
Temporal Data Exchange
Ladan Golshanara1, Jan Chomicki1, and Wang-Chiew Tan2

1 State University of New York at Buffalo, NY, USA
ladangol@buffalo.edu, chomicki@buffalo.edu

2 Recruit Institute of Technology and UC Santa Cruz, CA, USA
tan@cs.ucsc.edu

Abstract
Data exchange is the problem of transforming data that is structured under the source schema
into data structured under another schema, called the target schema, so that both source and
target data satisfy the relationship between the schemas. Many applications such as planning,
scheduling, medical and fraud detection systems, require data exchange in the context of temporal
data. Even though the formal framework of data exchange for relational database systems is well-
established, it does not immediately carry over to the setting of temporal data, which necessitates
reasoning over unbounded periods of time.

In this work, we study data exchange for temporal data. We first motivate the need for
two views of temporal data: the concrete view, which depicts how temporal data is compactly
represented and on which implementations are based, and the abstract view, which defines the
semantics of temporal data. We show how the framework of data exchange can be systematically
extended to temporal data. The core of our framework consists of two new chase algorithms:
the abstract chase over an abstract temporal instance and the concrete chase over a concrete
temporal instance. We show that although the two chase procedures operate over fundamentally
different views of temporal data, the result of the concrete chase is semantically aligned with the
result of the abstract chase. To obtain the semantic alignment, the nulls (which are introduced
by data exchange and model incompleteness) in both the concrete view and the abstract view
are annotated with temporal information. Furthermore, we show that the result of the concrete
chase provides a foundation for query answering. We define naïve evaluation on the result of the
concrete chase and show it produces certain answers.

Keywords and phrases Data Exchange, Temporal Database, Chase, Incomplete information,
Abstract view, Concrete view

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

Temporal data refers to historical data or data that is dated. Temporal data is needed by
many organizations and individuals to support audit trails. With temporal data one can
represent when a fact is true and for how long [6]. The temporality of facts is also critical
in diverse domains, from medical diagnosis to assessing the changing business conditions
of companies [17]. In fact, temporal database features, which were recently added to the
SQL:2011 standard [12], have already been adopted by major database management systems
such as DB2, Oracle, and Teradata.

Temporal database is a relational database where there is at least one temporal attribute
associated with each relation schema. The need to store information that span over long
periods of time necessitates that temporal attribute values be intervals so that multiple
(sometimes infinitely many) time points can be compactly represented. For example, the
fact that Ada worked in IBM between 2010 and 2013 is usually represented as (Ada, IBM,

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

ar
X

iv
:1

60
9.

06
52

6v
1

 [
cs

.D
B

]
 2

1
Se

p
20

16

http://dx.doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2 Temporal Data Exchange

[2010, 2014)) where [2010, 2014) is a clopen interval that denotes the years 2010, 2011, 2012,
and 2013. The fact that Ada has worked in Intel since then can be represented as (Ada,
Intel, [2014, ∞)). An infinite interval, such as [2014, ∞), is a useful abstraction when the
endpoint is not provided. However, it is simpler and more natural to view information at
every snapshot, i.e. at discrete time points. For these reasons, prior work on temporal
databases [5, 10, 19] has provided two views of temporal data: the concrete temporal view
(or concrete view in short) and the abstract temporal view (or abstract view in short). In
the concrete view the same data over multiple time points is compactly stored using time
intervals, such as the examples with Ada above. This view is an extension of the relational
model where the temporal attribute takes clopen intervals as values. On the other hand, in
the abstract temporal view (or abstract view in short) there is a fact representing the data at
every time point when it is true. For example, there are four abstract tuples (Ada, IBM,
2010), (Ada, IBM, 2011), (Ada, IBM, 2012), (Ada, IBM, 2013) corresponding to the concrete
tuple (Ada, IBM, [2010, 2014)), and infinitely many abstract tuples (Ada, Intel, 2014), (Ada,
Intel, 2015), ... that correspond to the concrete tuple (Ada, Intel, [2014, ∞)). The abstract
view is based on the relational model with infinite relations. The semantic alignment between
concrete and abstract views is formally defined as the semantic mapping in Section 3. Note
that SQL:2011 [12] implicitly supports both views. It provides features for defining tables
with interval endpoint attributes, while the semantics of integrity constraints is defined with
respect to time points.

Data exchange [7] refers to the problem of translating data that conforms to one schema
(called the source schema RS) into data that conforms to another schema (called the
target schema RT) given a specification of the relationship between the two schemas. This
relationship is specified by means of a schema mapping consisting of a set of source-to-target
tuple generating dependencies (s-t tgds) and a set of tuple generating dependencies (tgds)
and equality generating dependencies (egds) on the target schema. Given a schema mapping
and a source instance I, the goal of data exchange is to materialize a target instance J
that satisfies the specification (i.e. (I, J) satisfies s-t tgds and J satisfies tgds and egds).
Such an instance J is called a solution for I w.r.t the given schema mapping. For a given
source instance, there may be no solution since there may not exist a target instance that
satisfies the specification. On the other hand, there may be many solutions. It was shown
in [7] that among all solutions of a given source instance, the universal solutions are the
preferred solutions because they are the most general. In [7], the chase procedure is used to
find a universal solution. Universal solutions can be used to determine certain answers to
the unions of conjunctive queries posed over a target schema. Certain answers to a query Q
consist of all tuples that will be in the answer of Q in any arbitrary solution for a source
instance w.r.t a schema mapping.

In this paper, we study the challenges that arise when we consider temporal data in the
framework of data exchange. We examine the most basic case where we assume that every
relation in a source instance has exactly one temporal attribute and source instances are
complete (i.e. have no unknown values). In our framework, the temporal schema mappingM
is a quadrupleM = (RS , RT ,Σst,Σk), where Σst is a set of source-to-target temporal tuple
generating dependencies (s-t ttgds) between the source and target schema, and Σk is a set
of temporal key constraints (tkcs) [4] over the target schema. Temporal key constraints are
fundamental for temporal applications. We introduce two chase algorithms: abstract chase
for the abstract view and concrete chase for the concrete view. The chase procedure in [7] is
a sequential process and assumes finite relations. This assumption holds for the concrete
view (modulo modifications to the chase procedure to manage time intervals) but not for

Ladan Golshanara, Jan Chomicki, and Wang-Chiew Tan XX:3

the abstract view which might contain infinite relations. To cope with infinite abstract
relations, chase steps are applied in parallel in the abstract chase algorithm. Both proposed
chase algorithms have two rounds: An s-t ttgd round followed by a tkc round. The s-t ttgd
round aggregates all s-t ttgd chase steps that can be applied on its input while the tkc round
aggregates all tkc chase steps. If the tkc round is successful, the result of the abstract chase
algorithm (resp. concrete chase algorithm) satisfies the given temporal schema mappingM.
Otherwise, both chase algorithms fail. Note that s-t ttgd and tkc chase steps are extensions
of the chase steps in [7] for temporal databases.

The concrete chase handles clopen intervals by normalizing the source instance. Intuitively,
normalization makes the clopen intervals behave as time points. Normalization was previously
used in the context of query answering in temporal databases [13, 20] on tuples with the same
schema that agree on non-temporal attribute values. The proposed normalization operation
in this paper does not have these restrictions. As a result of data exchange, unknown values
may occur in target instances. More precisely, at each s-t ttgd chase step in the abstract chase
and concrete chase algorithms fresh nulls are generated. As mentioned before, a concrete fact
is a compact representation of a set of abstract facts; therefore, a fresh null generated in a
concrete view should represent a set of distinct fresh nulls in the corresponding abstract view.
In order to keep the correspondence between the concrete and abstract view of temporal data
in the presence of unknown values generated by data exchange, the nulls in a concrete target
instance are annotated with the clopen interval of the tuple they occur in, e.g. N [s,e) is an
interval-annotated null in a concrete tuple, while the nulls in an abstract target instance are
annotated with the time point of the tuple they occur in, e.g. N t0 is a point-annotated null
in an abstract tuple.

For example, consider the relational schema Emp(Name, Position, Company, Year).
The concrete tuple (Ada, N [2008,∞), IBM, [2008,∞)) contains an annotated null N [2008,∞)

and the tuple denotes that the position of Ada at IBM is unknown and the position is
possibly different every year since 2008. This tuple corresponds to the abstract tuples
(Ada,N2008, IBM, 2008), (Ada,N2009, IBM, 2009), Labeled nulls which are used in re-
lational data exchange to model incompleteness are not sufficient to show the connection
between the concrete and abstract views after data exchange. This is shown in the proof of
Theorems 7 and 8.

I Example 1. Suppose we have the following relations in the source schema that rep-
resents the employment histories of persons: Employee1(Name,Company, T ime) and
Employee2(Name, Position,Dept, T ime).

A concrete source instance is shown in Figure 1, while the corresponding abstract instance
is shown in Figure 2. Only the last two digits of years are shown. We want to move the
data to a bigger schema with two relations: Emp(Name, Position,Company, T ime), and
Sal(Name, Position, Salary, T ime).
Suppose we have the following s-t ttgds:

∀n∀c∀t Employee1(n, c, t)→ ∃p∃s Emp(n, p, c, t) ∧ Sal(n, p, s, t)

∀n∀p∀d∀t Employee2(n, p, d, t)→ ∃c∃s Emp(n, p, c, t) ∧ Sal(n, p, s, t)

and the tkcs:

∀n∀p1∀p2∀c1∀c2∀t Emp(n, p1, c1, t) ∧ Emp(n, p2, c2, t)→ p1 = p2 ∧ c1 = c2

∀n∀p1∀p2∀s1∀s2∀t Sal(n, p1, s1, t) ∧ Sal(n, p2, s2, t)→ p1 = p2 ∧ s1 = s2

XX:4 Temporal Data Exchange

Employee1
Name Company Time
Ada IBM [08, 11)
Ada Intel [11, 13)

Employee2
Name Position Dept Time
Ada Developer Computer [08, 10)
Ada DBA Computer [10, 11)

Figure 1 Concrete source instance

Employee1
Name Company Time
Ada IBM 08
Ada IBM 09
Ada IBM 10
Ada Intel 11
Ada Intel 12

Employee2
Name Position Dept Time
Ada Developer Computer 08
Ada Developer Computer 09
Ada DBA Computer 10

Figure 2 Abstract source instance

Figure 3 and Figure 5 respectively show the solutions for the concrete and abstract source
instances w.r.t the above temporal schema mapping . These solutions can be obtained using
the concrete and abstract chase algorithms, respectively. Note that both solutions satisfy
the given temporal schema mapping. Moreover, if two annotated nulls are syntactically the
same in an abstract or a concrete instance (e.g. N [11,13) in tables Emp and Sal in Figure 3
or J11 and K12 in Figure 5), they are generated by applying an s-t ttgd with an existentially
quantified variable shared between the atoms on its right hand side. Figure 4 is the abstract
view of the concrete solution in Figure 3. Observe that Figure 4 and Figure 5 are the same
modulo renaming the point-annotated nulls. This is formally proved in Section 6. Specifically,
corresponding point-annotated nulls in Figure 4 and Figure 5 carry the same time points (i.e.
their temporal attribute value).

