairs of XML
documents: repairs are obtained by edit operations on nodes and those easily
translate to string edit operations on pairs of matching tags. We also extend
this model by allowing it to specify attribute values: this way the repairs can be
defined in terms of the attribute values of the original document. For simplicity
of presentation we fix the set of attribute values Λ.

Definition 1. An attributed streaming tree automaton (attributed STA) is a
tuple M = (Σ,ΓM , QM , IM ,∆M , FM ), where Σ is a finite set of node labels,
ΓM is a finite set of stack symbols, QM is a finite set of states, and IM ⊆ QM

is the set of initial states, FM ⊆ QM is the set of final states. ∆M is a finite
set of transitions of one of the following types: opening transition p

〈a〉:γ−−−→
l

q, and

closing transition p
〈/a〉:γ−−−−→q, where p, q ∈ QM , a ∈ Σ, γ ∈ ΓM , and l ∈ Λ ∪ {∗}

(∗ is a wildcard).

The size of M is |M | = |QM |+ |∆M | and by Dom(M) ⊆ Λ∪ {∗} we denote the
set of different attribute labels used in ∆M .

Essentially, an attributed STA is a push-down automaton working on se-
quences of tags with the stack manipulation restricted to: placing a symbol on



the stack when reading an opening tag, and removing top symbol from the stack
when reading a closing tag. A configuration is an tuple (q, ᾱ, s̄), where q is the
current state, ᾱ is the current stack, and s̄ is the remaining (possibly unbalanced)
tag sequence. The move relation →M is a binary relation on configurations de-
fined as follows:

(i) (q, ᾱ, e · s̄) →M (p, γ · ᾱ, s̄) if q
〈a〉:γ−−−→

l
p ∈ ∆M , tag(e) = 〈a〉, and if l 6= ∗,

then att(e) = l .

(ii) (q, γ · ᾱ, e · s̄) →M (p, ᾱ, s̄) if q
〈/a〉:γ−−−−→ p ∈ ∆M and tag(e) = 〈/a〉.

→∗
M is the reflexive and transitive closure of →M . The tree language of M is

defined as L(M) = {t | (q, ε, t̄) →∗
M (p, ε, ε), q ∈ IM , p ∈ FM}.

An STA is an attributed STA that imposes no restrictions on the attribute
values, i.e. it uses only ∗. Then, we also omit the attribute labels altogether.
Figure 2 contains an example of an STA M0 that recognizes trees with root
label c satisfying the DTD D0 given by the rules: c → (a · b)∗ · a, a → ε, b → ε.
We observe that the tree t0 (Fig. 1) satisfies M0.

q0 q1 q2 q3 q4 q5

〈c〉 : γ0 〈a〉 : γ1

〈/a〉 : γ1

〈b〉 : γ2

〈/b〉 : γ2

〈/c〉 : γ0

Fig. 2. The STA M0 for the DTD D0

Weighted STAs To represent the sets of minimal repairs we further extend
attributed STAs by assigning to every transition its weight, a non-negative real
value. The weights are used to restrict the set of recognized trees to those with
a run of minimal summary weight.

More formally, a weight of a run is the sum the weights of the transition used
at each step. For a tree (with an accepting run) we associate the minimal weight
of its accepting run. L(M) contains only the trees that whose weight is equal to
the minimum of weights of all trees (with an accepting run).

2.3 STA queries

We define an n-ary query as a function that takes a tree and returns a set of
n-ary tuples of values from Λ (that are used in the tree).

To define an n-ary query we use an extension of (standard) STAs where with
every opening transition we associate a set of variables X ⊆ {x1, . . . , xn} that



indicates the positions of the resulting tuple (x1, . . . , xn) that are to be filled
when the transition is used in a run (the positions are filled with the attribute
value). Each position of the resulting tuple has to be filled exactly once during a
run, otherwise the run is non-accepting. The set of query answers consists of all
tuples obtained from all accepting runs. We use name STA queries to refer to
such automata and to distinguish them from STAs we use Greek capital letters
Φ, Ψ, . . .. We also put the sets X in the superscript of the opening transitions.
Figure 3 contains an STA query Φ selecting pairs (x1, x2) of any node a and its
immediate right sibling b (satisfaction of DTD D0 is assumed). On the tree t0

q0 q1 q2 q3 q4

Σ♦ : γ0

〈a〉 : γ1

{x1}

〈/a〉 : γ1 〈b〉 : γ2

{x2}

〈/b〉 : γ2

Σ♦ : γ0

Fig. 3. An example of a binary STA query

(Fig. 1) this query has two answers: (l1, l2) and (l3, l4).
We define query answers formally as follows. A configuration of an n-ary

STA query Φ is an element (q, ᾱ, s̄, τ), where q, ᾱ, and t̄ are as before, and
τ ∈ (Λ ∪ {⊥})n is the tuple of values assigned so far, with ⊥ (the null value)
indicating that the value has not been yet assigned. We define the move relation
analogously:

(i) (q, ᾱ, e · s̄, τ) →Φ (p, γ · ᾱ, s̄, τ ′) if q
〈a〉:γ−−−→ p ∈ ∆Φ, tag(e) = 〈a〉, τi = ⊥ for

every xi ∈ X, and τ ′ = τ [X/att(e)],

(ii) (q, γ · ᾱ, e · s̄, τ) →Φ (p, ᾱ, s̄, τ) if q
〈/a〉:γ−−−−→ p ∈ ∆Φ and tag(e) = 〈/a〉.

Again, →∗
Φ is the reflexive and transitive closure of →Φ. The set of answers

to an n-ary STA query Φ in t is QA(Φ, t) = {τ ∈ Λn|(q, ε, t̄, (⊥, . . . ,⊥)) →∗
Φ

(p, ε, ε, τ), p ∈ IΦ, q ∈ FΦ}.
It is known [13] that over standard trees n-ary STA queries have the same

expressive power as MSO formulas with n free variables over the first-child,
next-sibling signature of unranked trees In particular, STA queries subsume
unary CoreXPath queries. It should be noted, however, that similarly translating
an MSO formulas may yield a automata of non-elementary size [20, 13]. This
generally applies also to CoreXPath queries, but it can be easily seen that simple
descending XPath queries with no test expressions translate to STA queries of
linear size.

3 Existential and universal querying of attributed STAs

Now, we consider querying sets of trees defined by attributed STAs. First, we
note that the set of trees defined by an attributed STA may be infinite and



even if the STA is weighted, the number of trees may be exponential in the size
of the automaton (modulo different attribute values). Therefore, an approach
where we return the collection of the sets of answers obtained in every tree may
be inappropriate for many applications. Consequently, we propose two ways of
querying sets of trees.

Definition 2 (Universal and existential answers). Given a (possibly weighted)
attributed STA M such that L(M) 6= ∅ and n-ary STA query Φ

– the universal answers to Φ in M are QA∀(Φ,M) =
⋂

t∈L(M) QA(Φ, t),
– the existential answers to Φ in M are QA∃(Φ,M) =

⋃
t∈L(M) QA(Φ, t).

We note that the language defined by a weighted automaton is empty if and
only if the corresponding automaton without weights defines an empty language.
Emptiness of an attributed STA can be tested in cubic time using the classical
algorithm for PDAs. Because our algorithms have complexity of a higher de-
gree, from now on we will assume that we always deal with automata defining
nonempty language. Also, the set QA∀(Φ,M) is always finite, but QA∃(Φ,M)
may be infinite if M uses wildcards. Hence, we also allow to use wildcards in
answers to finitely represent QA∃.

