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Abstract—This paper addresses some issues involved in applying the event-

condition-action (ECA) rule paradigm of active databases to policies—collections

of general principles specifying the desired behavior of a system. We use a

declarative policy description language PDL, in which policies are formulated as

sets of ECA rules. The main contribution of the paper is a framework for detecting

action conflicts and finding resolutions to these conflicts. Conflicts are captured as

violations of action constraints. The semantics of rules and conflict detection and

resolution are defined axiomatically using logic programs. Given a policy and a set

of action constraints, the framework defines a range of monitors that filter the

output of the policy to satisfy the constraints.

Index Terms—Policy, action constraint, conflict resolution, active rules, event,

action.
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1 INTRODUCTION

THE simple event-condition-action rule paradigm has proved very
useful in many AI and database applications [33], from constraint
maintenance to the general encoding of expert rules. However, the
applicability of the event-condition-action rule paradigm goes
beyond data management or expert systems. Such rules can be
used in network management and monitoring [21], electronic
commerce [18], security and access management [26], and other
application areas to express policies—collections of general princi-
ples specifying the desired behavior of a system. For instance,
network management is mainly carried out by following policies
about the behavior of the resources in the network. The policies are
usually formulated as sets of low-level rules that describe how to
(re)configure a device or how to manipulate the different network
elements under different network conditions. Analogous policies
occur in areas such as electronic commerce (“orders from
established customers should receive higher priority”) and
computer security. Usually, policies are coded in an imperative
programming language like Java. This makes for implementation
ease and efficiency but limits what can be done with policies. For
instance, it is difficult to modify, verify, or analyze such policies. In
this paper, we pursue a different approach. We use a declarative
policy description language PDL [25], in which policies are
formulated as sets of event-condition-action rules of the form

event causes action if condition: ð1Þ

A policy rule can be read as: If the event occurs in a situation where

the condition is true, then the action is executed.
A policy in PDL defines a transducer: a function that maps sets

of events into sets of actions. The PDL policy server described in

[32] provides an implementation for such transducers. A formal

description of the syntax and semantics of the subset of PDL used

in the present paper can be found in Section 2. However, our

interest in this paper is not in the language per se but in controlling

policies written in the language. In particular, we address the

issues of conflict detection and resolution.

Example 1. Consider the following simple scenario: There is an
automatic reservation system for a conference room in a

department. The reservations are controlled by a simple first-

in-first-served policy captured by the following rule:

requestResðUserÞ causes procResðUserÞ: ð2Þ

The procedure procRes reserves the room for the user if it is

available. Notice, however, that if there are simultaneous

reservation requests from different users, there will be two

instances of the rule triggered and the policy will not work
unless one of the procRes calls is cancelled. We introduce action

constraints into PDL to capture this type of conflict. The

constraints describe under which circumstances a set of actions

cannot be executed simultaneously. For the reservation policy,

the appropriate action constraint is

never procResðU1Þ ^ procResðU2Þ if U1 6¼ U2:

Typically, the burden of conflict resolution is left in the hands of

the policy administrator, who must provide the resolution of the

conflicts in the code that implements the policies. The process is

ad hoc with no guarantees on the properties of the solution. This

paper introduces a formal framework for detecting rule conflicts
and finding resolutions to these conflicts. A new abstraction,

monitor, is defined as a filter that is applied to the output of a policy

(i.e., a set of actions) by cancelling some actions to obtain a result

consistent with the constraints. Given a policy and a set of

constraints on the simultaneous execution of actions, the frame-

work produces a monitor for the policy. However, a monitor

cannot cancel actions arbitrarily. First, it should cancel as few
actions as possible. Second, action cancellation should be based on

the assumptions about execution atomicity. We have identified

two distinct assumptions of this kind. Under the first one, all the

actions are independent and the cancellation of an action has no

influence on other actions (action-cancellation monitors). Under the

second one, the actions caused by the same event fail or succeed
together (event-cancellation monitors).

In this paper, the semantics of policy rules and conflict

detection and resolution are defined axiomatically using disjunc-

tive logic programs. Such programs are generated automatically
from PDL specifications and can be subsequently modified by the

user. The latter option allows for more flexibility in handling

conflicts. The logic programming formulation provides a formal

framework to describe the semantics of policies. It has many

desirable properties by being both executable (using well-estab-

lished logic programming techniques) and easy to modify and

analyze formally.