Note that even when the source instance is concrete, the s-t ttgds and tkcs are viewed in the
abstract way; that is, by interpreting the abstract view of the source instance and applying
the standard semantics of s-t ttgds and tkcs. However, for practical purposes, we store
the target instance in its concrete representation since this representation is generally more
compact than its abstract counterpart.
Contributions Our main contribution of this paper is the formalization and study of the
framework of data exchange on temporal data. We define two chase algorithms, one for each
view (abstract vs. concrete) of temporal data: the abstract chase algorithm and the concrete
chase algorithm. We show the correctness of the concrete chase with respect to the abstract
chase. This result is important because it enables one to implement data exchange on
concrete temporal data with semantics corresponding to the abstract case. We also show that
the result of the abstract chase over an abstract source instance is a universal solution and,
therefore, the corresponding concrete solution provides a foundation for answering unions

Emp
Name Position Company Time
Ada Developer IBM [08, 10)
Ada DBA IBM [10, 11)
Ada N [11,13) Intel [11,13)

Sal
Name Position Salary Time
Ada Developer M [08,10) [08, 10)
Ada DBA U [10,11) [10, 11)
Ada N [11,13) V [11,13) [11,13)

Figure 3 A concrete solution obtained by concrete chase algorithm

Ladan Golshanara, Jan Chomicki, and Wang-Chiew Tan XX:5

Emp
Name Position Company Time
Ada Developer IBM 08
Ada Developer IBM 09
Ada DBA IBM 10
Ada N11 Intel 11
Ada N12 Intel 12

Sal
Name Position Salary Time
Ada Developer M08 08
Ada Developer M09 09
Ada DBA U10 10
Ada N11 V 11 11
Ada N12 V 12 12

Figure 4 Abstract view of the concrete solution shown in Figure 3

Emp
Name Position Company Time
Ada Developer IBM 08
Ada Developer IBM 09
Ada DBA IBM 10
Ada J11 Intel 11
Ada K12 Intel 12

Sal
Name Position Salary Time
Ada Developer M08 08
Ada Developer O09 09
Ada DBA P 10 10
Ada J11 X11 11
Ada K12 Y 12 12

Figure 5 An abstract solution obtained by abstract chase algorithm

of conjunctive queries. Finally, we define naïve evaluation on the abstract and concrete
instances obtained by the chase algorithms and show it produces certain answers.

Additional definitions and the proofs of all the theorems and lemmas in this paper are
provided in the Appendix.

2 Related Work

Here we overview the previous relevant work on data exchange and temporal databases. The
formal foundations of data exchange were developed by Fagin et al. in [7]. The authors showed
that the chase algorithm, previously used for checking implication of data dependencies, can
be used to produce a universal solution for instances of the data exchange problem. Universal
solutions map homomorphically to other solutions for the source instance. This property
makes them the preferred solutions to query. Universal solutions and, in general, solutions
of instances of data exchange problem can contain incomplete information. Representing
incomplete information and evaluating queries over them are more complex than in the
complete case [1, 9]. The gap between the theoretical work on incomplete information and
what has been used in practice is discussed in [8, 15]. The chase algorithm proposed in [7]
produces labeled nulls for incomplete values. Relations with labeled nulls in them are called
naïve tables [1, 9]. In data exchange the semantics of answering queries are defined in terms
of certain answers [3, 7]. Certain answers [9] are tuples that belong to the answer of the
posed query no matter which solution is used. It is shown in [7] that whenever a universal
solution can be computed in polynomial time (for the class of dependencies identified in [7]) ,
certain answers to unions of conjunctive queries can also be computed in polynomial time.
Computing certain answers for queries that have inequalities, however, is a coNP-complete
problem [7]. Data exchange and incomplete information and other possible semantics for
query answering are discussed in detail in [14].

The original chase, which we call the standard chase throughout the paper, assumes
finite relational instances and is a sequential process. Further extensions to the standard
chase were surveyed in [16]. In [2] a chase step, called core chase step, was proposed that
consists of applying all tgds in parallel; however, the details in the case of egds were missing.

XX:6 Temporal Data Exchange

Motivated by [2], the proposed chase algorithms in this paper aggregate chase steps in two
rounds to cope with possibly infinite abstract relations. The work is different from previous
work on data exchange in two aspects: the abstract view requires infinite sets of tuples and
the concrete view is an extension of relational model with intervals as the temporal attribute
values.

The formal foundations of temporal data models and query languages were studied
in [4, 5]. Abstract versus concrete temporal views were first developed in the context of
the semantics of temporal query languages [19]. These two level views of temporal data
later were used in program debugging and dynamic program analysis [13]. The papers [4, 5]
did not discuss incomplete temporal information and its possible semantics. Koubarakis
proposed a unified framework for both finite and infinite, definite and indefinite temporal
data [11, 10]. His suggested framework extends conditional tables (a.k.a. c-tables) [9] and
can be used to store facts such as roomA is booked from 2 to sometime between 5 to 8. He
used global conditions to define the constraints on the start point or end point of a time
interval. In his framework, the temporal attribute values can be unknown. C-tables are a
generalization of naïve tables where a table is associated with global and local conditions
specified by logical formulas. In temporal data exchange, the proposed chase algorithms
produce point-annotated and interval-annotated nulls for unknown values. Since in our
framework, the value of temporal attribute is known in source instances and there is no
condition on the temporal attribute or non-temporal attributes as a result of data exchange,
naïve tables are sufficient for representing incomplete information.

3 Preliminaries and Definitions

Time points and time intervals. Let TP = N∪{∞}, where N denotes the set of natural
numbers. Let TI = {[s, e) | s, e ∈ TP, s < e}. As described in the Introduction, a clopen
interval [s, e) denotes the set {s, s+1, ..., e−1} of time points. A clopen interval is equivalent
to two temporal attributes for representing the beginning and the end of the time interval [4].
This construction is also used in the SQL:2011 standard [12].
Domains. There are three domains Const, PNull, and INull. The domain Const is a set
of infinitely many uninterpreted constants. The domain PNull is an infinite set of point-
annotated nulls. A point-annotated null is a pair Ns where N is a label and s is a time point
which shows the temporal context of N , i.e. the time point at which N occurs. Similarly, the
domain INull is an infinite set of interval-annotated nulls. An interval-annotated null is a pair
N [s,e) where N is a label and [s, e) is a clopen interval which denotes the temporal context
of N . Throughout this paper, we use annotated nulls to refer to both point-annotated nulls
and interval-annotated nulls.

Two annotated nulls are equal if they are syntactically identical. We assume that the
sets PNull, INull, Const, TP and TI are countably infinite and mutually disjoint.
Abstract and concrete schema and instances, semantic mapping. A schema is a
finite sequence R =< R1, ..., Rk > of relation symbols. Each relation symbol Ri is associated
with a set {A1, ..., Aki , T} of attributes where the domain of Aj (1 ≤ j ≤ ki) is Const and
the domain of T is either TP or TI. An abstract instance Ia over the schema R is a function
that associates to each relation symbol Ri an abstract relation IRi , where IRi is a subset of
(Const ∪ PNull)ki × TP. In other words, except for the temporal attribute, annotated nulls
can occur among the values of other attributes in the tuples. A complete abstract instance I
is a special case, where IRi is a subset of Constki × TP.

Similarly, a concrete instance Ic over the schema R is a function that associates to each

Ladan Golshanara, Jan Chomicki, and Wang-Chiew Tan XX:7

relation symbol Ri a relation IRi , where IRi is a subset of (Const∪ INull)ki ×TI. Likewise, a
complete concrete instance is a special case of a concrete instance if each IRi is a subset of
Constki × TI. We will also sometimes write the tuple (ā, t) in relation Ri as the fact Ri(ā, t).

We define the relationship between a concrete instance and an abstract instance through
the semantic mapping function [5], as follows:

If (a1, ..., ak, [s, e)) is a concrete tuple, then J(a1, ..., ak, [s, e))K ={ (a′1, ..., a′k, t0) | s ≤
t0 < e where a′i = ai if ai is a constant, and a′i is a point-annotated null N t0 if ai is an
interval-annotated null N [s,e)}.
If R is a concrete relation, then JRK =

⋃
u∈R(JuK).

If Ic is a concrete instance that consists of relationsR1, ..., Rk, then JIcK =< JR1K, ..., JRkK >.
The above definition generalizes the definition in [5] to handle null values in both views. As
defined above, under the semantic mapping, each interval-annotated null N [s,e) corresponds
to a set of point-annotated nulls {Ns, ..., Ne−1} where each N t0 , t0 ∈ [s, e), denotes a
point-annotated null.
Temporal schema mapping, solution, conflicting facts. A source-to-target temporal
tuple generating dependency (s-t ttgd), denoted by σs, is a dependency of the following form:

σs = ∀x̄α(x̄, t)→ ∃ȳβ(x̄, ȳ, t),
where α (resp.β) is a conjunction of relational atoms (i.e. α = α1 ∧ ... ∧ αm, m ≥ 1 (resp.
β = β1 ∧ ...∧ βn, n ≥ 1) over the source schema (respectively, the target schema), and x̄ and
ȳ are vectors of variables and t denotes a variable that represents the temporal attribute
values. We call t the temporal variable throughout the paper. An example of an s-t ttgd is
given in Example 1.

A temporal key constraint (tkc), denoted by σk, over a relation schema R is a constraint
of the form:

σk = R(x1, ..., xm, y1, ..., yn, t) ∧R(x1, ..., xm, y
′
1, ..., y

′
n, t)→ y1 = y′1 ∧ ... ∧ yn = y′n,

where m ≥ 0 and n ≥ 1 and all variables are universally quantified. The set {A1, ..., Am, T}
of attributes is the temporal key of R. A temporal schema mapping is a quadruple M =
(RS , RT ,Σst,Σk), where RS and RT are the source and target schemas, respectively; Σst is a
set of s-t ttgds and Σk is a set of tkcs. As in SQL, (temporal) key attributes cannot be null.