Now, we present Algorithm 1 computing existential answers to an n-ary query
Φ in an attributed STA M . This algorithm is is based on a product technique

Algorithm 1 Computing existential answers to n-ary Φ in M

function QA∃(Φ,M)
macros: Q :≡ QΦ ×QM , I :≡ IΦ × IM , F :≡ FΦ × FM

(p1, q1)
x:(γ1,γ2)−−−−−−→

X:=l
(p2, q2) :≡ p1

x:γ1−−−→
X

p2 ∈ ∆Φ ∧ q1
x:γ2−−−→

l
q2 ∈ ∆M ,

1: for (u, v) ∈ Q2 do

2: T0[u, v] =

(
{(⊥, . . . ,⊥)}, if u = v,

∅, otherwise.

3: for i← 1, . . . , n|Q|2 do
4: for (u, v) ∈ Q2 do
5: Hi[u, v] = Ti−1[u, v]
6: for j ← 1, . . . , dlog(n|Q|2)e do
7: for (u, v) ∈ Q2 do
8: Hi[u, v]← Hi[u, v] ∪

S
{merge(Hi[u, w], Hi[w, v])|w ∈ Q}

9: for (u, v) ∈ Q2 do

10: Ti[u, v]← Ti−1[u, v] ∪
S
{assignX(Hi[u

′, v′], l)|u 〈a〉:γ−−−→
X:=l

u′ ∧ v′
〈/a〉:γ−−−−→ v}

11: return {τ ∈ (Λ ∪ {∗})n|τ ∈ Tn|Q|2 [u, v] ∧ u ∈ I ∧ v ∈ F}
end function

of the two input automata. Essentially, it evaluates the query on every tree of
height and width ≤ n|Q|2, where Q = QΦ ×QM . This procedure yields correct
results thanks to pumping properties of STAs. In particular, if there is a tree



t ∈ L(M) and tuple τ ∈ QA∃(Φ, t), there is also a tree t∗ whose depth and width
is bounded by n|Q|2, such that t∗ ∈ L(M) and τ ∈ QA∃(Φ, t∗). Consequently,
we need to consider query runs of depth and width bound by n|Q|2. This space
can be explored with a simple dynamic programming technique because runs of
an STA on a tree share the structure of the tree. In particular, Ti and Hi store
all tuples “collected” from runs on resp. trees and hedges (sequences of trees)
of depth ≤ i and width ≤ n|Q|2. We use assignX(A, l) to assign the value l
on positions X to every tuple from A (tuples having a value different from ⊥
on those positions are discarded). merge(A,B) returns the set of merged tuples
from sets A and B (two tuples having assigned value on the same position cannot
be merged). An easy complexity analysis shows that:

Theorem 1. For an attributed STA M and n-ary query Φ Algorithm 1 computes
QA∃(Φ,M) in time O((|Φ||M |)6|Dom(M)|2n).

Extending the algorithm to weighted attributed STAs is not difficult because
minimal runs enjoy optimal substructure properties. Also, if we first perform the
run of the algorithm on the attributed STA where every attribute value has been
replaced by one unique constant, we can find which tuples in the intermediate
steps are removed by the apply and merge operations. This allow us to replace
the |Dom(M)|2n factor by 22n|QA∃(Φ,M)|.

Corollary 1. For any weighted attributed STA M and n-ary query Φ the set
QA∃(Φ,M) can be computed in time O(22n(|Φ||M |)6|QA∃(Φ,M)|).

We observe that the high complexity in terms of |M | comes from the particular
pumping properties of STAs. We note, however, that the algorithm could be
easily adapted to standard tree automata working on binary representation of
unranked trees. Those automata enjoy nicer pumping properties and in partic-
ular the complexity would be cubic in terms of the size of the input automata.

To compute universal answers we observe that QA∀(Φ,M) ⊆ QA∃(Φ,M).
Instead of computing universal answers directly, we compute QA∃(Φ,M) and on
every tuple we perform tuple check, i.e. we find if the tuple is an answer in every
tree. Because we use it as a tool for analyzing the complexity of universal and
existential query answers, we formally define it:

Existential (universal) tuple check is a decision problem where given
an attributed STA M , an n-ary STA query Φ, and a tuple τ ∈ (Λ∪{∗})n

find if τ is an existential (universal resp.) answer to Φ in M .

Theorem 2. Universal tuple check can be decided in time O(f(|Φ|)|M |3)), where
f(|Φ|) = 2|Φ|

222n

(and O(f(|Φ|)log(|M |)|M |4)) if M is weighted).

Consequently, we obtain a characterization of the simple procedure of computing
universal answers.

Corollary 2. For any weighted attributed STA M and n-ary query Φ the set
QA∀(Φ,M) can be computed in time O(2|Φ|

222n |Φ|6|M |6|QA∃(Φ,M)|).



4 Complexity analysis

Now, we analyze tractability of computing existential and universal query an-
swers by investigating the complexity of universal and existential tuple check
(defined in the previous section). We start with combined complexity where all
the elements are considered to be the part of the input.
Theorem 3. Combined complexity of existential and universal tuple check are
NP-complete and EXPTIME-complete respectively.
We remark that the EXPTIME-hardness is proved with a reduction of the con-
tainment problem of two tree automata to a universal tuple check where one of
the automata is treated as a 0-ary query.

Next, we observe that if the arity of the query is fixed, then the existential
tuple check can be done in polynomial time. Moreover, the degree of the poly-
nomial does not depend on the arity of the query. Hence, we can characterize
the (multiplicative) fixed parametric complexity [9].
Corollary 3. When the arity of the STA query is a parameter, the existential
tuple check is FPT (Fixed Parameter Tractable).
We note that universal tuple check remains intractable when fixing the arity of
the query as the EXPTIME-hardness proof uses an STA query of arity 0.

Finally, Theorem 2 give us a characterization of data complexity [22] of uni-
versal query answers (the query is assumed to be fixed).
Corollary 4. Data complexity of universal tuple check is PTIME.

5 Consistent querying of XML documents

We recall the basic notions of the framework of consistent query answers for semi-
structured databases. The process of repairing an XML document is modeled
with the standard edit operations on trees: (i) renaming the node, (ii) deleting
a node (different than the root) which involves promoting its children to the
parent of the node (placed in the same order from the position of the node), and
(iii) inserting a node (different than the root) with a possible adoption of a list of
subsequent children from the parent of the node (dual to the delete operation).
With every editing operation we associate a cost: cR, cD, and cI the costs for
renaming, deleting, and inserting a node respectively. We note, however, that
our approach can be easily extended to weights that depend on properties of the
node, for example its label.

The edit distance d(t1, t2) between two trees t1 and t2 is the minimal cost of
transforming t1 to t2 with a series of edit operations. Given a tree t and an STA
M (expressing the schema), we define the distance between t and M , denoted
d(M, t), as the minimum edit distance between t and any t′ valid w.r.t. M .

A repair of t w.r.t. M is a tree t′ ∈ L(M) such that d(t, t′) = d(t, M). By
Rep(t, M) we denote the set of all repairs of t w.r.t. M . Given an n-ary STA
query Φ we say that a tuple τ is a consistent (or valid) answer to Φ in t w.r.t. M
if and only if τ is an answer to Φ in every repair of t w.r.t. M . By CQA(Φ, t, M)
we denote the set of all consistent answers to Φ in t w.r.t. M .



