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Abstract—In this paper, we study constraint databases with variable independence conditions (vics). Such databases occur naturally

in the context of temporal and spatiotemporal database applications. Using computational geometry techniques, we show that variable

independence is decidable for linear constraint databases. We also present a set of rules for inferring vics in relational algebra

expressions. Using vics, we define a subset of relational algebra that is closed under restricted aggregation.

Index Terms—Constraint databases, aggregation, closure, integrity constraints, spatiotemporal databases.
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1 INTRODUCTION

CONSTRAINT databases [19] generalize in a natural way
the relational model of data by allowing infinite

relations that are finitely representable using constraints.
Constraint databases find numerous applications in spatial
[4], [5], [6], [27], [36], temporal [7], [32], and spatiotemporal
databases [14], [16]. A variety of constraint languages have
been proposed, including dense order constraints, linear
arithmetic constraints, and the most general—polynomial
constraints [13], [1].

The fundamental relational query languages, relational
algebra and calculus, and Datalog do not require that the
relations be finite and are thus applicable to constraint
databases. Their evaluation mechanisms, however, are
different than in relational databases because, instead of
finite relations, they deal with finite representations of infinite
relations. Recent developments in constraint databases, in
particular the research on aggregation and spatiotemporal
applications, suggest a need for middle-ground formalisms
that preserve some of the expressive power of constraint
databases and constraint query languages, while at the
same time generalizing in a natural way the basic
assumptions underlying the classical relational model of
data. In this paper, we propose an approach that fits in this
category. We study constraint databases with variable
independence conditions (vics). It turns out that such condi-
tions provide solutions to a number of practically and
theoretically motivated problems in constraint databases,
including the following:

. ensuring closure under aggregation [21],

. enhancing the expressive power of practical
spatiotemporal query languages through data
interoperability [11],

. simplifying spatiotemporal query evaluation [14], [16],
and

. enabling compilation to SQL for temporal query
languages with multiple temporal dimensions [32].

The first problem, which provided the original motiva-
tion for studying vics, is introduced below; the remaining
problems are described later in the paper. As shown in [21],
relational algebra over linear constraint databases is not
closed under aggregation using area; that is, the output
cannot always be represented with linear constraints. The
typical example is where we have a region whose
boundaries vary linearly with time, and we want to know
how the area of the region varies with time.

Example 1.1. Consider a (linear constraint) relation

R ¼ fðx; y; zÞ : x � y ^ y � 0 ^ x � zg:

For any given z, the corresponding plane fragment is

shown in Fig. 1. Applying area to the first and second

attributes of R results in the relation

S ¼ fða; zÞ : a ¼ z2=2g

which is not representable using linear arithmetic

constraints.

While there are applications where one might concei-
vably need to be able to use the area operator in this fashion
(and for which the closure problem would be unavoidable),
this is not the case for many applications. Consider a
geographical database with cadastral information, i.e.,
information on land ownership and land boundaries. Land
ownership does not vary continuously—pieces of land are
acquired by individuals at single, discrete points of time,
allowing a grouping of the relation’s attributes into
“independent” subsets. As a result, we avoid the closure
problem when computing the evolution of area ownership.

Example 1.2. Cadastral (real estate) records can be

represented using a constraint relation with tuples of

the form

n ¼ N ^ ti � t � t0i ^ Ciðx; yÞ;
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where Ciðx; yÞ are constraints that describe the region

owned by N between (constant) times ti and t0i. If we

want to find the area A of the land owned by N as a

function of t, we can represent the result as a set of

constraint tuples of the form

ti < t < t0i ^ ðn ¼ NÞ ^ ðz ¼ AÞ

which is clearly finitely representable.

The important property of the tuples in the above
example is that the constraints on x and y—those on which
the area computation is performed—are separate from the
constraints on n and t. Many typical uses of area
computation in GIS systems [37], [38] have this property,
which we will define as variable independence of space and
time. This is to be contrasted with the case where the
boundaries of a region vary continuously with time and the
area of the region may fail to be representable using the
same class of constraints, as in Example 1.1.

To deal with vics, a number of fundamental issues need
to be addressed. In particular, vics are in some sense
analogous to integrity constraints, so the issues of their
testing and inference arise naturally.