We use rhs (resp. lhs) to refer to the right hand side (resp. left hand side) of an s-t ttgd
or a tkc. We assume that there is only one temporal variable in s-t ttgds and tkcs. Multiple
such variables are essential only if built-in predicates like "greater than" (i.e. >) are available.

When we say an abstract instance satisfies an s-t ttgd or a tkc (or a set of them), we
refer to first order logic satisfaction and when we say a concrete instance satisfies an s-t ttgd
or a tkc, it means the abstract semantics of that concrete instance satisfies the constraint.

Given an abstract source instance Ia and a temporal schema mappingM, an abstract
solution for Ia w.r.tM is an abstract target instance such that (Ia, Ja) satisfies the constraints
inM. Likewise, a concrete solution Jc for a concrete source instance Ic w.r.tM is a target
instance such that (Ic, Jc) satisfies constraints inM.

Two abstract facts are conflicting abstract facts, w.r.t a tkc σk if they agree on temporal
key attribute values, but differ in other attribute values. Conflicting concrete facts are defined
in the same way.
Formula homomorphism, abstract homomorphism, universal solution. In [7], one
type of homomorphism is defined between two relational instances containing labeled nulls
and constants, and from a conjunctive formula to a relational instance. We distinguish two
types of homomorphisms: formula homomorphism and abstract homomorphism because the
mapping between two point-annotated nulls in abstract homomorphisms is treated differently
from the mapping of a variable in a formula to an annotated null. More formally, a formula

XX:8 Temporal Data Exchange

homomorphism h from the lhs of an s-t ttgd or a tkc, to an abstract instance (resp. concrete
instance) I is a mapping from the variables in the lhs of the s-t ttgd or the tkc to Const∪PNull
(resp. Const ∪ INull) and from t to TP (resp. TI) such that for every atom Ri(x̄, t) in α, the
fact Ri(h(x̄), h(t)) is in I. On the other hand, an abstract homomorphism h : Ia 7→ I ′a is a
mapping from Const∪PNull∪TP in an abstract instance Ia to Const∪PNull∪TP in another
abstract instance I ′a such that (1) h(c) = c, for every c ∈ Const; (2) h(td) = td for every time
point; (3) h(N td) is a constant or a point-annotated null with the context td; (4) for every
fact Ri(ā) ∈ Ia, the fact Ri(h(ā)) is in I ′a.

Note that abstract homomorphisms map a point-annotated null to a point-annotated
null with the same context to guarantee the assumption that point-annotated nulls have the
same context as the tuple they occur in. Abstract instances Ia and I ′a are homomorphically
equivalent if there exist abstract homomorphisms h and h′ such that h : Ia 7→ I ′a and h′ :
I ′a 7→ Ia. For example abstract instances shown in Figure 4 and Figure 5 are homomorphically
equivalent.

Formula homomorphisms are used in chase steps for mapping from the lhs of an s-t ttgd
or a tkc to (concrete or abstract) instances, while abstract homomorphisms are used in
Theorems 7 and 8, as well as in Section 7 for proving the universality of the result of the
abstract chase algorithm.

A universal abstract solution for a given source instance w.r.t a temporal schema mapping
is a solution such that there is an abstract homomorphism from the solution to any arbitrary
solution for that source instance. A universal concrete solution is a concrete solution whose
corresponding abstract solution (obtained by the semantic mapping) is a universal abstract
solution.

4 Abstract Chase

In this section, we define an abstract chase (a-chase) algorithm for the abstract view with
a temporal schema mappingM. As mentioned before, an abstract instance is a relational
instance with possible infinite relations; therefore, it cannot be chased sequentially as in [7].
To deal with infinitely many chase steps, there are two options: define appropriate notions
of fix-point or convergence, or use parallel chase. We show that our parallel chase, like the
standard sequential chase, produces a universal solution (Corollary 16). The abstract chase
algorithm proceeds by an s-t , denoted by a-chase∗Σst , followed by a tkc round, denoted by
a-chase∗Σk . In each round, the a-chase algorithm proceeds by applying possibly infinitely
many abstract chase steps in parallel. If the tkc round is successful, the result of the a-chase
algorithm is an abstract solution for the given source instance w.r.tM; otherwise, the result
is a failure.

4.1 S-t ttgd Round
In the s-t ttgd a-chase round, the abstract source instance is chased with Σst. First, we
define an s-t ttgd a-chase step. Then, we define an s-t ttgd a-chase round that aggregates
all applicable s-t ttgd a-chase steps. In the definitions below, let Ia be a complete abstract
instance.

I Definition 2. (S-t ttgd a-chase step): Let σs be an s-t ttgd in Σst. Given a formula
homomorphism h from lhs of σs to Ia, we say that an s-t ttgd a-chase step can be applied
to Ia with σs using h to get the instance Ka, denoted by Ia

σs,h7−−−→ Ka. The instance Ka

is obtained by (a) extending h to h′ such that each existential variable in the rhs of σs is

Ladan Golshanara, Jan Chomicki, and Wang-Chiew Tan XX:9

Emp
Name Position Company Time
Ada N2008 IBM 2008
Ada DBA IBM 2008

David N2008 Intel 2008
David Manager Intel 2008

Figure 6 The abstract relation used in Example 4

assigned a fresh annotated null, with the temporal context h(t), followed by (b) applying h′
on the atoms in the rhs of σs.

I Definition 3. (S-t ttgd a-chase round): The s-t ttgd a-chase round (a-chase∗Σst) of Ia is
the union of results of all a-chase steps in Definition 2 that can be applied on the facts of Ia
with all dependencies in Σst. Let Ja be the target instance obtained by the s-t ttgd round,
defined as:

Ja =
⋃

σs∈Σst,h,Ia
σs,h7−−−→Ka

Ka

Note that Ja is an abstract solution for Ia w.r.t M′ = (RS , RT ,Σst, ∅) because (Ia, Ja)
satisfies Σst. Corollary 14 (in Section 7) shows that Ja is a universal abstract solution for Ia
w.r.tM′.

4.2 Tkc Round
We present here the tkc a-chase round which follows the s-t ttgd a-chase round. The tkc
round proceeds in a fashion similar to the s-t ttgd round: aggregating tkc a-chase steps on
the result of the s-t ttgd round. However, the final processing is more complex. Unlike the
sequential chase with equality generating dependencies (egds) in [7], where a labeled null is
replaced with another labeled null or a constant (in each successful egd chase step), we show
in the Example 4 that one cannot simply replace an annotated null with another value in
parallel application of chase steps.

I Example 4. Consider the Emp abstract relation in Figure 6 and the following tkc:
∀n∀p∀p′∀c∀t Emp(n, p, c, t) ∧ Emp(n, p′, c, t)→ p = p′.

Notice that the sequential application of chase steps on this instance fails because DBA 6=
Manager. Indeed, there is no solution for this instance with the above tkc. However, the
parallel application of chase steps will not fail because one of the tkc a-chase steps results in
replacing N2008 with DBA in the first tuple and the other replaces N2008 with Manager in
the third tuple, independently of each other. �

Instead of replacing point-annotated nulls with values during a tkc a-chase step, a set
of equalities is generated that represents the replacements (Definition 5). Then, in the tkc
a-chase round, we take the union of all the equalities obtained in the individual chase steps
and reason about the equalities that can be deduced by considering their symmetric transitive
closure (Definition 6). The abstract chase algorithm fails if an equality between two distinct
constants is deduced. Otherwise, an abstract solution for the given source instance w.r.t
M = (RS , RT ,Σst,Σk) is obtained.

In the following definitions let Ja be the result of the s-t ttgd a-chase round and let
σk ∈ Σk be a tkc defined in Section 3.

XX:10 Temporal Data Exchange

I Definition 5. (Tkc a-chase step): Let w1 and w2 be two conflicting abstract facts in
Ja w.r.t σk. If h is a formula homomorphism from lhs of σk to Ja such that: w1 =
R(h(x1), ..., h(xm), h(y1), ..., h(yn), h(t)), and

w2 = R(h(x1), ..., h(xm), h(y′1), ..., h(y′n), h(t))
the tkc a-chase step can be applied on Ja with σk, denoted by a-chaseσk(w1, w2), and the
result is a set of equalities:

a-chaseσ(w1, w2) = {h(yi) = h(y′i)|1 ≤ i ≤ n}.

I Definition 6. (Tkc a-chase round) : Let w1 and w2 be two conflicting abstract facts in Ja
w.r.t σk. Let EJa,Σk be defined as follows:

EJa,Σk =
⋃

σ∈Σk,w1,w2∈Ja

a-chaseσk(w1, w2).

EJa,Σk � x = y, means that the symmetric transitive closure of EJa,Σk contains the equality
x = y. We consider three equality cases that can be derived:

If EJa,Σk � c = c′, where c and c′ are two distinct constants, then the tkc a-chase round
fails and the result of the a-chase algorithm is a failure.
If EJa,Σk � N t0 = c for any point-annotated null N t0 , then all occurrences of N t0 in Ja
will be replaced by c.
If EJa,Σk � N t0 = M t0 for point-annotated nulls N t0 and M t0 , then one of them will be
designated to replace all occurrences of the other one in Ja.

Let J ′a be the instance Ja after all replacements have been applied. Then a-chase∗Σk(Ja) = J ′a.

Note that the order of applying the above replacements does not matter as long as all
replacements induced by symmetric transitive closure of EJa,Σk are considered.

If the abstract chase is successful, an abstract solution is obtained for the given source
instance w.r.t the given temporal schema mapping. Corollary 16 (in Section 7) shows that
this solution is a universal abstract solution w.r.tM.

5 Concrete Chase

Like the abstract chase algorithm, the concrete chase proceeds by first applying s-t ttgd
c-chase steps in an s-t ttgd round, denoted by c-chase∗Σst , and then tkc c-chase steps in a tkc
c-chase round, denoted by c-chase∗Σk . The definitions of c-chase steps and c-chase rounds
are in the Appendix. Here, we discuss the important differences between the abstract and
concrete chase algorithms.

The main difference in the definition of an s-t ttgd c-chase step from the abstract one
is that the temporal attribute values are clopen intervals and interval-annotated nulls are
generated for existential variables in the rhs of s-t ttgds. For example, Figure 7 shows the
result of c-chase∗Σst round on the concrete source instance given in the Example 1. The other
important difference is that the concrete source instance is normalized. Normalization is
necessary to ensure that all the occurrences of the temporal variable in an s-t ttgd or a tkc
map to the same clopen interval in a concrete instance. A set of concrete tuples (that might
have different schemas) is normalized if the clopen intervals of the tuples are either equal or
disjoint (i.e. no overlap in the intervals of different tuples). Note that given a normalized
concrete instance Ic, each time point in JIcK belongs to a unique interval in Ic.