5.1 Repair automaton

In this part we define a weighted attributed STA that defines the set of all repairs
of a document. For ease of construction we allow the use of ε-transitions. As they
have no attribute value and perform no operations on the stack, we can easily
remove them by standard closure (remembering to aggregate the weight). Also,
we make a natural assumption that the schema does not allow an empty tree.

Definition 3. Let M be an STA, t be a tree with n nodes, and t̄ = (e1, . . . , e2n)
be the serialization of t. Assume that the nodes of t are numbered with consecutive
natural numbers 0, 1, . . . , n− 1 in the standard document order. For an opening
or closing tag ei let mi be the number assigned to that node.

The repair automaton of t w.r.t. M is a weighted attributed STA R(t, M) =
(Σ,ΓR, QR, IR,∆R, FR) where: ΓR = ΓM ∪ ΓM × {1, . . . , n}, QR = IM × {0} ∪
QM × {1, . . . , 2n− 1} ∪ FM × {2n}, IR = IM × {0}, and FR = FM × {2n}. The
state (q, i) will be denoted as qi. The transitions of ∆R (with their attributes and
weights) capture edit operations performed on the tag stream as follows:

– qi−1 x:(γ,mi)−−−−−→
att(ei)

pi renaming ei to x if tag(ei) 6= x and doing nothing if

tag(ei) = x, for every i ∈ {1, . . . , 2n} and every q
x:γ−−→ p ∈ ∆M ; its weight

is cR/2 if tag(ei) 6= x and 0 if tag(ei) = x.
– qi x:γ−−→ pi inserting x (before ei), for every i ∈ {2, . . . , 2n − 1} and every

q
x:γ−−→ p ∈ ∆M ; its weight is cI/2 and it is attributed with ∗ if x is an

opening tag.
– qi−1 ε−→ qi deleting ei, for every i ∈ {2, . . . , 2n − 1} and every q ∈ QM ; its

weight is cD/2.

Example 1. Figure 4 contains the repair automaton of the tree t1 = cl0(al1 , bl2)
(Fig. 1) and the STA M0 (Fig. 2). The weights are assumed to be wR = wI =
wD = 1. Because this graph is very intricate, for clarity we present in all details
only the transitions that produce the minimal trees. Also, γj

i is short for (γi, j).
R(t1,M0) defines the set of trees {cl0(al1)} ∪ {cl0(al1 , bl2 , al)|l ∈ Λ}, i.e. the set
of repairs of t1 w.r.t. M0.

Theorem 4. For any tree t, any STA M , and any STA query Φ we have that
Rep(t, M) = L(R(t, M)) and CQA(Φ, t, M) = QA∀(Φ,R(t, M)).

5.2 Complexity analysis

From Corollary 2 we get directly:

Corollary 5. The data complexity of computing consistent answers to an n-ary
query w.r.t. an STA is PTIME.

To further analyse the tractability of consistent query answers we investigate
the complexity of the problem of tuple check for consistent query answers [17].
Similarly to universal answers the problem is intractable.

Theorem 5. The combined complexity of consistent query answers is Π2
p -complete

if wI > 0 and EXPTIME-complete if wI = 0.
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Fig. 4. A repair graph R(t1, M0)

6 Conclusions and future work

In this paper we presented the framework of querying regular sets of XML docu-
ments. We considered the class of n-ary automata queries and introduced notions
of universal and existential answers, i.e. answers present in every and some docu-
ments represented by a tree automata. We investigated computational properties
of our framework and presented algorithms for computing universal and existen-
tial answers. Finally, we used our framework to compute consistent query answers
in XML documents that do not satisfy the schema. This solution significantly
extends our previous results in this area [18].

We envision several possible directions of further study. Firstly, we would like
to investigate the problem of querying regular sets of trees with a query defined
in a logical formalism which allow comparison of data-values. Such formalisms
have been studied in [7] where FO logic over data trees is considered. It is shown
that FO is decidable for the two-variable fragment with a successor relation and a
predicate to compare data-values. Another important direction of future study
is to investigate if the setting of data exchange could be effectively captured
by our framework. Finally, we would like to investigate using more expressive
formalisms, for instance context-free tree grammars, to represent the sets of
trees.
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A Universal and existential query answering: omitted
proofs

A.1 Proof of Theorem 1

We first prove two pumping lemmata.
For any tree t, we denote by d(t) its depth (maximal length of a path from

the root to a leaf) and by w(t) its width (maximal number of children for any
node).

Lemma 1. Let M = (Σ,Γ, I, F,Q,∆) be an attributed STA and t a tree such
that t ∈ L(M). There is a tree t∗ such that:

– width and depth of t∗ is bounded by |Q|2;
– t∗ ∈ L(M)

Proof. Vertical pumping Suppose that d(t) > |Q|2. Since t ∈ L(M), there is a
successful run r of M on the serialization t of t. Since there is a root-to-leaves
path p of length strictly greater than |Q|2, there is states q, q′ such that q and q′

correspond to well-matched opening and closing tags respectively in the subrun
of r corresponding to p, and q, q′ occurs twice in this nested structure.

More formally, there are words u1, . . . , u3, u
′
1, . . . , u

′
2 over Σ♦, ei, e

′
i open-

ing and closing tags respectively, i = 1, 2, states q, q′ ∈ Q, words of states
α1, . . . , α3, α

′
1, . . . , α

′
2 such that:

– t is equal to u1e1u2e2u3e
′
2u

′
2e

′
1u

′
1;

– ei, e
′
i are well-matched, i = 1, 2;

– r = α1qα2qα3q
′α′

2q
′α′

1;
– qα2qα3q

′α′
2q

′ is a run of M on e1u2e2u3e
′
2u

′
2e

′
1 ;

– qα3q
′ is a run of M on e2u3e

′
2 ;

Hence, α1qα3q
′α′

1 is a successful run of M on u1e2u3e
′
2u

′
1. Therefore, as

soon as there is a root-to-leaves path of length stricly greater than |Q|2, we can
compact it into a path of strictly shorter length and keep membership to L(M).
By iterating this process we get a tree t∗ such that d(t∗) ≤ |Q|2 and t∗ ∈ L(M);



Horizontal pumping Suppose that w(t) > |Q|2. The argument is very similar
to vertical pumping, so that we do not formalize it. Intuively, if there is a sequence
of children whose length is strictly greater than |Q|2, in any successful runs r of
M on t, a pair of states q, q′ corresponding in r to the opening and closing tags
of a child will be repeated at least twice in the sequence of children. Hence we
can collapse the sequence of children delimited by the two children where the
repetition occurs, while keeping membership to L(M).

Lemma 2. Let M = (Σ,ΓM , IM , FM , QM ,∆M ) be an STA and Φ = (Σ,ΓΦ, IΦ, FΦ, QΦ,∆Φ

be an STA query over variables {x1, . . . , xn}. If there is some tree t ∈ L(M) and
some tuple τ ∈ QA(Φ, t), then there is a tree t∗ such that:

– depth and width of t∗ are bounded by n|QM |2|QΦ|2
– t∗ ∈ L(M)
– τ ∈ QA(Φ, t∗)

Proof. The arguments are very similar to the proof of Lemma ??, except that
when we collapse some contexts of the tree, we must care about keeping the mem-
bership of the tree both in L(M) and L(Φ) (this gives us the bound |QM |2|QΦ|2,
as we consider the product automaton of M and Φ). And we also must care
about keeping the tuple in the result, hence we cannot collapse contexts of the
tree where an attribute has been selected (this gives us the factor n in the
bound).