2 THE POLICY DESCRIPTION LANGUAGE PDL
2.1 Syntax

The language we consider consists of three basic classes of

symbols: primitive event symbols, action symbols, and constant

symbols. These symbols are system-dependent and are given to the

user that defines the policies. There is also a set of standard data

types such as integers, floats, character strings, etc. Action and
primitive event symbols may be of any nonnegative arity. Each

action symbol of arity n denotes the name of a procedure that takes

n arguments (also called parameters) of a particular type. Every

event argument and constant symbol also has an associated type.

The arguments of event symbols represent event attributes.
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Definition 1. A policy is a finite collection of well-typed policy rules of

the form (1), where the event, action, and condition parts of a rule

are defined below.

Definition 2. The event part of a policy rule is an expression of the form

e1& . . . &en, where each ei is an event literal and & is interpreted as

a conjunction of events. An event literal is either a typed event term

of the form eðt1; . . . ; tnÞ, where e is a primitive event symbol of n

arguments and each ti is a constant or a variable, or a primitive event

symbol e preceeded by ! (!e) representing the negation of e (negated

events have no attributes). An event instance is a ground event term.

Definition 3. The action part of a policy rule is a typed action term of

the form aðt1; . . . ; tnÞ, where a is an action symbol of n arguments

and each ti is a constant or a variable that appears in the event part of

the rule. An action is a ground action term.

Definition 4. The condition part of a policy rule is an expression of the

form p1; . . . ; pn, where each pi is a predicate of the form t1�t2, � is a

relation operator from the set f¼; 6¼; <;
; >;�g, and each ti is a

constant or a variable that appears in the event part. The condition

represents the conjunction of the predicates.

2.2 Semantics

We adopt the view that a policy expects as input a set of instances

of primitive events (an epoch) and assumes that the events in the set

occurred simultaneously. The granularity of time for the epochs is

application dependent: It may be a minute in some contexts, a

day—in others. We assume that the selection of the time

granularity is made outside of our policy framework.
In the following, assume P is a policy.

Definition 5. A finite set of event instances is an epoch. The set of all

possible epochs (given the event symbols of P ) is denoted by

EpochsðP Þ. We say that the event e occurs in an epoch if an instance

of the event term eðX1; . . . ; XnÞ is a member of the epoch. We say that

the event literal !e occurs in an epoch (with a single instance) if there

are no instances of the primitive event e in the epoch. The set of all finite

sets of ground action terms (built with the action symbols of P ) is

denoted by ActionSetsðP Þ, and its elements are called action sets.

Formally, the semantics of P is given by a transducer

�P : EpochsðP Þ 
!ActionSetsðP Þ. We define this transducer using

a Horn logic program �P of a special form. The minimal model of

this program, which can be computed using well-known logic

programming techniques, represents the transducer defined by the

policy. To compute the actions that are triggered by an epoch, we

transform the epoch into a set of ground atoms and add them to

the program �P . The actions will appear in the minimal model of

the expanded program. For an epoch E, let

occðEÞ ¼ foccðgÞjg 2 Eg [ foccð!eÞje has no instances in Eg:

The intuitive meaning of occðeðt1; . . . ; tnÞÞ is that the instance

eðt1; . . . ; tnÞ of the primitive event e occurred in the current

epoch. Then, the semantics of each rule of the form

“e1& . . . &el causes a if C” in the policy is specified as the

implication

execðaÞ  occðe1Þ ^ . . . ^ occðelÞ ^ C:

Notice that the above implication has the same variables as the

original rule.
We denote by �P the set of rules that result from the semantic

specification of each policy rule in P . It is easy to see that �P is a

nonrecursive Horn logic program.

Definition 6. �P : EpochsðP Þ 
!ActionSetsðP Þ is the transducer

defined by P if, for every epoch E,

a 2 �P ðEÞ iff �P [ occðEÞ � execðaÞ:

By the virtue of �P being a nonrecursive Horn program, the

computation of �P ðEÞ can be done in time polynomial with respect

to the cardinality jEj of the input epoch E.

3 CONFLICT DETECTION AND RESOLUTION

3.1 Action Constraints and Monitors

A policy generates a conflict when its output contains a set of

actions that the policy administrator has specified cannot occur

together. The conflicts are captured as violations of action

constraints.