Without normalization, formula homomorphisms cannot be defined from an s-t ttgd or
a tkc to a concrete instance. For example, consider the concrete source instance shown in
Figure 1. Assume the following s-t ttgd:

Ladan Golshanara, Jan Chomicki, and Wang-Chiew Tan XX:11

Emp
Name Position Company Time
Ada L[08,10) IBM [08,10)
Ada E[10,11) IBM [10,11)
Ada Developer Q[08,10) [08,10)
Ada DBA K [10,11) [10,11)
Ada N [11,13) Intel [11,13)

Sal
Name Position Salary Time
Ada L[08,10) M [08,10) [08,10)
Ada E[10,11) U [10,11) [10,11)
Ada Developer W [08,10) [08,10)
Ada DBA P [10,11) [10,11)
Ada N [11,13) O[11,13) [11,13)

Figure 7 Concrete view of Emp and Sal relations obtained by the s-t ttgd c-chase round

Employee1
Name Company Time
Ada IBM [08, 10)
Ada IBM [10, 11)
Ada Intel [11, 13)

Employee2
Name Position Dept Time
Ada Developer Computer [08, 10)
Ada DBA Computer [10, 11)

Figure 8 Normalized concrete source instance

σs : ∀n∀c∀p∀d∀t Employee1(n, c, t) ∧ Employee2(n, p, d, t)→ Emp(n, p, c, t).
Note that the intersection of time intervals in concrete relations Employee1 and Employee2
is not empty. No formula homomorphism h can be defined from lhs of σs to Employee1 and
Employee2 because the variable t cannot be mapped to a single time interval. However, three
formula homomorphisms can be defined from lhs of σs to the corresponding abstract instance
shown in Figure 2, such as h′ : {n 7→ Ada, c 7→ IBM, p 7→ Developer, d 7→ Computer, t 7→
08}.

The result of normalization of the concrete instance in Figure 1 is shown in Figure 8.
Now we can define two formula homomorphisms from σs to the normalized instance such as:
h : {n 7→ Ada, c 7→ IBM, p 7→ Developer, d 7→ Computer, t 7→ [08, 10)}.

6 Implementation of the abstract chase by the concrete chase

In this section, we show that the concrete chase is correct. This means that the result of
the concrete chase is homomorphically equivalent to the result of the abstract chase under
the semantic mapping. In the theorems of this section, let Σst and Σk be a set of s-t ttgds
and a set of tkcs, respectively. Also, let ∼ denote the homomorphic equivalence between two
abstract instances.

I Theorem 7. Let Ic be a normalized complete instance. Then the result of the s-t ttgd
c-chase round on Ic w.r.t Σst is homomorphically equivalent to the result of s-t ttgd a-chase
round on JIcK w.r.t Σst. That is: Jc-chase∗Σst(Ic)K ∼ a-chase∗ΣstJIcK.

Ic Ia

Jc JJcK ∼ Ja

J.K

c-chase∗Σst a-chase∗Σst

J.K

Figure 9 Correspondence between s-t ttgd c-chase and a-chase rounds

XX:12 Temporal Data Exchange

Proof Sketch: The proof can be best depicted by the commutative diagram in Figure 9.
Let Jc = c-chase∗Σst(Ic) and Ia = JIcK. Let Ja = a-chase∗Σst(Ia). We need to show there
is an abstract homomorphism from JJcK to Ja (i.e. JJcK 7→ Ja) and there is an abstract
homomorphism from Ja to JJcK (i.e. Ja 7→ JJcK). Here we show the proof sketch for JJcK 7→ Ja.
Let w = βj(v1, ..., vk, t0) be an abstract fact in JJcK, where v1, ..., vk are either constants or
point-annotated nulls. So there must be a concrete fact u = βj(v′1, ..., v′k, [s, e)) in Jc such
that w ∈ JuK and t0 ∈ [s, e). Note that since Jc is normalized, the clopen interval [s, e) is
the only interval which t0 belongs to. Also, v′j = vj (1 ≤ j ≤ k) if vj in w is a constant or if
vj is a point-annotated null N t0 , then v′j is an interval-annotated null N [s,e). The concrete
fact u is generated by applying an s-t ttgd c-chase step with σs = ∀x̄α(x̄, t)→ ∃ȳβ(x̄, ȳ, t)
using homomorphism h1 from lhs of σs to Ic. We build another homomorphism h2 such
that h2(x̄) = h1(x̄) and h2(t) = t0. Then we show that h2 is a formula homomorphism from
lhs of σs to JIcK and is used in an s-t ttgd a-chase step. As a result of this a-chase step a
fact w′ = βj(v′′1 , ..., v′′k , t0) is generated. Observe that if vj in w is a constant, v′j = vj by
the semantic mapping and v′′j = vj because of h2(x̄) = h1(x̄). In other words, the constants
that are used in the s-t ttgd c-chase step to generate u (and are in w ∈ JuK) are used in the
s-t ttgd a-chase step with the same σs to generate w′. Also, all fresh point-annotated nulls
that are generated to replace ȳ are point-annotated nulls with time point t0. Therefore, it
is easy to show there is an abstract homomorphism from w to w′. After proving that for
every fact in JJcK there is an abstract homomorphism to a fact in Ja, we need to show there
is an abstract homomorphism from JJcK to Ja. We define this abstract homomorphism as
the union of all the abstract homomorphisms at the facts level from JJcK to Ja. The only
remaining thing is to show that the union of abstract homomorphisms at the facts level is
well-defined. Therefore, we show that each occurrence of a point-annotated null in JJcK is
mapped to the same point-annotated null in Ja.

I Theorem 8. Let Jc be the result of s-t ttgd c-chase round. Then, a-chase∗ΣkJJcK ∼
Jc-chase∗Σk(Jc)K.

The proof of the theorem makes use of the following lemmas. Lemma 9 shows the corres-
pondence between conflicting concrete and abstract facts. Lemma 10 relates a tkc c-chase
step to a set of tkc a-chase steps and finally Lemma 12 shows there is a correspondence
between the set of equalities found by the tkc c-chase round and the tkc a-chase round. In
these lemmas let Jc be the result of the s-t ttgd c-chase round which is normalized and let
Ja = JJcK. Let σk ∈ Σk be a tkc over the schema of Jc.

I Lemma 9. Let u1 and u2 be two distinct concrete facts in Jc. The facts u1 and u2 are
conflicting w.r.t σk if and only if all abstract facts w1 ∈ Ju1K and w2 ∈ Ju2K that have the
same time point (i.e. w1[T] = w2[T]) are conflicting w.r.t σk in Ja.

I Lemma 10. Let u1 and u2 be two conflicting concrete facts in Jc w.r.t σk. The tkc c-chase
step c-chaseσk(u1, u2) can be applied to Jc with σk if and only if for all conflicting abstract
facts w1 ∈ Ju1K and w2 ∈ Ju2K w.r.t σk, the tkc a-chase step a-chaseσk(w1, w2) can be applied
to Ja.

For the next lemma, we first need to define the semantic mapping of the set of equalities
generated by tkc c-chase steps.

I Definition 11. (Semantic mapping of EJc,Σk): Let EJc,Σk be the union of all the equalities
found by all c-chase steps on the concrete instance Jc with a set of temporal key constraints
Σk. We define the semantic mapping of EJc,Σk , denoted by JEJc,ΣkK, as follows:

Ladan Golshanara, Jan Chomicki, and Wang-Chiew Tan XX:13

if N [s,e) = M [s,e) is in EJc,Σk , then {Ns = Ms, ..., Ne−1 = Me−1} is in JEJc,ΣkK.
if N [s,e) = c is in EJc,Σk , where c ∈ Const, then {Ns = c, ..., Ne−1 = c} is in JEJc,ΣkK.
No other equalities are in JEJc,ΣkK.

I Lemma 12. Let EJc,Σk be the union of all the equalities found by all tkc c-chase steps
on the normalized concrete instance Jc with a set of tkcs Σk. Let EJa,Σk be union of all
the equalities found by all tkc a-chase steps on Ja = JJcK with Σk. Then JEJc,ΣkK ≡ EJa,Σk ,
where ≡ is the logical equivalence up to renaming point-annotated nulls.

7 Universal Solutions

In this section, we show that the result of a successful abstract chase algorithm on Ia
w.r.tM is a universal abstract solution. As investigated in [7], universal solutions are the
preferred solutions to materialize because they can be used to find certain answers to unions
of conjunctive queries in polynomial time. To show the universality of an abstract solution
Ja for Ia w.r.tM, we need to show there is an abstract homomorphism from Ja to every
other abstract solution J ′a for Ia w.r.tM. In spite of universality of the solution obtained by
an abstract chase on Ia w.r.tM, it is not always possible to materialize it. Instead, because
of Theorems 7 and 8, the concrete solution generated by the concrete chase algorithm on
Ic w.r.tM, such that JIcK = Ia is materialized. This solution is called a universal concrete
solution.

In this section, letM′ = (RS , RT ,Σst, ∅) andM = (RS , RT ,Σst,Σk) be two temporal
schema mappings. Recall that the abstract chase algorithm has two rounds. The universality
of the solution obtained by the s-t ttgd a-chase round w.r.t M′ is shown in Corollary 14.
This corollary follows from Lemma 13 which shows there is an abstract homomorphism from
the result of an s-t ttgd a-chase step on the complete abstract instance Ia to any abstract
solution for Ia w.r.tM′.

I Lemma 13. Let (Ia, ∅)
σs,h7−−−→ (Ia, Ji) be an s-t ttgd a-chase step on Ia with σs. Let J ′a be

an instance such that (Ia, J ′a) satisfies σs. Then there is an abstract homomorphism from Ji
to J ′a.

I Corollary 14. Let Ja be the result of a-chase∗Σst on Ia w.r.t M′. Let J ′a be an instance
such that (Ia, J ′a) satisfies Σst. That is J ′a is an abstract solution for Ia w.r.t M′. Then
there is an abstract homomorphism from Ja to J ′a. Therefore, Ja is a universal abstract
solution w.r.tM′.

The universality of a tkc a-chase round is shown in Lemma 15. Corollary 16 shows the result
of a-chase algorithm is a universal abstract solution.

I Lemma 15. Let Ja be an abstract solution for Ia w.r.t M′. Let J ′a be the result of a
successful a-chase∗Σk round on Ja, which is an abstract solution for Ia w.r.t M. Let J ′′a
be any arbitrary abstract solution for Ia w.r.t M and such that there exists an abstract
homomorphism h1 : Ja 7→ J ′′a . Then h1 : J ′a 7→ J ′′a .