Proof of Theorem 1 We first prove correctness by induction. The length of a
hedge is the number of its trees. After loop 4, Hi[u, v] contains all tuples collected
on hedges of length 1, depth ≤ i−1, and width ≤ n|Q|2, by runs from u to v. The
loop at line 6 performs a transitive closure, so that after loop at line 6, Hi[u, v]
contains all tuples collected on hedges of depth ≤ i − 1 and width ≤ n|Q|2 by
runs from u to v. Using Hi, Ti[u, v] can be udpated as the union of all tuples
collected on trees of depth ≤ i− 1 and width ≤ n|Q|2 (represented by Ti−1[u, v]
by induction hypothesis) by runs from u to v, and the set of trees obtained by
rooting hedges from Hi, with compatible transitions.

Hence for every tuple τ returned by the algorithm, there is a tree t such that
τ ∈ QA∃(Φ, t).

Soundness is proved by using ??, and by definition of Hi and Ti.

A.2 Proof of Theorem 2

Since we reduce the universal tuple check problem to inclusion of STAs, we first
prove the following:

Proposition 1. Given a non-weighted attributed STA N and a weighted at-
tributed STA M , testing whether L(M) ⊆ L(N) can be done in time O(|att(M)||M |2|att(M)||N |),
where att(M) is the set of attribute values from Λ∪{∗} occuring in the transitions
of M .



Proof. First assume that M is non-weighted.
From M and N we construct to (non-attributed) STAs M ′ and N ′ such that

L(M) ⊆ L(N) iff L(M ′) ⊆ L(N ′), |M | = |M ′|, and |N ′| = |att(M)||N |. Since
(non-attributed) STAs are Visibly Pushdown Automata running on serialization
of trees, we already know by [2] that inclusion is decidable in EXPTIME.

We let M = (Σ,ΓM , QM , IM , FM ,∆M ) and N = (Σ,ΓN , QN , IN , FN ,∆N ).
We define M ′ by (Σ′, Γ ′

M , Q′
M , I ′M , F ′

M ,∆′
M ) where

– Σ′ = Σ × att(M), Γ ′
M = ΓM , Q′

M = QM , I ′M = IM , F ′
M = FM ;

– ∆′
M = {p 〈a,l〉:γ−−−−→ q | p

〈a〉:γ−−−→
l

q ∈ ∆M} ∪ {p 〈/a,l〉:γ−−−−−→ q | ∃p′ 〈a〉:γ−−−→
l

q′ ∈

∆M and p
〈/a〉:γ−−−−→ q ∈ ∆M}

The STA N ′ = (Σ′, Γ ′
N , Q′

N , I ′N , F ′
N ,∆′

N ) is defined similarly, but in addition,

for all transitions p
〈a〉:γ−−−→
∗

q ∈ ∆N , and all attribute values l ∈ att(M), we add to

∆′
N the following transitions rules: p

〈a,l〉:γ−−−−→ q and the transitions p′
〈/a,l〉:γ−−−−−→ q′,

for all p′
〈/a〉:γ−−−−→ q′ ∈ ∆N .

We now prove correctness of these constructions w.r.t. the inclusion problem.
forth direction Suppose that L(M) ⊆ L(N), and let t ∈ L(M ′). We associate to
t the set attributed trees T (t) over Σ obtained by replacing any label (a, l) in t
by the label a with attribute l, if l 6= ∗, or with any attribute from Λ if l = ∗. We
can easily show that T (t) ⊆ L(M). Note also that T (t) is infinite iff t contains
at least one node labeled (a, ∗), for some a ∈ Σ. Moreover, if T (t) is finite, then
it is a singleton.

Suppose that T (t) is finite, and equal to some singleton {t′}, where t′ is an
attributed tree over Σ. We can easily show that there is a successful sequence of
transitions of M on t′ which uses only transitions without ∗ is the (opening or
closing) tag. Since t′ ∈ L(N), there is also a successful sequence s of transitions
of N on t′. If we put the attributes values of the transitions of s in the opening
tag and in the corresponding closing tags, we get a sequence s′ of transitions
of N ′. This sequence does not necessarily accepts t, because it might the case
that s contain a transition with a wildcard. Therefore s′ can contain a transition
δ = p

〈a,∗〉:γ−−−−→ with a wildcard in the tag. We can substitute it with a transition

p
〈a,l〉:γ−−−−→ where l is the attribute value of t at the position where δ is applied (this

rule exists, since l ∈ att(M) and by definition of N ′). Hence we get a successful
sequence of transitions of N ′ on t, and t ∈ L(N ′).

Now suppose that T (t) is infinite. It means that t contains a wildcard. We
only sketch the proof and emphasize the changes compared to the previous case,
since it is technical but not difficult. We have to construct a successful sequence of
transitions of N ′ on t. If we take an arbitrary tree t′ ∈ T (t), and use a successful
sequence of transitions of N on it, it might be the case that M uses a transition
with wildcard to accept t′ at some position i of t′, while N uses a transition
without wildcard at the same position. In particular, this situation may occur
when the attribute value of t′ at position i is in att(N). We can subsitute in t′ this



value by a value which is not in att(N) to get a tree t′′ ∈ L(M) ⊆ L(N), to ensure
that N will use a transition with wildcard at position i when processing t′′. That
way we can prove that there is a tree t′′ ∈ T (t) such that there is two successful
sequences sM and sN of transitions of M and N on t′′ respectively, such that
they use the same attribute values in their respective transitions. Moreover,
we can choose t′′ such that the sequence of tags and attributes used in sM

corresponds exactly to the labels used by the transitions of a successful sequence
of transitions of M ′ on t. By putting the attributes value of sN in the tags
(opening and respectively closing), we get a successful sequence of transitions of
N ′ on t. Hence t ∈ L(N ′).
Back direction Suppose that L(M ′) ⊆ L(N ′), and let t ∈ L(M). Hence, there is
a tree t′ such that t′ ∈ L(M ′) and t ∈ T (t′). Hence t′ ∈ L(N ′), and by definition
of N ′, we get T (t′) ⊆ L(N). Hence t ∈ L(N).
Complexity We have |M ′| = O(|att(M)||M |), and |N ′| = 0(|att(M)||N |), so that
inclusion of M ′ in N ′ is decidable in time O(|att(M)|3|M |323(|att(M)||N |)2) [2].

Proposition 2. Universal tuple check can be decided in time O(f(|Φ|)|M |3))
where f(|Φ|) = 2|Φ|

222n

.

Proof. From M , Φ and τ we construct two STAs M(τ) and Φ(τ) such that
M(τ) ⊆ Φ(τ) iff τ ∈∈ QA∀(M,Φ). Let att(τ) be the value from Λ∪{∗} occuring
in τ , and we denote by τ [X] the value of τ occuring at position x, for all x ∈ X
(it is undefined if the values are different). To construct M(τ) we replace every

opening transition of the form p
〈a〉:γ−−−→

l
by p

〈a〉:γ−−−→
∗

if l 6∈ att(τ). Hence L(M) ⊆
L(M(τ)).