First, an appropriate definition of a vic has to be provided.
After reviewing the basic notions of constraint databases
and constraint databases in Section 2, we define vics in
Section 3. We use a corrected version of the definition from
[8]. We also introduce the notion of a generalized vic (gvic)
that succinctly represents all vics holding in a relation. From
now on, we will talk mostly about gvics.

Second, since gvics cannot be easily checked syntacti-
cally, it is essential to have efficient methods for testing
whether a gvic holds in a constraint relation. This issue is
addressed in Section 4. A new, geometric, PTIME approach
to testing the satisfaction of gvics in constraint relations
with linear arithmetic constraints is demonstrated.

Third, the applications of gvics require tools for gvic
inference in query results. To obtain closure (in view of
Example 1.1), a subclass of relational algebra with aggrega-
tion is defined in Section 6. The aggregation queries
belonging to this subclass need to satisfy appropriate gvics.
Also, data interoperability of restricted spatiotemporal
relations (Section 7) requires the ability to infer gvics
holding in the the result of a relational algebra operation.
We present a suitable inference system in Section 5, in
which, to obtain completeness, we generalize gvics to
disjunctions of gvics. Using the same inference system, we

show how to perform the inference of gvics in Constraint
Datalog programs.

To complete the outline of the paper, we should mention
that in Section 7, we present further application of variable
independence in temporal and constraint databases. In
Section 8, we discuss related work. We conclude in
Section 9, outlining several directions for further research.

2 THE CONSTRAINT DATABASE FRAMEWORK

2.1 Constraint Databases

In traditional database theory, a k-ary relation is a finite set
of k-tuples (or points in a k-dimensional space) and a
database is a finite set of relations. However, the relational
calculus and algebra can be developed without the
finiteness assumption for relations. We will use the term
unrestricted relation for finite or infinite sets of points in a
k-dimensional space. In order to be able to do something
useful with such unrestricted relations, we need a finite
representation that can be manipulated. This is exactly what
is provided by constraint tuples and relations. Constraint
tuples are quantifier-free formulas over a given signature,
interpreted in a structure [19]. We use here the definitions
from [35] that have been slightly modified. The first three
definitions are standard in the model theory of classical
first-order logic.

Definition 2.1. A signature 
 consists of three sets: a set F of
function symbols, a set P of predicate symbols, and a set C of
constant symbols, together with an arity function that
associates a natural number to each element of F and P. We
assume that a signature always contains the equality and
inequality predicate symbols.

In the following definitions, 
 will denote a fixed
signature.

Definition 2.2. Given a set U , an 
-structureM on U is defined
by assigning to each f 2 F of arity n a function fM : Un ! U,
to each P 2 P an n-ary relation on U (a set PM � Un), and to
each c 2 C an element cM 2 U. The setU is called the universe of
the structure.

Definition 2.3. An 
-constraint is an atomic first-order formula
over 
 or its negation.

Example 2.4. The following classes of constraints are of
special interest in this paper:

. polynomial inequality constraints: the constraints
over


 ¼ ðþ; �; <; 0; 1Þ;

where F ¼ fþ; �g, P ¼ f<g, and C ¼ f0; 1g,
. linear inequality constraints: the constraints over


 ¼ ðþ; <; 0; 1Þ;

. order constraints: the constraints over


 ¼ ð<; fcgc 2 CÞ;

where C is a set of constant symbols correspond-
ing to the elements of some fixed universe, and

. equality constraints: the constraints over


 ¼ ðfcgc 2 CÞ:
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We will interpret the polynomial and linear con-
straints over the reals or the rationals, the order
constraints over the rationals or the integers, and the
inequality constraints over arbitrary infinite sets.

Definition 2.5.

1. A constraint k-tuple, in variables x1; . . . ; xk, over 

is a finite conjunction �1 ^ � � � ^ �N , where each �i,
1 � i � N , is an 
-constraint with variables that are
among x1; . . . ; xk.

2. A constraint relation of arity k over 
 is a finite set
S ¼ f�1; . . . ; �Mg, where each �i, 1 � i �M, is a
constraint k-tuple in the same variables x1; . . . ; xk
over 
.

3. The schema of the constraint relation S is the pair
consisting of the relation name S and the set of
variables fx1; . . . ; xkg.