Definition 7. An action constraint is an expression of the form

“never a1 ^ . . . ^ am if C:” Each ai is an action term and C is a

condition such that variables appearing in C also appear in one of the

ais. The meaning is: “never allow the simultaneous execution of the

actions a1; . . . ; am if the condition C holds.” It formally represents the

formula 8:ða1 ^ . . . ^ an ^ CÞ.
Definition 8. Given an action set S consisting of ground action terms,

we say that S satisfies an action constraint ac (respectively, a set of

action constraints AC) if S is a model of ac (respectively, of all the

constraints in AC) in the standard model theoretic sense (with action

terms viewed as literals). We use the standard notation S � ac

(respectively, S � AC) to denote this relationship.

A monitor of a set of action constraints generates only action sets

without conflicts, i.e., satisfying all given action constraints.

Definition 9. Given a set of action constraints AC, an AC-monitor

!AC is a transducer !AC : EpochsðP Þ 
!ActionSetsðP Þ such that,

for every epoch E, !ACðEÞ satisfies AC.

Note that a monitor, being a transducer, is semantically identical to

a policy. However, unlike policies, monitors will not be defined in

PDL but rather specified indirectly using logic programs of a

special form (defined later in this section). We adopted this

approach because it is often inconvenient (or even impossible) to

define monitors using PDL. Also, if the set of constraints AC is

clear from the context, we will use the term “monitor” instead of

“AC-monitor.”
Next, we identify several important properties of monitors.

They capture the intuition that monitors should be chosen to

behave as close as possible to the policy whose output they filter and

that the effect of conflict resolution should be maximally transparent

to the user.
In the following definitions, assume that P is a policy and AC is

a set of action constraints. They will be omitted when they are clear

from the context.

Definition 10. An epoch E is P -consistent with AC if �P ðEÞ satisfies

AC. An epoch E0 is a ðP;ACÞ-consistent reduction of an epoch E if

E0 � E and E0 is P -consistent with AC. The reduction is maximal

if there is no ðP;ACÞ-consistent reduction E00 of E such that E0 �
E00 and E0 6¼ E00.

Definition 11. An AC-monitor !AC is:

1. A conservative monitor of P if it is identical to the policy for
P -consistent epochs.

2. An action-cancellation monitor of P if it does not generate
any actions beyond those of P , i.e., for every epoch E,
!ACðEÞ � �P ðEÞ.

3. A maximal action-cancellation monitor of P if, for
every epoch E, !ACðEÞ is a maximal subset of �P ðEÞ
that satisfies AC.
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4. An event-cancellation monitor of P if, for every epoch E,
there exists a ðP;ACÞ-consistent reduction E0 of E such
that !ACðEÞ ¼ �P ðE0Þ.

5. A maximal event-cancellation monitor of P if, for every
epoch E, there exists a maximal ðP;ACÞ-consistent
reduction E0 of E such that !ACðEÞ ¼ �P ðE0Þ.

Conservativeness is a basic requirement that all monitors
should satisfy. All the monitors described in this paper work by
cancelling actions to eliminate conflicts. It is easy to see that in the
absence of negated events, every event-cancellation monitor is also
an action-cancellation monitor. However, there is a difference
between action and event-cancellation monitors. The latter work
by producing a consistent reduction of the input epoch, to which
they then apply the original policy. We call such monitors
unobtrusive because, if the user has only access to the actions
generated by the monitor but not to the input epoch, she cannot
observe constraint violations. We motivate the need for unobtru-
sive monitors by noticing that the behaviors produced by a policy
on subsets of the input epoch are guaranteed to be correct since
such subsets could occur as actual epochs. The correctness of any
other behaviors has to be established with respect to some
assumptions extraneous to the policy.

To further appreciate the importance of unobtrusiveness,
consider the following example.

Example 2. Assume we have the policy P1

defectiveProduct causes stop

orderReceived causes mailProduct

orderReceived causes chargeCC

and the constraint “never stop ^mailProduct.”
If the events defectiveProduct and orderReceived occur together

in an epoch, the resulting conflict may be eliminated by
cancelling the action mailProduct. However, the action chargeCC
can still be executed without conflict, although this is intuitively
incorrect (at least from the customer’s point of view!). An event-
cancellation monitor avoids this problem by ignoring the event
orderReceived (building a maximal consistent reduction of the
epoch) and therefore also indirectly cancelling both actions it
causes.