To construct Φ(τ), we substitute set of variables X in selecting transitions by
the value of the tuple at positions X (we simply remove the transition if there
is multiple values in τ at positions X). We simulate selections by putting the
sets of variables in the states, and in addition, we ensure that every variable is
used exactly once in a successful run. More formally, let Φ = (Σ,Γ,Q, I, F,∆)
over the set of variables V = {x1, . . . , xn}. We define Φ(τ) by (Σ,Γ,Q× 2V , I ×
{∅}, F ×{V },∆′) where ∆′ is defined as follows: ∀p, q ∈ Q,X, Y ⊆ V, a ∈ Σ, γ ∈
Γ, l ∈ Λ ∪ {∗}

– (p, X)
〈a〉:γ−−−→

l
(q, X ∪Y ) ∈ ∆′ if p

〈a〉:γ−−−→
Y

q ∈ ∆, X ∩Y = ∅, and for all y ∈ Y ,

every value of τ at position y is equal to l. If Y = ∅, then l must be equal
to ∗;

– (p, X)
〈/a〉:γ−−−−→

l
(q, X) ∈ ∆′ if p

〈/a〉:γ−−−−→ q ∈ ∆.

We now prove that τ ∈ QA∀(M,Φ) iff M(τ) ⊆ Φ(τ).
forth direction: assume that τ ∈ QA∀(M,Φ), and let t ∈ L(M(τ)). Hence

there is a successful run r of M(τ) on t. By definition of M(τ), we can easily
change the attributes of t to obtain a tree t′ such that it has the same structure
as t, the same labels at the same respective positions, and t′ ∈ L(M). Indeed,

it might the case that r uses a transition of M(τ) of the form p
〈a〉:γ−−−→
∗

q at a



position labeled 〈a〉 with attribute values l in t. If this transition corresponds to

a transition p
〈a〉:γ−−−→

l′
q of M , where l′ ∈ Λ and l 6= l′. In this case we replace l

by l′ in t. Note that by definition of M(τ), l′ 6∈ att(τ). Hence, we replace some
of the attributes of t by attributes different from any attribute of att(τ)∩Λ. By
assumption, we get τ ∈ QA(Φ, t′), meaning that there is a successful sequence
of rules s = δ1 . . . δn of Φ applied on t′ which selects the tuple τ (where n is the
length of t′). We now construct a successful sequence of rule applications δ′1 . . . δ′n
of Φ(τ) on t′, and then prove that it is also successful on t. It is inductively defined
by:

– δ′1 = (p, ∅)
〈a〉:γ−−−→

l
(q, X) if δ1 = p

〈a〉:γ−−−→
X

X, where l = τ [X] if X 6= ∅, and

l = ∗ otherwise;

– for i > 1, δ′i = (p, X)
〈a〉:γ−−−→

l
(q, X ∪ Y ) if (i) δi = p

〈a〉:γ−−−→
Y

, (ii) the rhs of δ′i−1

is p, X, where l = τ [Y ] if Y 6= ∅, and l = ∗ otherwise;

– for i > 1, δ′i = (p, X)
〈/a〉:γ−−−−→ (q, X) if (i) δi = p

〈/a〉:γ−−−−→, (ii) the rhs of δ′i−1 is
p, X.

By definition of δ1 . . . δn, we get a sequence δ′1 . . . δ′n of rules which starts by
an initial state of Φ(τ) and ends in a final state of Φ(τ). Hence t′ ∈ L(Φ(τ)).
Now, remark that δ′1 . . . δ′n is also a successful application of rules on t, since
Φ(τ) only tests for attribute values in τ and the values of t′ which are different
from their respective values in t at the same position are necessarily different
from values in att(τ). Hence we get t ∈ L(Φ(τ)).

back direction: assume that L(M(τ)) ⊆ L(Φ(τ)), and let t ∈ L(M). We prove
that τ ∈ QA(Φ, t). Since L(M) ⊆ L(M(τ)) ⊆ L(Φ(τ)), we get t ∈ L(Φ(tau)).
Hence there is a successful sequence δ1 . . . δn of rule applications of N(τ) on t.
We build a successful sequence δ′1 . . . δ′n of rule application of Φ on t, defined as

follows: for all i ∈ {1, . . . , n}, δ′i = p
〈a〉:γ−−−→

X
q if δi = (p, Y )

〈a〉:γ−−−→
l

(q, Y ∪X), for

some X, Y ⊆ V such that X ∩Y = ∅ (we necessarily have τ [X] = l by definition

of Φ(τ)). We also define δ′i = p
〈/a〉:γ−−−−→ q if δi = (p, X)

〈/a〉:γ−−−−→
l

(q, X), for some

X ⊆ V . Since Φ(τ) controls that every variable is used added exactly once is the
second component of its states, we get that δ′1 . . . δ′n is a successful sequence of
rules application of Φ on t which selects τ . Hence τ ∈ QA(Φ, t).

Finally, by Proposition ??, inclusion of L(M(τ)) in L(Φ(τ)) is decidable in
time (O(|M(τ)|.2|att(M(τ))||Φ(τ)|, where att(M(τ)) is the set of attribute values
from Λ used in M(τ). Since |Φ(τ)| = 2n|Φ|, and att(M(τ)) ≤ |τ | = n, inclusion
is decidable in time O(|M(τ)|323n2|Φ|222n

), ie O(|M |32|Φ|222n

).

A.3 Proof of Theorem 3

The proof is divided into several propositions.

Proposition 3. Existential tuple check is NP-hard.
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0
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1

C1 C3

x2
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C1

1
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x3

0

C3

1

C1 C2

Fig. 5. Tree associated with the formula (x1∨¬x2∨x3)∧(¬x1∨x2∨x3)∧(x1∧x2∧¬x3)

Proof. We reduce the 3-SAT problem. Let Φ(x1, . . . , xn) = C1 ∧ · · · ∧ Ck be a
formula in DNF with variables x1, . . . , xn. We associate Φ with a tree tΦ over
the alphabet Σ = {#, x1, . . . , xn, C1, . . . , Ck, 0, 1}. The tree tΦ is defined by
#(x1(t0x1

, t1x1
), . . . , xn(t0xn

, t1xn
)), where for all i ∈ {1, . . . , n} and all b ∈ {0, 1},

tbxi
is defined by: tbxi

= b(Ci1 , . . . , Cij )

where {Ci1 , . . . , Cij
} is the set of clauses (given in order) which are true under

the assignement xi 7→ b. Figure ?? shows an example of this association.

We can easily view tΦ as a stream tΦ whose labels are both considered as
attributes and labels of the stream. We can construct an attributed STA Mφ

such that its size is in O(|tΦ|) and L(M) = {tΦ}.

Now, we construct a querying attributed STA N such that (C1, . . . , Ck) ∈
QA∃(M,N) iff Φ is satisfiable. We use k variables y1, . . . , yk intended to select
the attribute values C1, . . . , Ck. The following must be satisfied: if N selects
some value in the 0-part of some variable xi, then it cannot select any other
value in the 1-part of xi. This control can be done by the states of N . We use
three states q, qs, q

′
s: the first state allows to navigate in the tree, and, if it used

in a subtree rooted by a variable, it means that no attribute value has been
selected. The state qs is used in the subtrees rooted by a variable x, and means
that something has been selected in the 0 part of them. Finally, q′s is used in
the subtrees rooted by 1 if something has been selected in the previous sibling
tree rooted by 0 (hence nothing should be selected below 1). We use the labels
as stack alphabet, q is both initial and final, and for all i ∈ {1, . . . , n}, and for



all j ∈ {1, . . . , k}, the set of rules is defined by:

q
〈#〉:#−−−−→ q q

〈/#〉:#−−−−−→ q q
〈xi〉:xi−−−−→ q q

〈/xi〉:xi−−−−−→ q

q
〈0〉:0−−−→ q q

〈/0〉:0−−−−→ q qs
〈/0〉:0−−−−→ qs

q
〈1〉:1−−−→ q qs

〈1〉:1−−−→ q′s q′s
〈/1〉:1−−−−→ q q

〈/1〉:1−−−−→ q qs
〈/1〉:1−−−−→ q

q
〈Cj〉:Cj−−−−−→ q q

〈/Cj〉:Cj−−−−−−→ q q
〈Cj〉:Cj−−−−−→

yj

qs qs
〈Cj〉:Cj−−−−−→

yj

qs qs
〈/Cj〉:Cj−−−−−−→ qs

q′s
〈Cj〉:Cj−−−−−→ q′s q′s

〈/Cj〉:Cj−−−−−−→ q′s

Proposition 4. Existential tuple check is in NP.