4. The formula �S corresponding to the constraint
relation S is the disjunction �1 _ � � � _ �M .

5. A constraint database is a finite collection of
constraint relations.

Definition 2.6. Let M be an 
-structure on a universe U, S a

constraint relation of arity k over 
, and �S the formula

corresponding to S. Then, S represents the unrestricted
relation

R ¼ fða1; . . . ; akÞ 2 Uk j M � �Sða1; . . . ; akÞg:

In the rest of the paper, we use Si to denote constraint
relations and Ri to denote the unrestricted relations
represented by Si. There is a clear correspondence between
the attributes (variables) of a constraint relation and those of
the corresponding unrestricted relation, so from now on we
will not distinguish between them. In particular, we will
assume that they have the same names.

2.2 Constraint Query Languages

In the following, we assume that we are given not only a
signature 
 but also a constraint database schema ÿ
consisting of a finite number of constraint relation schemas.

Definition 2.7. A relational calculus formula over ÿ is a first-

order formula over the signature 
 expanded with the relation

names from ÿ.

The semantics of relational calculus formulas viewed as
queries are defined on unrestricted relations, analogously to
traditional database relations.

Definition 2.8. Let M be an 
-structure on U, � a relational

calculus formula over 
, and D an unrestricted database with

schema ÿ. Let ðM; DÞ beM expanded with the interpretations

in D for every relation name in ÿ. The formula � expresses the

following query:

QðDÞ ¼ fða1; . . . ; akÞ 2 Uk j ðM; DÞ � �ða1; . . . ; akÞg:

Clearly, relational calculus formulas will be evaluated
over constraint relations, not unrestricted ones. This can be
done in one of two ways: 1) substituting the formula �S for
every relation name S, eliminating the quantifiers from the
result and transforming to DNF, or 2) translating to

relational algebra over unrestricted relations and subse-
quently evaluating the resulting expression over the
corresponding constraint relations. In both cases, the
underlying 
-structure M needs to admit effective quanti-
fier elimination.

Definition 2.9. An 
-structureM is said to admit quantifier
elimination if for every first-order formula �ðx1; . . . ; xkÞ over

 there exists a quantifier-free formula  ðx1; . . . ; xkÞ over 

such that the formula

8x1; . . . ; xkð�$  Þ

is valid inM. If such a  can be effectively computed, then the
quantifier elimination is said to be effective.

For example, it is well-known [19], [28] that all the
structures in Example 2.4 admit effective quantifier
elimination.1

We show below how relational algebra expressions over
unrestricted relations can be evaluated on the correspond-
ing constraint relations. See [13] for a longer discussion.

Let 
 be a signature andM an 
-structure. Let R1 and R2

be the unrestricted relations represented in the context ofM
(Definition 2.6) by the constraint relations S1 and S2,
respectively. We show how the result of applying an
arbitrary PJRUN-algebra operator to R1 and R2 can be
represented as a constraint relation:

P. �XðR1Þ is represented by the constraint relation
fQEXðtÞ j t 2 S1g, where QEXðtÞ is the result of applying
a quantifier elimination procedure for M to t (QEX

eliminates variables not in X).

J. R1 ffl R2 is represented by ft1 ^ t2 j t1 2 S1; t2 2 S2g.
R. R1� is represented by ft� j t 2 S1g, where � is a variable

renaming.

U. R1 [R2 is represented by S1 [ S2.

N. R1 ÿR2 is represented by ft1 ^ t2 j t1 2 S1; t2 2 ðS2Þcg,
where Sc is the set of disjuncts (viewed as constraint
tuples) of a DNF formula equivalent to :�S .

Note that we have omitted the selection operation �’ðRÞ.
In the constraint setting, this operation can be replaced by a
natural join with a unrestricted relation represented by the
(singleton) constraint relation f’g.

The constraint database framework requires that for each
input, constraint queries must be evaluable in closed form:

Definition 2.10. A query Q over unrestricted relations is closed
over an 
-structureM if, for every unrestricted database D
that is finitely representable using a constraint relation over
M, QðDÞ (the result of applying Q to D) is also finitely
representable using a constraint relation overM and the latter
representation can be effectively obtained from the representa-
tion of D. A class of queries is closed if every query in this class
is closed.