I Corollary 16. Let Ia be a source instance. Let Ja be the result of s-t ttgd a-chase round
on (Ia, ∅) with Σst. Let J ′a be the result of the tkc a-chase round on Ja with Σk. Then, J ′a is
a universal abstract solution of Ia w.r.tM.

XX:14 Temporal Data Exchange

8 Query Answering

In addition to finding a universal solution for a data exchange problem, another important
issue is query answering over the target schema [7]. When queries are posed over the target
schema, different answers may be obtained depending on the solution that is considered. A
widely used notion is the concept of certain answers, where the answers are the intersection
of all the answers to the query on each possible solution. In this section, we first define
concrete certain answers and then a method to calculate them.

I Definition 17. Concrete certain answers: Given a normalized concrete source instance Ic,
the concrete certain answers of Q w.r.t Ic andM, denoted by certainc(Q, Ic,M) are :

certainc(Q, Ic,M) =
⋂
{Q(Jc)|Jc is a concrete solution for Ic}

where Q(Jc) is the result of evaluating query Q on Jc treating interval-annotated nulls as
distinct constants.

The definition of certaina(Q, Ia,M) is similar. Observe that certain answers to queries are
complete tuples. Therefore, annotated nulls are used only during data exchange and do not
appear in certain answers of queries.

Conjunctive queries and unions of conjunctive queries play an important role in relational
data exchange because certain answers to this class of queries can be obtained in polynomial
time [7]. Conjunctive queries are the ∃, ∧ fragment of relational calculus. In this paper, a
conjunctive query Q has the form ∃ȳβ(x̄, ȳ, t). Unions of conjunctive queries are a class of
queries of the form Q1 ∨ ... ∨Qm, where each Qi(1 ≤ i ≤ m) is a conjunctive query. Unions
of conjunctive queries are preserved under abstract homomorphism [3] meaning that if there
is an abstract homomorphism h : Ia 7→ I ′a and Q is a union of conjunctive queries, then if w
is a complete abstract tuple in Q(Ia), it is also in Q(I ′a).

The following theorem claims that the certain answers of a conjunctive query Q on the
concrete and abstract view are identical under the semantic mapping. The intuition behind
the proof is that certain answers contain only constants and not the annotated nulls; also,
the proof uses the properties of unions of conjunctive queries.

I Theorem 18. Let M be a temporal schema mapping and Q be a union of conjunctive
queries over the target schema. Let Ic be a concrete normalized source instance. Then we
have:

Jcertainc(Q, Ic,M)K = certaina(Q, JIcK,M).

Naïve evaluation [1, 3, 9, 7] is a technique commonly used in the literature to find certain
answers for unions of conjunctive queries on naïve tables. It has been shown [3, 7] that naïve
evaluation of unions of conjunctive queries on a universal solution J for a relational source
instance I gives certain answers. The same proof applies to universal abstract solutions,
because the proof needs the definitions of certain answers and universal solutions which are
the same for abstract and relational instances, modulo modifications for handling point-
annotated nulls. However, for the concrete case, we need to show that naïve evaluation on a
universal concrete solution will produce certain answers (Corollary 20).

Given a union of conjunctive queries Q and a concrete solution Jc for a source instance
Ic and a temporal schema mapping, the naïve evaluation of Q on Jc, denoted by Q(Jc)↓,
works as follows:

Each interval-annotated null N [s,e) in Jc is replaced with a fresh constant cn[s,e) every-
where it occurs.

Ladan Golshanara, Jan Chomicki, and Wang-Chiew Tan XX:15

Query Q is evaluated by finding all formula homomorphisms from variables in Q to Jc.
In particular, the variable t is mapped to a clopen interval. The result of this step is
denoted by Q(Jc).
Tuples with fresh constants are dropped from Q(Jc).

Naïve evaluation of Q on an abstract solution Ja, denoted by Q(Ja)↓, works in the same
way, except that each point-annotated null N t0 is replaced with a fresh constant cnt0 . The
following theorem shows that naïve evaluation on a concrete solution produces the same
answers as naïve evaluation on the corresponding abstract solution under the semantic
mapping.

I Theorem 19. Let Jc be a normalized concrete solution for a source instance Ic w.r.tM.
Let Q be a union of conjunctive queries over the target schema. Then JQ(Jc)↓K = Q(JJcK)↓.

I Corollary 20. Let Jc be a universal concrete solution for a concrete source instance Ic
w.r.t a temporal schema mappingM = (RS , RT ,Σst,Σk). Let Q be a union of conjunctive
queries over the target schema. Then Jcertainc(Q, Ic,M)K = JQ(Jc)↓K.

9 Conclusion and Future Work

In this paper, we proposed a framework for data exchange on temporal data which emphasizes
on the abstract vs. concrete view of the data. We considered a basic case where source
instances have a single temporal dimension, and similarly to the original data exchange
framework [7], the source instances are assumed to be complete. The temporal schema
mappings consist of a set of s-t ttgds and tkcs. We proposed two chase algorithms: one for
concrete temporal instances and one for abstract temporal instances. The abstract chase
makes it possible to define the semantics of the concrete chase and to prove that the concrete
chase is correct. We defined the abstract chase as the parallel application of chase steps
to avoid reasoning over infinite sequences of chase steps. We also discussed that parallel
application of chase steps for temporal key constraints requires more care as not to equate
one unknown value with two different constants in two chase steps. Then we defined the
concrete chase and proved that its result is semantically aligned to the one achieved by the
abstract chase. We showed the result of the abstract chase is a universal abstract solution
and since one can implement the abstract chase by the concrete chase, the result of the
concrete chase is a good candidate to be materialized and used for answering queries.

For future work, we plan to investigate our approach on real use cases. This needs an
efficient implementation of normalization operation because normalization might lead to
a blow-up in the number of concrete tuples if a large number of clopen intervals in the
tuples within the source instance overlap each other. A normalized instance is much more
fragmented than an un-normalized one, defeating the whole purpose of using intervals as
a more compact representation. Furthermore, it would be nice to identify other tractable
temporal constraints on the target schema. For example, egds in general or constraints with a
comparison operator on time such as "If a Ph.D student graduated at time t, then there must
be a time t′ that they passed the candidacy examination such that t′ < t". The challenge in
the case of general egds is that the order of chase steps might matter for such dependencies
because the application of one chase step might lead to the application of another one. A
good starting point for considering comparison operators is the paper [18] which explores
arithmetic operations in s-t tgds and tgds.

XX:16 Temporal Data Exchange

Acknowledgments

Jan Chomicki is partially supported by NSF grants IIS-1450590 and IIS-1524469. Wang-Chiew
Tan is partially supported by NSF grants IIS-1450560 and IIS-1524382.

References
1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-

Wesley, 1995.
2 Alin Deutsch and Alan Nash and Jeffrey B. Remmel. The chase revisited. In PODS, pages

149–158, 2008.
3 Marcelo Arenas, Pablo Barceló, Leonid Libkin, and Filip Murlak. Foundations of Data

Exchange. Cambridge University Press, New York, NY, USA, 2014.
4 Jan Chomicki. Temporal query languages: A survey. In ICTL, volume 827 of Lecture Notes

in Computer Science, pages 506–534. Springer, 1994.
5 Jan Chomicki and David Toman. Temporal databases. In Handbook of Temporal Reasoning

in Artificial Intelligence, volume 1 of Foundations of Artificial Intelligence, pages 429–467.
Elsevier, 2005.

6 Xin Luna Dong and Wang-Chiew Tan. A time machine for information: Looking back to
look forward. PVLDB, 8(12):2044–2045, 2015.

7 Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data exchange:
semantics and query answering. Theor. Comput. Sci., 336(1):89–124, 2005.

8 Amélie Gheerbrant, Leonid Libkin, and Cristina Sirangelo. Naïve evaluation of queries over
incomplete databases. ACM Trans. Database Syst., 39(4):31:1–31:42, 2014.

9 Tomasz Imielinski and Witold Lipski, Jr. Incomplete information in relational databases.
J. ACM, 31(4):761–791, 1984.

10 Manolis Koubarakis. Database models for infinite and indefinite temporal information. Inf.
Syst., 19(2):141–173, March 1994.

11 Manolis Koubarakis. Foundations of indefinite constraint databases. In Principles and Prac-
tice of Constraint Programming, Second International Workshop, pages 266–280. Springer,
1994.

12 Krishna Kulkarni and Jan-Eike Michels. Temporal features in SQL:2011. SIGMOD Rec.,
41(3):34–43, October 2012.

13 Demian Lessa, Bharat Jayaraman, and Jan Chomicki. Temporal data model for program
debugging. In DBPL, 2011.

14 Leonid Libkin. Data exchange and incomplete information. In PODS, pages 60–69. ACM,
2006.

15 Leonid Libkin. Incomplete data: what went wrong, and how to fix it. In PODS, pages
1–13. ACM, 2014.

16 Adrian Onet. The chase procedure and its applications in data exchange. In Data Exchange,
Information, and Streams, volume 5 of Dagstuhl Follow-Ups, pages 1–37. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2013.

17 A matter of time: Temporal data management in DB2 10, 2012. http://www.ibm.com/
developerworks/data/library/techarticle/dm-1204db2temporaldata.

18 Balder ten Cate, Phokion G. Kolaitis, and Walied Othman. Data exchange with arithmetic
operations. In Proceedings of the 16th International Conference on Extending Database
Technology, EDBT ’13, pages 537–548, 2013.

19 David Toman. Point vs. interval-based query languages for temporal databases. In PODS,
pages 58–67. ACM Press, 1996.

20 David Toman. Point-based temporal extension of temporal SQL. In DOOD, volume 1341
of Lecture Notes in Computer Science, pages 103–121. Springer, 1997.

http://www.ibm.com/developerworks/data/library/techarticle/dm-1204db2temporaldata
http://www.ibm.com/developerworks/data/library/techarticle/dm-1204db2temporaldata

Ladan Golshanara, Jan Chomicki, and Wang-Chiew Tan XX:17

10 Appendix

Definitions of s-t ttgd c-chase step and c-chase round

I Definition 21. (s-t ttgd c-chase step): Let Ic be a complete concrete normalized instance
and let σs be an s-t ttgd in Σst. Let h be a formula homomorphism from lhs of σs to Ic. The
s-t ttgd σs can be applied to Ic with homomorphism h, denoted by Ic

σ,h7−−→ Kc, and the result
(i.e. Jc), is the set of facts obtained by

extending h to h′ such that each existential variable is assigned a fresh null annotated
with the temporal context h(t), followed by
applying h′ to the rhs of σs

We denote the result of applying σs to Ic by Ic
σs,h7−−−→ Kc.