Proof. We can transform Algorithm 1 into a probabilistic algorithm which out-
puts an answer sets of size at most |Q|2, such that τ ∈ QA∃(M,N) iff there is
an execution which outputs a set to which τ belongs. It suffices to choose which
sets are merged, and which transitions are used for the assignX in order to store
at most one tuple in Ti[u, v] and Hi[u, v], for all i, u, v.

Proposition 5. Universal tuple check is EXPTIME-hard.

Proof. Note that T C∀ for 0-ary STA queries is equivalent to testing inclusion
of two STA languages. This is kwnow to be EXPTIME-complete for (non-
deterministic) top-down tree automata (even binary). We give a polynomial-
time translation of tree automata into STA, which will be sufficient to conclude.
We start from a ranked alphabet Σ consisting of binary and constant symbols.
We let A = (Σ,Q, I,∆) be a top-down tree automaton. We associate with A
the STA A = (Σ,Q, Γ , I, F ,∆), where Σ = {〈f〉 | f ∈ Σ} ∪ {〈/f〉 | f ∈ Σ};
Q = Q ∪Q×Q ∪ {qend}; Gamma = Q; I = I; F = Q, and ∆ is defined by:

q
〈f〉:q−−−→ (q1, q2) for all rules q → f(q1, q2) ∈ ∆

(q1, q2)
〈f〉:q2−−−−→ (q′1, q

′
2) for all rules q1 → f(q′1, q

′
2) ∈ ∆

q
〈a〉:q−−−→ qend for all rules q → a ∈ ∆

(q1, q2)
〈a〉:q2−−−−→ qend for all q1, q2 ∈ Q

qend
〈/a〉:q−−−−→ q for all q ∈ Q

q
〈/f〉:p−−−−→ p for all q, p ∈ Q

Let t denotes the stream encoding over Σ of any tree over Σ. We can prove the
following: for all trees t, t ∈ L(A) iff t ∈ L(A). Finally note that the translation
is in PTIME.

Proposition 6. Universal tuple-check is in EXPTIME.



Proof. We construct a deterministic attributed STA Φ[τ ] such that L(Φ[τ ]) =
{t | τ ∈ QA(Φ, t)}. Then we test if L(M) ⊆ L(Φ[τ ]), which is equivalent to test
if τ ∈ QA∀(Φ,M).

For all i ∈ {1, . . . , n}, we let τi be the value of τ at rank i, and we let
A = {τi | i = 1, . . . , n}. We first construct an attributed STA Φ′ over the set
of attribute values Λ extended with fresh values denoted (l, V ), for all set of
variables V labeling an opening transition of Φ, and such that τ(X) = l for all
X ∈ V . Let us denote Λ′ this new alphabet. Φ′ is obtained first by:(i) removing
from Φ every selecting transition (by a set of variables V ) such that ∃X, Y ∈ V ,

τ(X) 6= τ(Y ); (ii) replacing every selecting transition of the form q
〈a〉:γ−−−→

V
p such

that ∀X, Y ∈ V, τ(X) = τ(Y ) = l for some l ∈ A, by the attributed transition

q
〈a〉:γ−−−→
(l,V )

p. Hence, Φ′ accepts attributed trees some of their attribute values

denoting positions where the attribute might be selected. Then we determinize
Φ′.

In a second step, we obtain Φ[τ ] (over Σ and Λ) from Φ′ (over Σ and Λ′)
by adding a control that every component of τ is selected. Let QΦ′ , FΦ′ be the
set of states (accepting states resp.) of Φ′. The set of states QΦ[τ ] is defined by
QΦ′ × 2{X1,...,Xn}, and FΦ[τ ] by FΦ′ × {X1, . . . , Xn}. The set of rules ∆Φ[τ ] is
defined by:

(q, V )
e:γ−−→ (p, V ) ∀q e:γ−−→ p ∈ ∆Φ′ , ∀V ⊆ {X1, . . . , Xn}

(q, V )
〈a〉:γ−−−→

l
(p, V ∪ V ′) ∀q 〈a〉:γ−−−−→

(l,V ′)
p ∈ ∆Φ′ ,

∀V ⊆ {X1, . . . , Xn} st V ∩ V ′ = ∅

Note that Φ[τ ] is still deterministic, and its size is |Φ[τ ]| = O(2n|Φ′|) =
O(2n2|Φ|). Hence, testing whether L(M) ⊆ L(Φ[τ ]) can be done in time O(|M |2n2|Φ|).

B Consistent query answering: omitted proofs and
definitions

An tag is an element of Σ♦ = Σ〈 ∪ Σ〉, where Σ〈 = {〈a〉|a ∈ Σ} is the set of
opening tags and Σ〉 = {〈/a〉|a ∈ Σ} is the set of closing tags. An attributed tag
is an element of T = Σ〈×Λ∪Σ〉. As before for an attributed tag e by tag(e) we
denote its tag and if it is an opening tag, we denote by att(e) its attribute value.
When it does not cause confusion we omit the adjective attributed. A pair of
tags e1 and e2 is matching if tag(e1) = 〈a〉 and tag(en) = 〈/a〉 for some a ∈ Σ.

Definition 4 (Well-formed tag sequence). Ballanced tag sequence (b.t.s)
is defined as follows:

– ε is a b.t.s,
– e1 · t̄e2 is a b.t.s if t̄ is a b.t.s and e1 and e2 are a pair of matching tags.
– t̄1 · t̄2 is a b.t.s if t̄1 is b.t.s. and t̄2 is b.t.s.



t̄ is a well-formed sequence of tags if t̄ is empty or t̄ is b.t.s. and starts with an
opening tag.

Definition 5 (General STA). A general streaming tree automaton (GSTA)
with is a tuple M = (Σ,Λ, ΓM , QM , IM ,∆M , FM , wM ), where Σ is a finite set
of tree symbols, Λ is an infinite set of attribute values, ΓM is a finite set of
stack symbols, QM is a finite set of states, IM ⊆ QM is a set of initial states,
FM ⊆ QM is a set of final states, wM : ∆M → R+ ∪ 0 is a weight function, and
∆M is a finite set of the following types of transitions:

– opening transitions p
〈a〉:γ−−−→

L
q, where p, q ∈ QM , a ∈ Σ, L is a finite or

cofinite subset of Λ, γ ∈ ΓM ;

– closing transitions p
〈/a〉:γ−−−−→ q, where p, q ∈ QM , a ∈ Σ, and γ ∈ ΓM ;

– ε-transitions p
ε−→ q, where p, q ∈ QM .