Example 3. To see the need for action-cancellation monitors which
are not unobtrusive, consider the rule

requestðXÞ causes acknowledgeðXÞ:

If there are other rules involving the request event that lead to
conflict and as the result some other actions caused by this
event are cancelled, the above rule should still be executed.
Thus, the request event cannot simply be ignored.

The next question to ask is if we can forgo event-cancellation
and only work with action-cancellation monitors. If we go back to
Example 2, at first glance, it seems that we could make an explicit
connection between mailProduct and chargeCC to solve the
problem. One possibility would be to have rules with multiple
actions such as

orderReceived causes mailProduct; chargeCC

and, when one of the two actions is cancelled, the other should also
be cancelled. A similar effect can be achieved by adding the
constraint

never stop ^ chargeCC

or, if constraints can contain negative literals, the constraint:

never :mailProduct ^ chargeCC:

However, both of those approaches may unnecessarily or even
incorrectly cause the cancellation of an action. This may occur in
the example above if there is another event also causing chargeCC.
We could, for example, have the rule

serviceCallCompleted causes chargeCC:

If the event serviceCallCompleted occurs simultaneously with
defectiveProduct and orderReceived, an action-cancellation monitor
will not charge for the service call.

A comprehensive policy management system should provide
both unobtrusive and nonunobtrusive monitors.

3.2 Semantics of Conflict Resolution

Here, we formally define the semantics of monitors for policies that
do not involve negated events by augmenting the Datalog
specification of policies, defined in the previous section. The idea
is to capture conflict resolution at the level of rule execution. In addition
to the two predicate symbols occ and exec, we introduce three new
predicate symbols: block (an action), ignore (an event), and accept (an
action). The input epoch of a monitor is specified using occ atoms,
the output of the policy using exec atoms, and the output of a
monitor using accept atoms. The specifications below typically
describe not just a single monitor but rather a whole family of them.

In the specification, we will have several kinds of rules: conflict

rules, blocking rules, and accepting rules. Conflict rules will be the
same for action and event-cancellation monitors. Action monitors
will not use blocking rules and will use a simplified version of
accepting rules.

Note: In the rules below, the negation is interpreted as negation-
as-failure, not logical negation.

3.2.1 Action-Cancellation Monitors

Conflict rules �AC . Each constraint in AC of the form
“never a1 ^ . . . ^ an if C” is captured as a conflict rule

blockða1Þ _ . . . _ blockðanÞ  execða1Þ ^ . . . ^ execðanÞ ^ C:

Accepting rules Aa
P . For each action a occurring in a policy rule,

there is an accepting rule:

acceptðaÞ  execðaÞ ^ :blockðaÞ:

Notice that for action cancellation, only the actions generated by
the policy matter. It is irrelevant which events caused those actions
and which policy rules were used in the generation. Neither are
reflected in the above rules.

3.2.2 Event-Cancellation Monitors

Conflict rules �AC . The same as for action-cancellation monitors.
Blocking rules BP and accepting rules Ae

P . For each policy rule
in P of the form

e1& . . . &en causes a if C

conflict resolution is specified using the blocking rule

ignoreðe1Þ _ . . . _ ignoreðenÞ  occðe1Þ ^ . . . ^ occðenÞ ^ C ^ blockðaÞ

and the accepting rule

acceptðaÞ  occðe1Þ ^ . . . ^ occðenÞ ^ C ^ :ignoreðe1Þ
^ . . . ^ :ignoreðenÞ:

Notice that in event cancellation, the causal relationships
between events and actions are taken into account.