Note that h(t) is a time interval in the above definition, while it is a time point in definition
2.

I Definition 22. (S-t ttgd c-chase round): Let Ic be a normalized concrete instance and let
Σst be a set of s-t ttgds. Then the s-t ttgd c-chase round (denoted by c-chase∗Σst) of Ic is the
union of results of all s-t ttgd c-chase steps that can be applied on the facts of Ic with Σst.
Let Jc be the resulting target instance after the s-t ttgd round. In short:

Jc =
⋃

σ∈Σst,h,Ic
σ,h7−−→Kc

Kc

�

Definitions of tkc c-chase step and c-chase round

I Definition 23. (Tkc c-chase step): Let Jc be a normalized concrete instance. Let σk ∈ Σk
be a tkc over relation schema R(A1, ..., Am, B1, ..., Bn, T) in Jc where m ≥ 0 and n ≥ 0 (as
defined in Section 3). Let u1 and u2 be two conflicting concrete facts w.r.t σk in Jc such
that u1[T] = u2[T] = [s, e) is their clopen interval. If h is a formula homomorphism from lhs
of σk to Jc such that:

u1 = R(h(x1), ..., h(xm), h(y1), ..., h(yn), h(t)) and u2 = R(h(x1), ..., h(xm), h(y′
1), ..., h(y′

n), h(t))
then σk can be applied on u1 and u2, denoted by c-chaseσk(u1, u2) and the result is a set of
equalities such that:

c-chaseσk(u1, u2) = {h(yi) = h(y′i)|1 ≤ i ≤ n}

Note that since Jc is normalized, t maps to a unique clopen interval, which is the interval of
u1 and u2.

I Definition 24. (Tkc c-chase round): Let Jc be a normalized concrete instance and let Σk
be a set of tkcs. Let u1 and u2 be two conflicting concrete facts. Let EJc,Σ be defined as
follows:

EJc,Σk =
⋃

σk∈Σk,u1,u2∈Jc

c-chaseσk(u1, u2)

Here we have the same cases as Definition 6 except that we deal with interval-annotated
nulls. Therefore, if EJc,Σ � c = c′, the result of the tkc c-chase round is a failure (case 1).
Otherwise, we have a replacement of an interval-annotated null with a constant or another
interval-annotated null based on the equalities implied by EJc,Σk . Let J ′c be the instance Jc
after all replacements have been applied, then c-chase∗Σk(Jc) = J ′c.

XX:18 Temporal Data Exchange

Note that we might have infinitely many equalities in EJa,Σk , but only finitely many equalities
in EJc,Σk .
Proof of Theorem 7

Proof. Let Jc = c-chase∗Σst(Ic) and Ia = JIcK. Let Ja = a-chase∗Σst(Ia). First, we show that
JJcK 7→ Ja. Let w = βj(v1, ..., vk, t0) be an abstract fact in JJcK, where v1, ..., vk are either
constants or point-annotated nulls. So there must be a concrete fact u = βj(v′1, ..., v′k, [s, e))
in Jc such that w ∈ JuK and t0 ∈ [s, e). Based on the definition of the semantic mapping,
v′j = vj (1 ≤ j ≤ k) if vj ∈ w is a constant, and if vj is a point-annotated null N t0 , then v′j
is an interval-annotated null N [s,e). Note that since Jc is normalized, the interval [s, e) is a
unique interval in Jc that the time point t0 belongs to. The concrete fact u is in the result of
the s-t ttgd c-chase round on Ic. Let

σs : ∀x̄α(x̄, t)→ ∃ȳβ(x̄, ȳ, t),

where α = α1 ∧ ... ∧ αm and β = β1 ∧ ... ∧ βn, be the s-t ttgd in Σst that is used in a c-chase
step on Ic with a formula homomorphism h1. Then there must be m concrete facts u1, ..., um
in Ic such that ui = αi(h1(x̄), h1(t)), 1 ≤ i ≤ m. Obviously, h1(t) = [s, e), which is the
clopen interval of the facts u1, ..., um. By extending h1 to h′1 as explained in Definition 21,
we have u = βj(h′1(x̄), h′1(ȳ), h′1(t)), where h1(x̄) = h′1(x̄), h1(t) = h′1(t) and for each y ∈ ȳ,
a fresh interval-annotated null with the interval [s, e) is generated.
Let q =

⋃
1≤i≤m

JuiK. Clearly q ⊆ Ia. We define a formula homomorphism h2, such that

h2(x̄) = h1(x̄), and h2(t) = t0. Now we have to show h2 is a formula homomorphism from
the lhs of σs to q. By applying h2 on αi, 1 ≤ i ≤ m, we have wi = αi(h2(x̄), h2(t)). wi ∈ JuiK,
by construction of h2; therefore, h2 is a formula homomorphism from the lhs of σs to q. By
extending h2 to h′2 (as explained in Definition 2), for each existential variable in ȳ a fresh
null annotated with the time point h2(t) = t0 is generated. By applying h′2 to the rhs of σs,
we have:

w′ = βj(h′2(x̄), h′2(ȳ), h′2(t)) = βj(v′′1 , ..., v′′k , t0),

where v′′j (1 ≤ j ≤ k) is either a constant or a point-annotated null with the time point t0.
Observe that, if vj in w is a constant, v′′j = vj because h1(x̄) = h′1(x̄) = h2(x̄) = h′2(x̄) and
if vj in w is an annotated null such as N t0 , then by construction explained above v′′j is a
point-annotated null (with the time point t0). Hence, there is an abstract homomorphism
from w to w′. We have proved that there is an abstract homomorphism from each fact in JJcK
to a fact in Ja. We define an abstract homomorphism from JJcK to Ja as the union of all the
abstract homomorphisms at facts level described above. There might be different occurrences
of the same point-annotated null in JJcK because an s-t ttgd c-chase step generates the same
interval-annotated null for each occurrence of an existentially quantified variable in the rhs
of a σs and the semantic mapping produces the same set of point-annotated nulls for the
same interval-annotated null. Therefore, we need to make sure that each occurrence of a
point-annotated null in JJcK maps to the same point-annotated null in Ja. In other words, the
union of abstract homomorphisms at facts level is well defined. Since an s-t ttgd a-chase step,
by definition, generates the same point-annotated null for each occurrence of an existentially
quantified variable in the σs it is guaranteed all occurrences maps to the same time point.
Also, note that abstract homomorphisms are identity on constants and time points, so there
is no clash regarding constants and time points.

For the other direction, we need to show Ja 7→ Jc-chase∗Σst(Ic)K. Let w = βj(a1, ..., ak, t0) ∈
a-chase∗Σst(Ia), where a1, ..., ak are either nulls annotated with t0 or constants. The fact w
is the result of a-chase on Ia. Let σ(= ∀x̄α(x̄, t) → ∃ȳβ(x̄, ȳ, t)) be the s-t ttgd that was

Ladan Golshanara, Jan Chomicki, and Wang-Chiew Tan XX:19

used in an a-chase step to produce w, where α1 ∧ ... ∧ αm = α and β1 ∧ ... ∧ βn = β. This
means that there is a formula homomorphism h1 from lhs of α to m complete abstract facts
w1, ..., wm ∈ Ia such that wi = αi(h1(x̄), h1(t)), 1 ≤ i ≤ m. Note that the facts w1, ..., wm
have the same time point t0, that is h1(t) = t0. As the result of the a-chase step with σs
and h1, we have w = βj(h′1(x̄), h′1(ȳ), h′1(t)), where h′1 is the extension of h1 as explained
in definition 2 and βj is an atom in β. The facts w1, ..., wm are the result of the semantic
mapping on Ic. So we have m concrete tuples in Ic such that wi ∈ JuiK, 1 ≤ i ≤ m. Since the
instance Ic is normalized and t0 belongs to all the clopen intervals in the tuples u1, ..., um,
we have ui[T] = [s, e), 1 ≤ i ≤ m, where [s, e) is a unique interval in Ic such that t0 ∈ [s, e).
We build a formula homomorphism h2 such that h2(x̄) = h1(x̄) and h2(t) = [s, e). Now
we have to show, h2 is a formula homomorphism from the lhs of α to the tuples u1, ..., um.
By applying h2 on α, we have αi(h2(x̄), h2(t)). Observe that ui = (h2(x̄), h2(t)). As the
result of a c-chase step with σs and h2, a fact u = βj(h′2(x̄), h′2(ȳ), h′2(t)) will be produced
where h′2 is an extension of h2 as described in Definition 21. The fact u has the form
βj(a′1, ..., a′k, [s, e)) where a′1, ..., a′k are either constants or annotated nulls with interval [s, e).
Based on the definition of the semantic mapping a fact w′ = βj(a′′1 , ..., a′′k , t0) is in JuK where
a′′j = a′j , 1 ≤ j ≤ k if a′j is a constant. Or, a′′j is a point-annotated null such as N t0 whenever
a′j is an interval-annotated null N [s,e). Observe that a′′j = aj , if aj is a constant because
h2(x̄) = h′2(x̄) = h1(x̄) = h′1(x̄). Furthermore, if aj ∈ w is a point-annotated null, then a′′j
is also a point-annotated null with the time point t0 by construction of h′2. Hence, there
is an abstract homomorphism from w to w′. We have proved that there is an abstract
homomorphism from each fact in Ja to a fact in JJcK. We define an abstract homomorphism
from Ja to JJcK to be the union of all abstract homomorphisms at facts level described
above. There might be different occurrences of the same point-annotated null in Ja because
an s-t ttgd a-chase step produces the same point-annotated null for each occurrence of an
existentially quantified variable in the rhs of a σs. We need to make sure each occurrence of
a point-annotated null in Ja maps to the same point-annotated null in JJcK in the union of
abstract homomorphisms at facts level. This is guaranteed by construction because an s-t
ttgd c-chase step produces the same interval-annotated null in Jc for each occurrence of an
existentially quantified variable in the rhs of the σs and the semantic mapping generates the
same set of point-annotated nulls for each occurrence of an interval-annotated null. J

Proof of Lemma 9

Proof. Assume u1 and u2 are conflicting concrete facts w.r.t σk. Thus, they agree on
temporal key attributes (i.e. u1[A1, ..., Am, T] = u2[A1, ..., Am, T]) but differ in some other
attribute values (i.e. ∃i, 1 ≤ i ≤ n s.t. u1[Bi] 6= u2[Bi]). Let [s, e) be the time interval
of u1 and u2 in Jc. Let w1 and w2 be two arbitrary facts in Ju1K and Ju2K, respectively,
such that w1[T] = w2[T] = t0 . Clearly, t0 ∈ [s, e) because of the definition of the semantic
mapping. Note that since Jc is normalized, clopen interval [s, e) is a unique interval t0
belongs to. Abstract facts w1 and w2 also agree on temporal key attributes. Considering
that the temporal key attributes cannot be null, u1[Aj] = u2[Aj] (1 ≤ j ≤ m) is a constant
such as c. Therefore, w1[Aj] = w2[Aj] = c based on the semantic mapping definition. Now
we show w1 and w2 are conflicting. We distinguish all concrete conflicting cases between u1
and u2:

u1[Bi] = c1 and u2[Bi] = c2, where c1, c2 ∈ Const and c1 6= c2, then we have w1[Bi] = c1
and w2[Bi] = c2.
u1[Bi] = N [s,e) and u2[Bi] = c (or vice versa), then we have w1[Bi] = N t0 and w2[Bi] = c.
u1[Bi] = N [s,e) and u2[Bi] = M [s,e), then we have w1[Bi] = N t0 and w2[Bi] = M t0 .