Definition 6 (Configuration and move relation of a GSTA). A config-
uration of a GSTA M is a element (q, γ̄, t̄) of the set CM = QM × Γ ∗

M × T ∗,
where q is the current automaton state, γ̄ is the current state of the stack, and
t̄ is the remaining tag sequence. The move relation →M⊆ Cm ×CM of a GSTA
M is defined as follows:

– (p, ᾱ, e · t̄) →M (q, γ · ᾱ, t̄), if tag(e) = 〈a〉 and there exists p
〈a〉:γ−−−→

L
q ∈ ∆M

such that att(e) ∈ L,

– (p, γ · ᾱ, e · t̄) →M (q, ᾱ) if tag(e) = cta and there exists p
〈/a〉:γ−−−−→ q ∈ ∆M ,

– (p, ᾱ, t̄) →M (q, ᾱ, t̄) if there exists q
ε−→ p ∈ ∆M .

→∗
M⊆ CM × CM is the reflexive and transitive closure of →M .

Definition 7 (Run of a GSTA). A run of a GSTA M on a tag sequence t̄
is a seqence r̄ = q0, d1, q1, . . . , dn, qn of elements taken alternatingly from QN

and ∆ such that t̄ can be decomposed into a sequence s1, . . . , sn of elements of
T ∪ {ε} and for every i ∈ {1, . . . , n} one of the following holds:

– di = qi−1
〈a〉:γ−−−→

L
qi ∈ ∆M , si ∈ T , tag(si) = 〈a〉, and att(si) ∈ L,

– di = qi−1
〈/a〉:γ−−−−→ qi ∈ ∆M , si ∈ T , and tag(ei) = 〈/a〉,

– qi−1
ε−→ qi ∈ ∆M and si = ε.

Usually, we will write the run r̄ = q0, d1, q1, . . . , dn, qn as q0 → · · · → qn with
proper labels on the arrows. With a simple inductive prove we can show equva-
lence of a run and →∗

M over ballanced tag sequences.

Proposition 7. For any b.s.t t̄, any p, q ∈ Q, and any α ∈ Γ ∗, (p, ᾱ, t̄) →∗
M

(q, ᾱ, ε) if and only if there exits a run r̄ = p → . . . → q such that πtag(r̄) = t̄.

Also, with a simple induction it can be shown that a run on a ballanced tag
sequence shares the structure of the tag sequence.



Proposition 8 (Structure of a run). A run of M on a ballanced tag sequence
is one of the following:

(i) ε is a run on ε (the empty sequence of tags),
(ii) q

ε−→ p is a run on ε,

(iii) if q0
〈a〉:γ−−−→

L
q1, qn−1

〈/a〉:γ−−−−→ qn, and q1 → · · · → qn−1 is a run on t̄, then

qo
〈a〉:γ−−−→ q1 → · · · → qn−1

〈/a〉:γ−−−−→ qn is a run on any e1 · t̄ · en such that
tag(e1) = 〈a〉, att(e1) ∈ L, and tag(en) = 〈/a〉.

(iv) if q1 → · · · → qk is a run on t̄1 and qk → · · · → qn is a run on t̄2, then
q1 → · · · → qk → · · · → qn is a run on t̄1 · t̄2.

Definition 8 (Weight of a run). Givena a run r̄ = q0, d1, q1 . . . , qn−1, dn, qn

of M , its weight is defined as wM (r̄) =
∑n

i=1 wM (di).

Proposition 9 (Optimal substructure of a minimal run). The minimal
weight of any run from p to q on a b.s.t. t̄, denoted by wmin

M (p, t̄, q), is the
minimum of the following values:

(i) 0 if p = q and t̄ = ε,
(ii) wM (p ε−→ q) if t̄ = ε,

(iii) wM (p
〈a〉:γ−−−→

L
p′)+wmin

M (p′, t̄′, q′)+wM (p
〈a〉:γ−−−→ p′) for any p

〈a〉:γ−−−→
L

p′, p
〈a〉:γ−−−→

p′ ∈ ∆M such that t̄ = e1 · t̄′ · en, tag(e1) = 〈a〉, att(e1) ∈ L, and tag(en) =
〈/a〉,

(iv) wmin
M (p, t̄1, s) + wmin

M (s, t̄2, q) for any s ∈ Q and any t̄1 and t̄2 such that
t̄ = t̄1 · t̄2.

B.1 Repair graph

Two sequences of operations are equivalent on a tree t if their application to t
yields the same tree. We observe that some sequences may perform redundant
operations, for instance an insertion and subsequent removal of a node. Because
we focus on finding cheapest sequences of operations, we restrict our consider-
ations to redundancy-free sequences (those for which there is no equivalent but
cheaper sequence).

Since we are working with the streamed representation of documents, we
port the tree editing operation to this medium. We consider sequences of stream
editing operations which specify what action should be taked with regard to every
tag. We use: D for deleting a tag, Me for modifying a tag to e (together with an
attribute if e is an opening tag), and Ie for inserting e. Finally, to indicate tags
that are not modified we introduce the reading (or doing-nothing) operation R.
The result of applying a sequence of stream editing operations to a tag sequence



is defined as follows:

apply(ε, ε) = ε,

apply(R · s̄, e · t̄) = e · apply(s̄, t̄),
apply(Me1 · s̄, e2 · t̄) = e1 · apply(s̄, t̄),

apply(D · s̄, e · t̄) = apply(s̄, t̄),
apply(Ie · r̄, s̄) = e · apply(r̄, s̄).

Obviously, not for every pair the operation apply is defined or returns a b.s.t.
Therefore, we explicitly define editing scripts that can be applied to a given tag
sequence.

Definition 9 (Editing script). A balanced editing sequence (b.e.s.) of a bal-
anced tag sequence (b.t.s.) is defined as follows:

1. ε is a b.e.s. of ε.
2. D is a b.e.s. of a sequence consisting on one tag e.
3. for any b.e.s. s̄ of t̄:

(a) Ie1 · s̄ · Ie2 is a b.e.s. of t̄ for any pair of matching tags e1 and e2;
(b) R · s̄ ·R is a b.e.s. of e1 · t̄ · e2 for any pair of matching tags e1 and e2;
(c) Me1 · s̄ ·Me2 is a b.e.s. of e′1 · t̄ · e′2 for two pairs (e1, e2) and (e′1, e

′
2) of

mathcing tags.
4. s̄1 · s̄2 is b.e.s. of t̄1 · t̄2 for any s̄1 and s̄2 b.e.s. of t̄1 and t̄2 respectively.

A b.e.s. s̄ of t̄ is an editing script of the well-formed tag sequence t̄ if the first
and last element of r̄ are either both reading or both changing (root node cannot
be deleted nor inserted).

We assume that the cost of operations on node are fixed: cD for deleting a node,
cI for inserting a node, cM for modifying a node. Because a node operation is
represented by two operations on the sequence of tags, we split the value equally:
cD/2 for a tag deleting operation, cI/2 for a tag inserting operation, and cM/2
for a tag modifying operation. The cost of an editing script s̄ is denoted by c(s̄).

Lemma 3. For any editing script r̄ of a tag sequence s̄ apply(r̄, s̄) is a tag
sequence.

Proof. We first note that with a simple induction we can prove that

apply(ε, ε) = ε,

for any one elment tag sequence e

apply(D, e) = ε,

for any b.t.s. t̄, any b.e.s. s̄ of t̄, and any pair of matching tags (e1, e2)
apply(Ie1 · s̄ · Ie2 , t̄) = e1 · apply(s̄, t̄) · e2,

for any b.t.s. t̄, any b.e.s. s̄ of t̄, and any pairs of matching tags (e1, e2) and
(e′1, e

′
2)

apply(Me1 · s̄ ·Me2 , e
′
1 · t̄ · e′2) = e1 · apply(s̄, t̄) · e2,



and for any b.t.s. t̄1 and t̄2 and any b.e.s. s̄1 and s̄2 of t̄1 and t̄2 resp.
apply(s̄1 · s̄2, t̄1 · t̄2) = apply(s̄1, t̄1) · apply(s̄2, t̄2).