Proposition 2.11. If an 
-structure M allows effective
quantifier elimination, then the relational calculus and algebra
as defined above are closed over M.
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1. Note that we will not interpret 
 ¼ ðþ; �; <; 0; 1Þ over the integers
because, in this case, it is well-known that the structure does not admit
quantifier elimination. Integers with order admit effective quantifier
elimination if not only order but also gap-order constraints are allowed
(see Section 7.3).



This proposition implies that the relational algebra and
calculus over all the classes of constraints and structures
listed in Example 2.4 are closed.

3 INDEPENDENCE OF VARIABLES

In this section, we define variable independence for unrest-
ricted relations that can be finitely represented using
constraint relations.

3.1 Variable Independence Condition

In the following definitions, we assume that R is a
constraint relation over a finite set U of variable (attribute)
identifiers, and X and Y are subsets of U . As is common in
database theory, we write XY for X [ Y and omit curly
brackets for singleton sets.

Definition 3.1. Let t be a constraint tuple over U , T the
unrestricted relation corresponding to ftg, and R an unrest-
ricted relation over U . We say that t satisfies a variable
independence condition (vic) IðXÞ if

T ¼ �XðT Þ ffl �UÿXðT Þ:

Furthermore, we say that R satisfies a vic IðXÞ if there is a

constraint relation S that finitely represents R, in which every

constraint tuple satisfies IðXÞ.
While variable independence is a property of unrestricted

relations, in the constraint database framework we can only
manipulate finite constraint representations of such rela-
tions: the constraint relations. Therefore, the task of
determining if a vic IðXÞ holds in an unrestricted relation
R reduces to determining if, given a particular constraint
relation S representing R, there is (a possibly different)
constraint relation S0 also representing R such that all
constraint tuples in S0 satisfy IðXÞ. In this case, we also say
that S satisfies IðXÞ.
Example 3.2. We return to the constraint relation of

Example 1.2, consisting of tuples of the form

t1 < t < t2 ^ ðn ¼ NÞ ^ Cðx; yÞ;

where Cðx; yÞ is a conjunction of linear arithmetic
constraints describing a piece of land owned by person
N over the time interval ðt1; t2Þ. The unrestricted relation
represented by the above constraint relation satisfies the
following vics: IðfngÞ, IðftgÞ, and Iðfx; ygÞ. On the
other hand, the relation R from Example 1.1 does not
satisfy the vic Iðfx; ygÞ.
We say that two disjoint subsets of U , X, and Y are

independent in t if t satisfies IðZÞ, such that X � Z and
Y \ Z ¼ ;, i.e., X and Y are separated in U by Z. We say that
X and Y are related in t otherwise. Clearly, variable
independence in a tuple is decidable for constraint theories
admitting effective quantifier elimination. Similarly, we will
say that X and Y are independent in R if R satisfies IðZÞ for
some set Z such that X � Z and Y \ Z ¼ ;, and related in R
otherwise.

Definition 3.3. Let R be an unrestricted relation, U the schema
of R, and X;Y � U . Then, the following are axioms for
inferring vics in R:

1. Ið;Þ;
2. IðXÞ ) IðU ÿXÞ;

3. IðXÞ ^ IðY Þ ) IðXY Þ.

Theorem 3.4. The axioms in Definition 3.3 are sound and

complete.

Proof. Let S ¼ fc1; . . . ; ckg be a constraint relation that
represents R, where ci are constraints over U . An
independence constraint IðXÞ is then equivalent to a
MVD id!! X in an unrestricted relation fði; a1; . . . ; alÞ :

ciða1; . . . ; alÞ; ci 2 Sg over the schema fidg [ U ; id is a
(hypothetical) tuple identifier of constraint tuples in S.
The conclusion then follows from a (sound and
complete) axiom system for MVDs:

1. Ið;Þ follows immediately from the existence of
the finite constraint relation S that represents R.

2. IðXÞ ) IðU ÿXÞ follows from the MVD infer-
ence id!! X ) id!! U ÿX.

3. To show IðXÞ ^ IðY Þ ) IðXY Þ, we assume that
R satisfies IðXÞ and IðY Þ. Then, there must be
two constraint relations S (as above) and S0 ¼
fc01; . . . ; c0k0 g in which every constraint tuple
satisfies IðXÞ and IðY Þ, respectively. We con-
struct an unrestricted relation fði; i0; a1; . . . ; alÞ :
ciða1; . . . ; alÞ ^ ci0 ða1; . . . ; alÞ; ci 2 S; ci0 2 S0g over
the schema fid; id0g [ U . In this relation, id!!
X and id0 !! Y . Using inference axioms for
MVDs, we get id; id0 !! XY . The (finite) set of
ði; i0Þ pairs then defines the elements of a
constraint relation S00 that also represents R and
in which every constraint tuple satisfies IðXY Þ.