XX:20 Temporal Data Exchange

All of these cases are valid based on the definition of the semantic mapping and show
that w1 and w2 are conflicting abstract facts. For the other direction, each pair of facts
w1 ∈ Ju1K and w2 ∈ Ju2K, with the same temporal attribute t0 ∈ [s, e), agree on temporal key
attributes w1[A1, ..., Am, T] = w2[A1, ..., Am, T] but not on some other attribute values (i.e.
∃i s.t. w1[Bi] 6= w2[Bi]). The cases where at least one of the w1[Bi] or w2[Bi] is a constant
(and the other one is a point- annotated null) are straightforward. So we just discuss the
case where there are different point-annotated nulls, that is w1[Bi] = N t0 and w2[Bi] = M t0 .
Then u1[Bi] = N [s,e) while u2[Bi] = M [s,e) which causes a conflict between the tuples u1
and u2. J

Proof of Lemma 10

Proof. First, we prove that if there is a c-chase step, such as c-chaseσ(u1, u2), then there are
(possibly infinitely many) a-chase steps from abstract facts in Ju1K ∪ Ju2K using the same σk.
Let h be the formula homomorphism used in c-chaseσ(u1, u2) from lhs of σk to Jc such that:
u1 = R(h(x1), ..., h(xm), h(y1), ..., h(yn), h(t)) and u2 = R(h(x1), ..., h(xm), h(y′

1), ..., h(y′
n), h(t))

Based on Lemma 9 all abstract facts w1 ∈ Ju1K and w2 ∈ Ju2K that agree on the temporal
attribute are conflicting abstract facts. Let t0 be an arbitrary time point in [s, e), we build
formula homomorphism ht0 as follows:

ht0(z) =


h(z) if h(z) is a constant and z is a non-temporal variable
N t0 if h(z) is an interval-annotated null N [s,e)

t0 if h(z) = [s, e)

Now we need to show ht0 is a formula homomorphism from σk to w1 ∈ Ju1K and w2 ∈ Ju2K,
such that w1[T] = w2[T] = t0. Wlog, we just consider w1. Applying h to σk, the following
fact is obtained

R(h(x1), ..., h(xm), h(y1), ..., h(yn), h(t)) = R(c1, ..., cm, v1, ..., vn, [s, e))

where c1, ..., cm are constants, vj (1 ≤ j ≤ n) is either constant or an interval-annotated null.
If we apply ht0 to σk, the result, based on definition of ht0 , is

R(ht0(x1), ..., ht0(xm), ht0(y1), ..., ht0(yn), ht0(t)) = R(c1, ..., cm, v′1, ..., v′n, t0)

where v′j , 1 ≤ j ≤ n is either a constant or a point-annotated null. Observe that v′j = vj , if
vj is constant and v′j = N t0 if vj = N [s,e). Therefore, w1 = R(c1, ..., cm, v′1, ..., v′n, t0) and σk
can be applied on w1 and w2 (i.e. a-chaseσk(w1, w2)).

In the other direction (i.e. only if), for each pair of conflicting abstract facts w1 ∈ Ju1K
and w2 ∈ Ju2K, with the same time point t0 ∈ [s, e), there is an a-chase step (i.e. a-
chaseσk(w1, w2)). Let ht0 be the homomorphism used in a-chaseσ(w1, w2) step. Note that
each time point can belong to only one interval in a normalized instance. Based on Lemma 9,
we have two conflicting concrete facts u1 and u2 with the interval [s, e). We define a formula
homomorphism h as follows

h(z) =


ht0(z) if ht0(z) is a constant and z is a non-temporal variable
N [s,e) if ht0(z) is an annotated null N t0

[s, e) ht0(z) = t0

Now we need to show h is a formula homomorphism from σk to u1 and u2. Wlog, we show
this for u1. When we apply ht0 to σk, we get the tuple

w1 = R(ht0(x1), ..., ht0(xm), ht0(y1), ..., ht0(yn), ht0(t)) = R(c1, ..., cm, v′1, ..., v′n, t0)

Ladan Golshanara, Jan Chomicki, and Wang-Chiew Tan XX:21

where c1, ..., cm are constants and v′j(1 ≤ j ≤ n) is either a constant or an annotated null.
Now by applying h on σk the following fact is obtained

R(h(x1), ..., h(xm), h(y1), ..., h(yn), h(t)) = R(c1, ..., cm, v1, ..., vn, [s, e))

where vj , 1 ≤ j ≤ n, is either a constant or an interval-annotated null. Observe that vj = v′j
if v′j is a constant and vj = N [s,e) if v′j = N t0 . Therefore, u1 = R(c1, ..., cm, v1, ..., vn, [s, e)).
Therefore, we can apply σk on u1 and u2 (i.e. c-chaseσk(u1, u2)).

J

Proof of Lemma 12

Proof. Each equality in EJc,Σk , such as N [s,e) = val, is due to a tkc c-chase step on conflicting
concrete facts u1 and u2, such that u1[T] = u2[T] = [s, e). Based on Lemma 9 and Lemma
10, we know there is a tkc a-chase step for each pair of conflicting abstract facts w1 and
w2 w.r.t σk such that w1[T] = w2[T] = t0 and t0 ∈ [s, e). Therefore, based on Definition
11 for each equality in EJc,Σk , there is an equivalent equality in EJa,Σk up to renaming the
point-annotated nulls.
The other direction is straightforward as well. Therefore, JEJc,ΣkK ≡ EJa,Σk . J

Proof of Theorem 8

Proof. This proof is very similar to the proof of Theorem 7. First we show Jc-chase∗Σk(Jc)K 7→
a-chase∗ΣkJJcK. Let w be a fact in Jc-chase∗Σ(Jc)K such that w = R(a1, ..., am, t0), where ai
is either a constant or a point-annotated null. This means that there is a concrete fact u
in J ′c = c-chase∗Σk(Jc) such that w ∈ JuK. Let u = R(b1, ..., bm, [s, e)), where bi is either a
constant or an interval-annotated null. By definition of the semantic mapping, we have

if ai is a constant, bi is a constant as well.
if ai is a point-annotated null such as N t0 , bi is an interval-annotated null such as N [s,e).
t0 ∈ [s, e) for some positive integers s and e.

The concrete fact u is the result of c-chase∗Σk (Definitions 23 and 24) on concrete instance Jc
where Σk is a set of temporal key constraints. We distinguish two cases:

The concrete fact u is in Jc and it is not conflicting with any other concrete tuple
with respect to Σk. Therefore, it will remain intact in J ′c after applying parallel chase
c-chase∗Σk .
Some interval-annotated nulls in the fact u were replaced by constants or other interval-
annotated nulls based on the equalities in EJc,Σk during a successful c-chase∗Σk step.

Now we need to show in either case, there is a fact w′ in a-chase∗ΣkJJcK that is equivalent to
w up to renaming point-annotated nulls (without changing their context)

Case(a): Since u is a concrete fact in Jc and w ∈ JuK and we are a-chasing JJcK with
the same set Σk of tkcs, the abstract fact w is not conflicting with any other fact in JJcK
w.r.t any σk ∈ Σk. Hence, w′ is equal to w ∈ Ja = a-chase∗Σk(JJcK).

Case(b): There is a fact u′ in Jc such that u can be obtained from u′ by replacing
its interval-annotated nulls by either constants or other interval-annotated nulls. These
replacements are inferred during parallel c-chase by EJc,Σk . Based on Lemma 12 we have
JEJc,ΣkK ≡ EJa,Σk , thus, the point-annotated nulls that are replaced in w′ ∈ a-chase∗ΣkJu

′K
are based on an equivalent set of equalities (i.e. EJa,Σk). Note that fact w′ is not identical
to w because we do not have control over the arbitrary point-annotated null that is chosen
to replace the others which are equivalent to it, but they have the same context. Therefore,
there is an abstract homomorphism from w′ to w. Proof of a-chase∗Σk(Ja) 7→ Jc-chase∗Σk(Jc)K
is similar. J

XX:22 Temporal Data Exchange

Proof of Lemma 13

Proof. The proof is same as proof of case 1 in Lemma 3.4 in [7], which shows there is a
homomorphism from the result of an arbitrary chase step in the sequence of chase steps
to any instance that satisfies σs. Lemma 13 is a special case of Lemma 3.4, where the
initial instance is (Ia, ∅). Therefore there is no need for the assumption that there exists
a homomorphism from (Ia, ∅) to the instance (J ′a in our case) that satisfies σs. In other
words, an abstract homomorphism from (Ia, ∅) to (Ia, J ′a) is the identity mapping (same as
homomorphisms in [7]). J

Proof of Lemma 15

Proof. Wlog, we assume all tkcs in Σk have one equality on rhs, that is:

σk : R(x1, ..., xm, y1, t) ∧R(x1, ..., xm, y2, t)→ y1 = y2

Let R(c1, ..., cm, v, t0) be a fact in J ′a, where c1, ..., cm are constants and v is either a constant
or a point-annotated null. We need to show that R(h1(c1), ..., h1(cm), h1(v), h1(t0)) is in J ′′a .
If R(v1, ..., vn, t0) ∈ Ja, then since h1 : Ja 7→ J ′′a , we have R(h1(v1), ..., h1(vn), h1(t0)) ∈ J ′′a .
In this case, the above fact has not been modified during a-chase∗Σk round. Otherwise, by
the definition of a tkc a-chase round, there is a fact R(c1, ..., cm, v′, t0) in Ja and the equality
v′ = v is derived form EJa,Σk . This equality is either generated in one tkc a-chase step or is
derived by symmetric transitive closure of EJa,Σk . We will discuss each case below:

Equality v′ = v is generated in one tkc a-chase step. Then there is a formula homomorph-
ism h from the lhs of σk to Ja such that h(y1) = v′ and h(y2) = v. Since h1 : Ja 7→ J ′′a ,
the abstract homomorphism h1 is defined for v and v′, that is h1(v) and h1(v′) are in
J ′′a . Also, since J ′′a satisfies σk it follows that h1(v) is equal to h1(v′) in J ′′a . Therefore,
R(h1(c1), ..., h1(cm), h1(v′), h1(t0)) ∈ J ′′a .
Equality v′ = v is derived by symmetric transitive closure of EJa,Σk . In this case, at least
two different formula homomorphisms are used that map variables in the lhs of at least
two tkcs in Σk to Ja. In particular v and v′ are in Ja. Since h1 : Ja 7→ J ′′a , the abstract
homomorphism h1 is defined for h1(vi) and h1(v′i). Moreover, since J ′′a is a solution for Ia
w.r.tM, we have h1(vi) is equal to h1(v′i) in J ′′a and R(h1(c1), ..., h1(cm), h1(v′), h1(t0)) ∈
J ′′a .