3.2.3 Examples

Example 4. The constraint “never stop ^mailProduct” is cap-
tured using the conflict rule
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blockðstopÞ _ blockðmailProductÞ  execðstopÞ
^ execðmailProductÞ:

Example 5. The constraint

never procResðU1Þ ^ procResðU2Þ if U1 6¼ U2

is captured using the conflict rule

blockðprocResðU1ÞÞ _ blockðprocResðU2ÞÞ  
execðprocResðU1ÞÞ ^ execðprocResðU2ÞÞ ^ U1 6¼ U2:

Example 6. Conflict resolution using event cancellation for the rule

dial & charge causes connect

is specified as

ignoreðdialÞ _ ignoreðchargeÞ  occðdialÞ ^ occðchargeÞ
^ blockðconnectÞ

acceptðconnectÞ  occðdialÞ ^ occðchargeÞ ^ :ignoreðdialÞ
^ :ignoreðchargeÞ:

Example 7. We now present the complete specification of conflict

resolution based on event cancellation for the policy P1 from

Example 2. The conflict rule:

blockðstopÞ _ blockðmailProductÞ  execðstopÞ
^ execðmailProductÞ:

The blocking rules:

ignoreðdefectiveProductÞ  occðdefectiveProductÞ ^ blockðstopÞ
ignoreðorderReceivedÞ  occðorderReceivedÞ ^ blockðmailProductÞ
ignoreðorderReceivedÞ  occðorderReceivedÞ

^ blockðchargeCreditCardÞ:

The accepting rules:

acceptðstopÞ  occðdefectiveProductÞ ^ :ignoreðdefectiveProductÞ
acceptðmailProductÞ occðorderReceivedÞ^:ignoreðorderReceivedÞ
acceptðchargeCreditCardÞ occðorderReceivedÞ

^:ignoreðorderReceivedÞ:

3.3 General Properties

The logic program La
P;AC ¼ �P [�AC [Aa

P specifies conflict

resolution based on action cancellation. The program Le
P;AC ¼

�P [�AC [Ae
P [BP specifies conflict resolution based on event

cancellation.

Note that La
P;AC and Le

P;AC are safe. That is, variables that appear

in the consequent of the implications or in negated literals in the

antecedent also appear in positive literals in the antecedent. The

programs are not, strictly speaking, in Datalog, since actions and

events are encoded as function symbols. However, those symbols

are not nested and, thus, the resulting program can easily be

translated into Datalog by introducing new predicate symbols.

Also, La
P;AC and Le

P;AC are hierarchical (i.e., nonrecursive) dis-

junctive logic programs.
We show now that the correspondence between the stable

models [15] of La
P;AC (respectively, Le

P;AC) together with an input

epoch, and maximal action-cancellation (respectively, event-can-

cellation) monitors. In the case of action-cancellation monitors, the

correspondence is immediate.

Definition 12. Let �a
P ;AC : EpochsðP Þ 
!ActiondSetsðP Þ be a

transducer defined for any epoch E in the following way:

1. Select a stable model M of La
P;AC [ occðEÞ.

2. Return the set AM ¼ fajacceptðaÞ 2Mg as output (i.e.,
�a
P ;ACðEÞ ¼ fajacceptðaÞ 2Mg).

Theorem 1. �a
P ;AC is a maximal action-cancellation AC-monitor of P .

Moreover, all maximal action-cancellation AC-monitors of P can be
obtained in this way.

Proof. Let M be a stable model of La
P;AC [ occðEÞ. Assume that

there is a ground instance “never a1 ^ . . . ^ an” of an action
constraint that is violated in the action set AM . Thus, for every
i ¼ 1; . . .n: acceptðaiÞ 2M, execðaiÞ 2M , and blockðaiÞ 62M ;
otherwise, acceptðaiÞ is not supported since the only rule where
acceptðaiÞ occurs in the head is

acceptðaiÞ  execðaiÞ ^ :blockðaiÞ:

But, this is not possible since then M will not be a model of

blockða1Þ _ . . . _ blockðanÞ  execða1Þ ^ . . . ^ execðanÞ:

To show that AM is a maximal consistent subset of �P ðEÞ,
assume it’s not and let’s say the action a 2 �P ðEÞ can be added
to AM without violating consistency. Therefore, blockðaÞ 2M
since execðaÞ 2 �P ðEÞ and acceptðaÞ is not supported in the
program. Hence, there is a rule

blockðaÞ _ blockða1Þ _ . . . _ blockðanÞ
 execðaÞ ^ execða1Þ ^ . . . ^ execðanÞ

in La
P;AC [ occðEÞ, such that blockðaÞ 2M , and for every

i ¼ 1; . . . ; n, execðaiÞ 2M and blockðaiÞ =2M ; otherwise, M

is not a minimal model. Hence, for every i ¼ 1; . . . ; n,
acceptðaiÞ 2M, and a cannot be added to the set of
accepted actions without violating a constraint.