What follows is that for any b.t.s. t̄ and any b.e.s. s̄ of t̄ the result of apply(s̄, t̄)
is a b.t.s. Finally, we note that when the first and last element of an s̄ of a
well-formed tag sequence t̄ are reading of modifying, then apply(s̄, t̄) is also a
well-formed tag sequence.

A seuquence of tree editing operations on a tree t is equivalent to an editing
script on t̄ if and only if the result of applying the editing script to t̄ is a streamed
representation of the result of applying the sequence of tree editing operations
on a tree t.

Lemma 4. For any tree and every sequence of editing operations on the tree
there exists an equivalent editing script of the same cost, and vice versa.

Proof. ⇐ For any tree t and any editing script r̄ on t̄ we construct the equiva-
lent sequence of editing operations on t by recursion over the strucutre of s̄ and
the tag sequence t̄ = (e1, . . . , en) (along the lines of Definition ??):

– op(ε, ε) = ε.
– op(D, ei) = ε if ei is a closing tag,
– op(D, ei) when ei is an opening tag: Let n be the node of T corresponding

to si. The result is an operation of deleting n.
– op(R · s̄′ ·R, ei · t̄′ · ej) = op(s̄′, t̄′).
– op(Me1 · s̄′ ·Me2 , ei · t̄′ ·ej): Let n be the node of T corresponding to ei · t̄′ ·ej .

The result is an operation of changing the label of n to tag(e1) and the
attribute value to att(e1) followed by op(s̄′, t̄′).

– op(Ie1 · s̄′ · Ie2 , t̄
′): Let n be the identifier of the inserted node, n1, . . . , nl be

the sequence of consecutive nodes of t corresponding to the apply(s̄′, t̄′) and
p be the parent of n1, . . . , nl. The result is op(r̄′, s̄) followed by an operation
of inserting the node n labeled with tag(e1) and attribute att(e1) as a child
of p adopting children n1, . . . , nl.

– op(s̄1 · s̄2, t̄1 · t̄2) = op(s̄1, t̄1) · op(s̄1, t̄1) if t̄1 and t̄2 are b.t.s. and s̄1 and s̄2

are b.e.s. of t̄1 and t̄2 respecitvely.

It is easy to see that op(s̄, t̄) returns a sequence of tree editing operations equiv-
alent to s̄ and c(op(s̄, t̄)) = c(s̄).

⇒ For a given tree and a sequence of editing operations we construct the
equivalent editing script by translating every editing operation into an equivalent
editing script and consequently composing all editing scripts into one.

Given a b.t.s t̄, a void script ∅̄t̄ on t̄ is an editing script on t̄ whose all elements
are R. For a given editing operation α on T we construct the equivalent atomic
editing script s̄α on t̄ as follows:

1. if α is an operation Modifying the node n by changing the symbol to a and
reassigning the attribute to l, then all elements of r̄α are R except for ri = Ce1

and rj = Ce2 , where i and j are the positions of respectively the opening
and closing tag corresponding to the node n, tag(e1) = 〈a〉, att(e1) = l, and
tag(e2) = 〈/a〉;



2. if α is an operation Deleting a node n, then all elements of r̄α are R except
for ri = rj = D, where i and j are the positions of respectively the opening
and closing tag corresponding to the node n;

3. if α is an operation Inserting a node n with label a and attribute value l as a
child of p and “adopting” a subsequence n1, . . . , nl of children of p, then all
elements of r̄α are R except for ri−1 = Ie1 and rj+1 = Ie2 , where i is position
of the opening tag corresponding to n1, j is the position of the closing tag
corresponding to nl, tag(e1) = 〈a〉, att(e1) = l, and tag(e2) = 〈/a〉.

Next, we define the composition of two b.e.s. Given any b.t.s. t̄, any b.e.s.
s̄1 on t̄, and any b.e.s. s̄2 on apply(s̄1, t̄), the composition of s̄1 and s̄2, denoted
r̄1 ‖ r̄2 is defined as follows:

ε ‖ ε = ε,

(D · x̄) ‖ ȳ = D · (x̄ ‖ ȳ),
x̄ ‖ (Ie · ȳ) = Ie · (x̄ ‖ ȳ),

(R · x̄) ‖ (R · ȳ) = R · (x̄ ‖ ȳ),
(R · x̄) ‖ (D · ȳ) = D · (x̄ ‖ ȳ),
(R · x̄) ‖ (Ce · ȳ) = Ce · (x̄ ‖ ȳ),
(Ce · x̄) ‖ (R · ȳ) = Ce · (x̄ ‖ ȳ),
(Ce · x̄) ‖ (D · ȳ) = D · (x̄ ‖ ȳ),

(Ce1 · x̄) ‖ (Ce2 · ȳ) = (Ce2 · x̄) ‖ ȳ,

(Ie · x̄) ‖ (R · ȳ) = Ie · (x̄ ‖ ȳ),
(Ie · x̄) ‖ (D · ȳ) = x̄ ‖ ȳ,

(Ie1 · x̄) ‖ (Ce2 · ȳ) = (Ie2 · x̄) ‖ ȳ.

It is clear from the definition of ‖ that

apply(s̄1, apply(s̄2, t̄)) = apply(s̄1 ‖ s̄2, t̄).

Also, it should be clear that c(bars1 ‖ s̄2) ≤ c(s̄1) + c(s̄2).
Now, if we take any tree t and any sequence of editing operations ᾱ =

(α1, . . . , αm) on t, the equivalent editing script on t̄ is s̄ᾱ = (· · · ((∅̄t̄ ‖ s̄α1) ‖
s̄α2) · · · ) ‖ s̄αm . Naturally, c(s̄ᾱ) ≤ c(ᾱ). Also, c(s̄ᾱ) = c(ᾱ) or ¯alpha is not
redundancy-free, i.e. op(s̄ᾱ, t̄) is an equivalent sequence of editing oeprations
with lesser cost.

Definition 10. An editing script s̄ is repairing t w.r.t. M if apply(s̄, t̄ = t̄′ and
t′ ∈ L(M).

Proposition 10. For any repairng script s̄ of t w.r.t M resulting in t′ there
exists an accepting run r̄ of R(t, M) on t′ such that c(s̄) = wR(t,M)(r̄), and vice
versa.

Proof. Since s̄ is a repairing script of t w.r.t. M , there exists an accepting run r̄′

of M on t′, where t̄′ = apply(s̄, t̄). We construct the accepting run r̄ of R(t, M)



on t′ with a simple recursion on the structure of s̄ and t̄′. The opposite direction
is handled similarily, we take the run r̄ of R(t, M) on t̄′ and construct the script
s̄ by recursion on the structure of r̄ on t̄′. The details of those construction are
very technical and we omit them.

Theorem 6. The combined complexity of consistent query answers is EXPTIME-
complete. If wI > 0, then the problem is coNP-complete.

Proof. We reduce the containment of tree automata M ⊆ N to checking if an
empty tuple () is a consistent answer to a 0-ary query N in an empty tree ε w.r.t.
M with wI = 0. Naturally, L(R(ε, M)) = L(M). From the proof of EXPTIME-
hardness of universal tuple check we have that () ∈ QA∀(N,R(ε, M)) if and only
if L(M) ⊆ L(N). Membership to EXPTIME follows from Theorem 3.