Completeness follows from the observation that,
given a finite set of vic’s IðX1Þ; . . . ; IðXnÞ holding in R,
there must be finite representations S1; . . . ; Sn of R such
that IðXiÞ is satisfied by all constraint tuples in Si
ð0 < i � nÞ. Then, however, we can construct an unrest-
ricted relation

fði1; . . . ; in; a1; . . . ; alÞ : c1
i1
ða1; . . . ; alÞ ^ . . .^

cninða1; . . . ; alÞ; cjij 2 Sjg

from the given constraint relations Sj in which ij !! Xj

for 1 � j � n. Then, we simply use a complete inference
system on the induced MVDs. tu
The following corollary completely characterizes inter-

actions of vics within a single relation.

Corollary 3.5. The vics form a Boolean algebra with generators

defined by the MVD basis for id.

Example 3.6. In addition to the vics mentioned in
Example 3.2, the unrestricted relation represented by
the constraint relation of Example 1.2 satisfies all their
Boolean combinations.

Note also that, for classical (finite) relations, where each
tuple always represents exactly one point, it is trivially

true that every relation (over U) satisfies vic IðXÞ for
every X � U .

We view the set of variable independence conditions as a
part of the schema of a constraint relation. All instances of
such a schema have to satisfy the vics in this set. It may be
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the case that constraint relations are guaranteed to satisfy

given vics by virtue of coming from a restricted data model.

We will see an example of this in Section 7. In general,

however, decidability of variable independence for constraint

relations (as opposed to individual tuples) is far from

obvious. As the next example shows, it is not sufficient to

check the individual tuples in order to verify variable

independence:

Example 3.7. The instance of Rðx; yÞ in Fig. 2a contains two

tuples:

2 � y � 4 ^ 0 � x � y;
2 � x � 4 ^ 0 � y � x:

In each tuple, x and y are related. However, there is an an

equivalent relation (Fig. 2b) where this is not the case:

2 � y � 4 ^ 0 � x � 4;

2 � x � 4 ^ 0 � y � 2:

In Section 4, we show how to test whether a constraint

relation represents an unrestricted relation that satisfies a

variable independence condition in its schema. This test,

performed upon relation updates, ensures that we maintain

the set of vics in the schemas of all relations in the constraint

database.

3.2 Multiple Sets of Variables

The notion of a variable independence condition (Defini-

tion 3.1) refers to one set of attributes. We now generalize

the notion of variable independence for tuples to an

arbitrary number of such sets.

Definition 3.8. Let ðX1; . . . ; XnÞ be a partition of U , t a

generalized tuple over U , and T an unrestricted relation

corresponding to ftg. We say that t satisfies a generalized vic

(gvic) IðX1; . . . ; XnÞ if

T ¼ �X1
ðT Þ ffl � � � ffl �Xn

ðT Þ:

The definition of variable independence for relations can

be generalized in a similar way. Also, it is easy to see that a

vic IðXÞ is equivalent to the gvic IðX;U ÿXÞ (and, thus,

we can simply consider the notation for vics as a shorthand

for the corresponding gvics).

Theorem 3.9. Let fIðX1Þ; . . . ; IðXkÞg be a finite set of vics.

Then, there is a unique gvic IðY1; . . . ; YlÞ such that

R satisfies IðXiÞ for all 0 < i � k()
R satisfies IðY1; . . . ; YlÞ:

Proof. Let Y1; . . . ; Yl be the MVD basis of id!! Xi for

0 < i � k. The basis is unique and partitions the schema

of R into the required disjoint sets. tu

It is also easy to see that, if a gvic IðX1; . . . ; XkÞ holds in

R, then the vics IðXiÞ for 0 < i � k hold in R. Therefore, the

representation result extends to gvics:

Corollary 3.10. Let F be a finite set of (g)vics. Then, F can be

equivalently represented by a single gvic.