Let Max be a maximal action-cancellation monitor of P .
Given an epoch E, let

M ¼ facceptðaÞja 2MaxðEÞg [ fexecðaÞja 2 �P ðEÞg
[ fblockðaÞja 2 �P ðEÞ nMaxðEÞg [ occðEÞ:

We need to show that M is a stable model of La
P;AC [ occðEÞ. It

is easy to see that occðEÞ [ fexecðaÞja 2 �P ðEÞg is in any stable
model of La

P;AC [ occðEÞ.
If blockðaÞ 2M , it means that a 2 �P ðEÞ but a =2MaxðEÞ,

and since Max is a maximal cancellation monitor, this means
that there is an action constraint “never a ^ a1 ^ . . . ^ an” such
that ai 2MaxðEÞ for every i ¼ 1; . . . ; n. Hence,

execðaÞ; execða1Þ; . . . ; execðanÞ 2M;

blockðaiÞ =2M for any i ¼ 1; . . . ; n. Thus, blockðaÞ is supported by
the rule

blockðaÞ _ blockða1Þ _ . . . _ blockðanÞ
 execðaÞ ^ execða1Þ ^ . . . ^ execðanÞ

in La
P;AC [ occðEÞ. An acceptðaÞ is in M only if execðaÞ 2M and

blockðaÞ =2M . M is clearly minimal since La
P;AC [ occðEÞ is

recursion free. tu
The situation is a bit more complicated in the case of event-

cancellation monitors. To get maximal event-cancellation, we
need to minimize the set of ignore atoms. However, the stable
model construction—along the above lines but applied to
Le
P;AC [ occðEÞ—will minimize not this set but rather the set

of ignore and block atoms together. Therefore, there may be
stable models of Le

P;AC [ occðEÞ which do not correspond to
maximal event-cancellation monitors. To avoid that situation,
the logic program Le

P;AC needs to be transformed by eliminat-
ing all the occurrences of the block predicate symbol.
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Definition 13. The logic program clðLe
P;ACÞ consists of block-free

clauses obtained by exhaustively resolving the clauses �AC with the

clauses BP in Le
P;AC .

Definition 14. Let �e
P ;AC : EpochsðP Þ 
!ActionSetsðP Þ be a trans-

ducer defined for any epoch E in the following way:

1. Select a stable model M of clðLe
P;ACÞ [ occðEÞ.

2. Return the set BM ¼ fajacceptðaÞ 2Mg as output (i.e.,
�e
P;ACðEÞ ¼ fajacceptðaÞ 2Mg).

Theorem 2. �e
P ;AC is a maximal event-cancellation AC-monitor of P .

Moreover, all maximal event-cancellation AC-monitors of P can be

obtained in this way.

Proof Similar to the proof of Theorem 1. tu

It is also immediate to see that �a
P ;AC and �e

P;AC are conservative

(if no conflicts occur, no actions are blocked and no events

ignored). Also, both logic programs obtained, La
P;AC and clðLe

P;ACÞ,
are pseudo-head-cycle-free and stable models of such programs can

be computed nondeterministically in PTIME [4]. (The programs

are not necessarily head-cycle-free since the same predicate can

appear more than once in the head of a single rule.)

3.4 Modifying the Specification

3.4.1 Priority Ordering

The logic program specification of monitors (Section 3) defines all

maximal action- or event-cancellation monitors that can be

associated with a policy. However, in real situations, there are

monitors that can be considered more appropriate than others. For

instance, when there is a choice of blocking one of several actions

to resolve a conflict, the application domain may suggest a priority

ordering among the actions.

Example 8. Let’s return to Example 2. The constraint says that we

can never execute simultaneously the stop and mailProduct

actions. Naturally, if the product is defective, we should block

mailProduct and let stop proceed. In other words, we give

priority to stop over mailProduct. Priority can be encoded by

changing the conflict rule to

blockðmailProductÞ  execðstopÞ ^ execðmailProductÞ

eliminating the disjunction.