J

Proof of Theorem 18

Proof. First, we show Jcertainc(Q, Ic,M)K ⊆ certaina(Q, JIcK,M). Let w be a tuple
in Jcertainc(Q, Ic,M)K, so w is a complete abstract fact. There must be a complete
concrete fact u in certainc(Q, Ic,M) such that w ∈ JuK. Based on Definition 17, u ∈⋂
{Q(Jc)|Jc is a concrete solution for Ic}. Let J ′c be the concrete solution produced by con-

crete chase algorithm on Ic w.r.t M. Therefore, u ∈ Q(J ′c) and w ∈ JQ(J ′c)K. Let Ja be
the abstract solution obtained by the abstract chase algorithm on JIcK w.r.t M. Based
on Theorems 7 and 8 we know that Ja is homomorphically equivalent to JJ ′cK. Since w
is a complete fact in JQ(J ′c)K, unions of conjunctive queries are preserved under abstract
homomorphisms, and abstract homomorphisms are identities on constants, w is in Q(Ja).
The solution Ja is a universal abstract solution (Corollary 16). Therefore, w is in the result
of evaluating Q on every abstract solution for JIcK, which means w ∈ certaina(Q, JIcK,M).

Ladan Golshanara, Jan Chomicki, and Wang-Chiew Tan XX:23

For the other direction, we have to prove certaina(Q, JIcK,M) ⊆ Jcertainc(Q, Ic,M)K.
Let w ∈ certaina(Q, JIcK,M), which means w is a complete abstract tuple in:⋂

{Q(Ja)|Ja is an abstract solution for JIcK}.

Let J ′a be the abstract solution obtained by abstract chase algorithm on JIcK w.r.tM. We
have w ∈ Q(J ′a). Note that J ′a is a universal abstract solution. Let Jc be the concrete solution
produced by concrete chase on Ic w.r.t M. Based on Theorems 7 and 8, we know that
w ∈ JQ(JcK. Now we have to show that w is in JQ(J ′c)K, where J ′c is any arbitrary concrete
solution for Ic. Suppose w /∈ JQ(J ′c)K. It is obvious that JJ ′cK is also a solution for JIcK w.r.t
M. Since Ja is a universal abstract solution, there must be an abstract homomorphism from
Ja to JJ ′cK. However, it is a contradiction with universality of Ja if w ∈ Q(Ja) and not in
JJ ′cK. Therefore w must be in JJ ′cK. J

Naïve evaluation for abstract instances
Naïve evaluation [1, 3, 9, 7] is a technique commonly used in the literature to find certain

answers for unions of conjunctive queries on naïve tables (i.e. tables with labeled nulls). Let
Ja be a universal abstract solution for a source instance Ia and a schema mapping. Let Q
be a union of conjunctive queries of the form Q1 ∨ ... ∨ Qm, where each Qi (1 ≤ i ≤ m)
is a conjunctive query (i.e. ∃ȳβ(x̄, ȳ, t)), where β is a conjunction of atomic formulas(i.e.
β = β1 ∧ ...∧βn) over the target schema. In order to calculate the result of Q on the abstract
instance Ja with naïve evaluation, denoted by Q(Ja)↓, the following steps should be taken:

All point-annotated nulls are treated as distinct fresh constants. In particular, the point-
annotated null N t0 is replaced with a fresh constant cnt0 everywhere it occurs in Ja.
Query Q is evaluated by finding all formula homomorphisms from variables in Q to Ja.
In particular, the variable t is mapped to a time point. The result of this step is denoted
by Q(Ja).
Tuples with fresh constants are dropped from Q(Ja).

Proof of Theorem 19

Proof. Wlog, we prove the theorem for one disjunct of Q′. Let Q be an arbitrary disjunct in
Q′. This equality is proved by first showing that JQ(Jc)↓K ⊆ Q(JJcK)↓ and then Q(JJcK)↓ ⊆
JQ(Jc)↓K. Like the previous proofs, for each direction, we take a tuple in the left hand side
and show it must be in the right hand side as well and vice versa.

For the first part, let w = (a1, ..., ak, t0) be a complete abstract tuple in JQ(Jc)↓K. This
means there should be a complete concrete tuple u = (a′1, ..., a′k, [s, e)) in Q(Jc)↓ such that
w ∈ JuK. So, t0 ∈ [s, e). Furthermore, since naïve evaluation discards tuples with fresh
constants (that were nulls), all non-temporal values in w and u must be constants. That is,
ai = a′i and they are constants, 1 ≤ i ≤ k.

Having u ∈ Q(Jc)↓ means that there is a formula homomorphism h from the variables
in Q to the target instance Jc such that u = (h(x̄), h(t)). We need to show that there is
a formula homomorphism h′ from Q to JJcK such that w = (h′(x̄), h′(t)). We build h′ as
follows:

h′(z) =


h(z) if h(z) is a constant and z is a non-temporal variable
nct0 if h(z) is a fresh constant nc[s,e]
t0 if h(z) = [s, e)

Observe that h′(x̄) = h(x̄) because h(x̄) consists of constants. Now we have to show h′ is a
formula homomorphism from Q to JJcK. Let βi(x1, ..., xk, y1, ..., ym, t) be an arbitrary atom in

XX:24 Temporal Data Exchange

Q that maps to a concrete fact u′ = βi(a1, ..., ak, v1, ..., vm, [s, e)) in Jc with homomorphism
h, where ai, 1 ≤ i ≤ k are constants and vj (1 ≤ j ≤ m) is either a constant or a fresh
constant. That is, u′ = (h(x1), ..., h(xk), h(y1), ..., h(ym), h(t)). Using the homomorphism
h′ on βi gives a fact w′ = βi(h′(x1), ..., h′(xk), h′(y1), ..., h′(ym), h′(t)) which according to
definition of h′ is βi(a1, ..., ak, v

′
1, ..., v

′
m, t0), where v′j = vj if vj is a constant and v′j = nct0j

if vj is a fresh constant nc[s,e)j . Observe that w′ ∈ Ju′K; therefore, the homomorphism h′ is a
mapping from Q to JJcK. Moreover, w = (h′(x̄), h′(t)), hence it is in Q(JJcK)↓.

For the other direction, we have to show Q(JJcK)↓ ⊆ JQ(Jc)↓K. Let w = (a1, ..., ak, t0)
be a complete abstract tuple in Q(JJcK)↓. Therefore, there is a formula homomorphism h′

from variables in Q to JJcK such that w = (h′(x̄), h′(t)). Since Jc is normalized, let [s, e) be
the unique clopen interval in Jc that contains t0. We need to show that there is a formula
homomorphism h from variables in Q to Jc such that u = (h(x̄, t)) is in Q(Jc)↓ and w ∈ JuK.
In other words, u = (a1, ..., ak, [s, e)) such that t0 ∈ [s, e). We build a homomorphism h from
variables in Q to Jc as follows:

h(z) =


h′(z) if h′(z) is a constant and z is a non-temporal variable
nc[s,e) if h′(z) is a fresh constant nct0
[s, e) if h′(z) = t0

Observe that h(x̄) = h′(x̄), because h′(x̄) is mapped to constants. Let βi(x1, ..., xk, y1, ..., ym, t)
be an arbitrary atom in Q. Under h′, the atom maps to an abstract fact w′ in JJcK such
that w′ = βi(a1, ..., ak, v1, ..., vm, t0), where ai, 1 ≤ i ≤ k are constants and vj , 1 ≤ j ≤ m

are constants or fresh constants. Under h, the atom βi is u′ = βi(a1, ..., ak, v
′
1, ..., v

′
m, [s, e)),

where v′j = vj if vj is a constant and v′j = nc
[s,e)
j if vj is a fresh constant nct0j .

Observe that w′ ∈ Ju′K. Since Jc is normalized, there is a unique clopen interval among
all time values in Jc that contains t0. As mentioned earlier, this interval is [s, e). Hence, if w′
is a fact in JJcK, then u′ is the unique fact in Jc such that w ∈ Ju′K. Since there is only one
temporal variable t and βi(h′(x̄), h′(ȳ), h′(t)) is in JJcK, it follows that βi(h(x̄), h(ȳ), h(t)) is
a fact in Jc. This shows h is a formula homomorphism from Q to Jc.

Hence, u = (h(x̄), h(t)) is in Q(Jc)↓, and so we have w ∈ JQ(Jc)↓K. Since the disjuncts of
Q′ are independent and Q is an arbitrary disjunct in Q′, it is concluded that JQ′(Jc)↓K =
Q′(JJcK)↓. J

Proof of Theorem 20

Proof. Naïve evaluation of unions of conjunctive queries on a universal abstract solution
JJcK gives certain answers. The proof is the same as in [3, 7]. Therefore,

certaina(Q, JIcK,M) = Q(JJcK)↓

From Theorem 18:
Jcertainc(Q, Ic,M)K = Q(JJcK)↓

By replacing Q(JJcK)↓ with JQ(Jc)↓K from Theorem 19:

Jcertainc(Q, Ic,M)K = JQ(Jc)↓K

J

	1 Introduction
	2 Related Work
	3 Preliminaries and Definitions
	4 Abstract Chase
	4.1 S-t ttgd Round
	4.2 Tkc Round

	5 Concrete Chase
	6 Implementation of the abstract chase by the concrete chase
	7 Universal Solutions
	8 Query Answering
	9 Conclusion and Future Work
	10 Appendix