Proof. Every gvic IðX1; . . . ; XkÞ is equivalent to the set of vics

fIðXiÞ : 0 < i � kg. The rest follows from Theorem 3.9. tu
Example 3.11. In Example 3.2, the constraint relation

satisfies the gvic Iðftg; fng; fx; ygÞ.
Definition 3.12. A gvic IðX1; . . . ; XkÞ is finer than a gvic

IðY1; . . . ; YmÞ if for all i ¼ 1; . . . ; k, there is a j ¼ 1; . . . ;m

such that Xi � Yj and one of those containments is proper.

4 TESTING VARIABLE INDEPENDENCE

Given a relation R whose schema restricts X to be

independent, we need to make sure this restriction is not

violated. One way of enforcing independence restrictions

on R’s schema is by stipulating that each tuple satisfy these

restrictions. We give an example of this approach (Worboys

relations) in Section 7. See also [15].
In general, to maintain a vic (or a gvic), we must be able

to test its satisfaction in a relation. We can then reject the

updates that violate it. (This is analogous to maintaining

integrity constraints in traditional databases.) In this

section, we provide such a test for linear constraint

databases. Unlike the work of [22], where all tests are

performed on constraint sets (i.e., tuples), this test is for

disjunctions of constraint sets (i.e., relations).

4.1 Variable Independence for Semilinear Sets

Testing for variable independence is specific to each

constraint class. In this section, we present a technique based

on computational geometry [3], [18] that allows testing for

variable independence of semilinear relations (constraint

relations defined using linear arithmetic constraints).

Definition 4.1. A semilinear relation is an unrestricted relation

that can be represented by a constraint relation over 
 ¼
fþ; <; 0; 1g interpreted over the reals.

At the end of the section, we generalize the result to

relations that can be defined by more general polynomial

(in)equality constraints.
Given a finite set of variables X, we denote by IRX the

jXj-dimensional Euclidean space whose coordinate axes are

labeled by the variable names in X.

Definition 4.2. An arrangement AðH1; . . . ; HlÞ for a finite set

H1; . . . ; Hl of hyperplanes in IRU is the coarsest common

refinement of the partitions of IRU induced by each of the Hi.
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The elements of AðH1; . . . ; HlÞ are open, disjoint,
k-dimensional (0 < k � jU j) cells. There are OðljU jÞ such
cells in dimensions 0; . . . ; jU j, and this bound is tight [18].

Lemma 4.3. R � IRU is a semilinear set if and only if there are
hyperplanes H1; . . . ; Hl in IRU such that R ¼

S
q 2 I q for some

I � AðH1; . . . ; HlÞ.
Proof. Each constraint relation S that represents an unrest-

ricted semilinear relation R can be defined as a DNF of
semilinear constraints. The corresponding linear con-
straints define the hyperplanes Hi. tu

Given a constraint relation S that represents an unrest-
ricted semilinear relation R over U , we define AS to be an
arrangement in IRU induced by the hyperplanes defined by
the constraints in S (each constraint of the form a � x > k 2
S is associated with the hyperplane a � x ¼ k). To test if R
satisfies a vic IðXÞ, we introduce the notion of X-
rectangular decomposition:

Definition 4.4. A pair of finite arrangements partðXÞ in IRX

and partðU ÿXÞ in IRUÿX is called a X-rectangular
decomposition of R if for all

c 2 fx� y : x 2 partðXÞ; y 2 partðU ÿXÞg;

we have c � R or c \R ¼ ;.

In other words, R is equivalent to a finite union of
products of pairs of cells taken from partðXÞ and
partðU ÿXÞ, respectively. Fig. 3 shows (a) the dimensional
decomposition, (b) the arrangement AS , and (c) the
resulting semilinear set that satisfies the vic IðfxgÞ for the
constraint relation introduced in Fig. 2a and discussed in
Example 3.7.

Lemma 4.5. LetR be a semilinear set andx and y two points in IRU

such that 1) x 2 R and y =2 R, and 2) �UÿXðxÞ ¼ �UÿXðyÞ.
Then, �XðxÞ and �XðyÞ belong to different cells in partðXÞ of
every X-rectangular decomposition of R.