Thus, for each constraint, the user can select the action with the

least priority and remove all the others from the head of the

corresponding conflict rule. User choices for different constraints

need to be coordinated to make sure the minimal models of the

resulting logic program still correspond to maximal monitors. If a

global ordering on actions is provided, then the notion of monitor

maximality itself becomes unclear. The ordering on actions can be

lifted in several different ways to an ordering of action sets [11]. In

addition, the sets are ordered by the subset ordering. How to

combine those orderings in a semantically meaningful way is an

issue for future research.
Note that a prohibition to execute an action a if some events

e1; . . . ; en occur can be simulated using action constraints and

priorities. We introduce the rule “e1& . . . &en causes not a” plus the

constraint “never a ^ not a” into the policy. The action not a is a

new action and has no effect. We also give priority to not a over a.

3.4.2 Persistent Events

In many cases, it is impossible, incorrect, or undesirable to ignore

certain events, e.g., time events. We call such events persistent.

Example 9. In Example 6, the dial event is persistent. To capture

persistent events, we can modify the blocking rules, i.e., when

an event cannot be ignored it will never appear in the head of a
blocking rule. Therefore, the blocking rule should be changed to

ignoreðchargeÞ  occðdialÞ ^ occðchargeÞ ^ blockðconnectÞ:

In general, users can selectively remove ignored events from the
consequent of the blocking rules to make them persistent until at
least one is left.

3.5 Negation

If negated events are allowed in policy rules, the definition and
implementation of action-cancellation monitors (which do not take
events into accounts) are unaffected. However, there are several
problems with applying event-cancellation monitors to policies
with negated events. First, in the presence of negated events,
policies may not have any event-cancellation monitors. The second
problem is due to the nonmonotonic character of negation. Our
monitors work by action cancellation. In the presence of negation,
cancelling an action and ignoring an event causing it may trigger
some new actions. This is rather unintuitive.

To deal with negative events, we can loosen the definition of
epochs and let some events be undefined (i.e., neither the event nor
its negation is known to have occurred). If an event is ignored
because of conflict resolution, the event becomes undefined and
does not trigger any new actions. Similar to well-founded models
of logic programs [20], epochs are now three-valued and we can
extend the definition of event-cancellation monitors (including
maximal ones) and the logic programmming specifications by
appropriately modifying the original definitions [8].

We conclude this section by addressing the issue of the added
expressive power of negation. At first glance, it appears that allowing
negated events in the rules may obviate the need for action
constraints. In Example 2, adding !defectiveProduct to the second
and third rules makes the action constraint superfluous. However,
the elimination of action constraints is not always possible. In
Example 1, eliminating the constraint would require adding
existential quantification to the event language.

4 RELATED WORK

Several languages have been proposed for policy-based network
management (see, for example, [27], [34], [21], [24], [10]). Much of
the work in these papers is dedicated to implementation issues.
Similarly, there are several implementations of event notification
systems available, but all have informal specifications (see, for
example, [19] and the references therein). To address problems like
conflict resolution, it is essential to have languages with precise
semantics like PDL. However, the framework described in the
present paper is not restricted to PDL and can be applied to other
event languages. More formal work on event notification
languages has been developed specifically with the goal of
network monitoring [35], [21]. The emphasis in these languages
is on very expressive primitive events and event compositions.
Actions are secondary, so the question of conflicts was never
addressed.

Conflict resolution among production rules has been studied in
AI and databases. For example, OPS5 [5] uses elaborate criteria
depending on the form of the rules and data to resolve such
conflicts. Active database systems, on the other hand, typically use
priorities to choose among conflicting rules [1]. A comprehensive
framework for conflict resolution in this context was presented in
[22]. The results about the computational complexity of testing
consistency of production rules were presented in [6]. Those works
are quite different from ours in that they assume interpreted
actions (variable assignments or database updates) and mostly
ignore the event part of event-condition-action rules. Moreover,
priorities are associated with rules, not actions, and rule priorities
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lack formal semantics. A recent work [23] deals with a model that
is closer to ours, although the conflicts studied are still between the
rules, not actions, and the events are not taken into account. This
work proposes a metalanguage for the control of rule executions.
The rules themselves are viewed as black boxes. Using the
metalanguage of [23], one can often achieve similar effects to our
framework, as in Example 2.