Proof. Immediate from the observation that x 2 R and
y =2 R. Thus, they must belong to different rectangular
cells. However, as they share their U ÿX coordinates,
the difference must be in partðXÞ. tu

Now, we use the arrangement AS to define a pair of
arrangements in IRX and IRUÿX as follows:

Definition 4.6. Let R be a semilinear relation in IRU represented
by a constraint relation S, X a subset of U , and AS a partition
of IRU derived from semilinear constraints in S. We define

partSðXÞ to be the arrangement in IRX induced by projecting

elements of AS to IRX one by one.

We claim that, if S represents an unrestricted relation R

that satisfies IðXÞ, then the pair of arrangements partSðXÞ
and partSðU ÿXÞ in the respective subspaces IRX and

IRUÿX represent a canonical X-rectangular decomposition of

R. The crucial observation is that, while an unrestricted

semilinear relation R may be represented by many

(different) constraint relations S0, all the arrangements AS0
generated from S0 share a common property:

Lemma 4.7. Let R � IRU be a semilinear relation and S an

arbitrary constraint relation that represents R. Then, every

element of the (dimensional) decomposition2 of R and IRU ÿR
(R’s complement) of dimension k � jU j is contained in a finite

union of elements of AS of dimension at most k.

Thus, every arrangement AS contains a representation of

every face of R; the lemma follows from results on real

semialgebraic sets [30], [3] and is similar to techniques used

in [12].

Theorem 4.8. LetR be a semilinear relation in IRU represented by

a constraint relation S. Then, R satisfies a variable indepen-

dence constraint IðXÞ if and only if partSðXÞ; partSðU ÿXÞ
is an X-rectangular decomposition of R.

Proof. The “if” direction of the proof is immediate: R is a

finite union of rectangular cells of the form x� y, where

x 2 partSðXÞ and y 2 partSðU ÿXÞ and therefore can be

represented by a finite set of constraint tuples, each of

which satisfies IðXÞ.
To show “only-if,” assume thatR is a semilinear set that

satisfies the independence constraint IðXÞ but for which
partSðXÞ and partSðU ÿXÞ do not form a X-rectangular
decomposition. Therefore, there must be a x 2 partSðXÞ
and y 2 partSðU ÿXÞ that only partially intersects R, i.e.,
x� y 6� R and ðx� yÞ \R 6¼ ;.

However, since R satisfies the vic IðXÞ, there must be
an X-rectangular decomposition partðXÞ; partðU ÿXÞ of
R different from partSðXÞ; partSðU ÿXÞ. Without loss of
generality, we assume that partðXÞ; partðU ÿXÞ is a
refinement of partSðXÞ; partSðU ÿXÞ since otherwise we
simply take the coarsest common refinement of
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Fig. 3. Illustrating a dimensional decomposition and an arrangement.



partðXÞ; partðU ÿXÞ and partSðXÞ; partSðU ÿXÞ which
must also be a rectangular decomposition of R.

Also, as partSðXÞ; partSðU ÿXÞ is not an X-rectangu-
lar decomposition, partðXÞ; partðU ÿXÞ must be a proper
refinement of partSðXÞ; partSðU ÿXÞ: All the cells x� y
that only partially intersected R must have been refined
in partðXÞ; partðU ÿXÞ. Thus, we can find two points x
and y such that

1. x 2 R and y =2 R,
2. �UÿXðxÞ ¼ �UÿXðyÞ; and
3. �XðxÞ; �XðyÞ belong to the same cell in partSðXÞ

(the other case, swapping X and U ÿX, is
symmetric).

However, by Lemma 4.5, x and y must then belong to
different (and thus disjoint) cells in partðXÞ. This is not
possible as partSðXÞ is an arrangement in IRX that
already contains images of all faces of R (by Lemma 4.7,
as every such face is an element of the decomposition of
R or IRU ÿR). Therefore, the element(s) separating x
from y must already have been reflected in partSðXÞ, a
contradiction.

Therefore, partSðXÞ; partSðU ÿXÞ must be a rec-
tangular decomposition of R whenever R satisfies the
vic IðXÞ. tu

The theorem and proof can be immediately generalized
to decide if a gvic IðX1; . . . ; XkÞ holds in a semilinear
relation R represented by a constraint relation S. The
generalization merely considers projections of AS into all of
the subspaces Xi, rather than to X and U ÿX only. The
remainder of the argument is essentially the same.

Theorem 4.9. Let S be a constraint relation over U and X � U ,
where all constraints are semilinear. Then, testing if S
represents an unrestricted relation that satisfies IðXÞ takes
OðnjU jÞ, where n is the number of individual constraints in S.
This bound is tight.