The notion of action constraints was independently introduced
in [7] and [14] (a similar notion was also proposed in [18]). In the
paper [14], Eiter et al. introduced a modal policy specification
language for software agents. Conflict resolution is only one of the
many issues addressed in [14]. The authors propose, using an
entirely different terminology, maximal action cancellation moni-
tors, without considering event cancellation. In general, conflict
resolution methods in the current active rule literature, including
[23] and [14], are not unobtrusive. The paper [13] is a follow-up
paper to [14] and contains numerous complexity results involving
languages richer that the subset of PDL used in the present paper.

Finally, we relate our approach to view updates in the presence
of integrity constraints [36], [31]. We can view occ as an extensional
predicate, exec as an intensional predicate, �P as a view definition,
and action constraints as denial integrity constraints. The crucial
difference from the standard assumptions is that the database (occ

and exec together) does not have to ultimately satisfy the
constraints. In fact, in event-cancellation, we are interested in
constructing repairs—maximal subsets of the input epoch that do
not produce integrity violations. This can be modelled as the
revision of the database with the constraints. Several recent papers
[2], [3], [17], [16] addressed this issue but didn’t consider
intensional predicates.

Alternatively, we can define an additional view capturing the
integrity violations and require an update to delete all tuples from
that view [31]. So, in principle, we could use any general view
update method providing this kind of functionality, e.g., [36], [31].
However, those methods are usually complex (because of their
generality) and their computational complexity has not been
analyzed. Moreover, they do not provide a declarative specifica-
tion of conflict resolution strategies and are not easily amenable to
extensions and modifications.

5 CONCLUSIONS AND FURTHER WORK

In this paper, we have presented a formal framework for detecting

action conflicts in policies and finding resolutions to these

conflicts. The class of policies that we consider is limited to

stateless transducers. We are currently extending our approach to

deal with state, albeit indirectly [9]. In particular, we accommodate

sequence events (like in [29]), already a part of full PDL [25]. This

extension requires generalizing the semantics of policies and

monitors to mappings from sequences of epochs to sequences of sets

of actions. Also, we are studying monitors that are not based on

cancelling conflicting actions but rather on delaying them until no

conflict occurs. (This conflict resolution strategy does not seem to

have an analogue in database integrity maintenance.) Moreover,

we are considering a more general constraint language that

permits temporal constraints. These extensions will make it possible

to relax the simultaneity restrictions on events and actions

imposed by the framework of the present paper. To address

conflict resolution for full PDL, we need to consider regular event

expressions and aggregation. The generalized semantics, described

above, is sufficient to handle this extension. However, the

definition of the appropriate maximal monitors is nontrivial. Also,

as we have mentioned earlier, in some cases, the unobtrusiveness

requirement is not the expected behavior of a monitor. It appears

useful to be able to enforce this requirement only for selected parts

(rules) of a policy. We can extend the monitors to apply to policies

for which rules are grouped into clusters and unobtrusiveness is

restricted to each cluster. A policy server of a slightly larger subset

of PDL than the one presented here has been incorporated into the

PacketStart IP Services Platform software developed at Bell Labs

[32]. The policy server is being used to implement policies for

detecting alarm conditions, fail-overs, device configuration and

provisioning, service class configuration, congestion control, etc.

ACKNOWLEDGMENTS

A preliminary version of some of the results of this paper appeared

in [8].

REFERENCES

[1] R. Agrawal, R. Cochrane, and B.G. Lindsay, “On Maintaining Priorities in a
Production Rule System,” Proc. VLDB Conf., pp. 479-487, 1991.

[2] M. Arenas, L. Bertossi, and J. Chomicki, “Consistent Query Answers in
Inconsistent Databases,” Proc. ACM Symp. Principles of Database Systems,
pp. 68-79, 1999.

[3] M. Arenas, L. Bertossi, and J. Chomicki, “Specifying and Querying
Database Repairs Using Logic Programs with Exceptions,” Proc. Int’l Conf.
Flexible Query Answering Systems, pp. 27-41, 2000.

[4] R. Ben-Eliyahu-Zohary, L. Palopoli, and V. Zemlyanker, “More on
Tractable Disjunctive Datalog,” J. Logic Programming, vol. 46, pp. 61-101,
2000.

[5] L. Brownston, R. Farell, E. Kant, and N. Martin, Programming Expert Systems
in OPS5: An Introduction to Rule-Based Programming. Addison-Wesley, 1985.
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