Proof. n hyperplanes define an arrangement containing
OðnjU jÞ cells in all dimensions; and the arrangement can
be computed in time and space OðnjU jÞ [18]. This bound
is tight: There are arrangements with 
ðnjUjÞ cells.
Projecting the cells in the subspaces X and U ÿX and
computing the arrangements partSðXÞ and partSðU ÿXÞ
will be dominated by the above cost. Testing for
containment/disjointness of the rectangular cells with
regard to S is a FO+LIN query. Altogether, the overall
complexity of testing if a constraint relation represents
an unrestricted relation satisfying IðXÞ is �ðnjUjÞ. tu
We use the number of individual constraints rather than

the number of constraint tuples since the individual
constraints over U are bounded in size while constraint
tuples are not. Therefore, measuring the size of S in the
number of constraints is more appropriate.

In addition to testing whether a constraint relation
represents an unrestricted relation that satisfies a vic
IðXÞ, our approach also constructs an alternative represen-
tation for the unrestricted relation in which every constraint
tuple satisfies the vic IðXÞ.

Similarly to semilinear relations, we can use the same
construction to test for variable independence in constraint
relations defined by polynomial inequalities. The complexity
of the procedure remains unchanged [18].

5 INFERENCE OF VARIABLE INDEPENDENCE IN

QUERY RESULTS

This section introduces an inference system that allows us

to deduce variable independence constraints in results of

queries. In other words, we develop a system that allows us

to derive judgments of the form

R1 : I 1; . . . ; Rk : Ik ‘ Q : IQ;

where I j are gvics 3 holding in relations Rj and Q is a query
expression over these relations. In the rest of this section, we
use the standard notation ÿ ‘ R : I and ÿ � R : I to denote
the facts that R : I is derivable from and logically implied
by a finite set of assumptions ÿ ¼ fR1 : I1; . . . ; Rk : Ikg,
respectively.

5.1 Disjunctions of Gvics

As the following example demonstrates, using single gvics
to describe constraints holding in an expression cannot
yield a sufficiently powerful set of inference rules:

Example 5.1. Consider the query Q ¼ �fxzgðR [ SÞ, where

the relations R and S with the same schema fx; y; zg
satisfy the gvics Iðfxg; fy; zgÞ and Iðfx; yg; fzgÞ, respec-

tively. It is easy to verify that Q : Iðfxg; fzgÞ. However,

the strongest gvic that holds in the subquery R [ S is

Iðfx; y; zgÞ and, therefore, we cannot design a sound and

complete inference rule for the projection (�V ) operation.

We therefore generalize our inference system to allow

disjunctions of gvics to be attached to query expressions:

Definition 5.2. Let I1; . . . ; Ik be a set of gvics. An unrestricted

relation R satisfies I1; . . . ; Ik (we write R : I1; . . . ; Ik) if

there is a constraint relation S that finitely represents R such

that each constraint tuple satisfies at least one of the gvics I j
for 0 < j � k.

Note that there are only finitely many gvics for a fixed
schema, and that it is, therefore, sufficient to consider only
finite sets of gvics. Before defining the inference rules, we
need the following operations on (sets of) gvics:

Definition 5.3 (gvic operations). Let IðX1; . . . ; XkÞ and

I0ðY1; . . . ; YlÞ be two gvics over the schemas X and Y ,

respectively. We define

. IðX1; . . . ; XkÞ� ¼ IðX1�; . . . ; Xk�Þ, where � is a
renaming of variables X to X�;

. �V IðX1; . . . ; XkÞ ¼ IðV \X1; . . . ; V \XkÞ, where
V � X is a set of variables;

. IðX1; . . . ; XkÞ ffl I0ðY1; . . . ; YlÞ ¼ IðZ1; . . . ; ZnÞ,
where Zi � X [ Y and Z1; . . . ; Zn is the finest
partition of X [ Y such that for all 0 < i � k either
Xi � Zj or Xi \ Zj ¼ ; and for all 0 < i � l either
Yi � Zj or Yi \ Zj ¼ ;.

These operations essentially mimic the corresponding
relational operations on constraint tuples; we therefore use
the same names. The actual inference rules are defined in
terms of these operations in Fig. 4. Given a query expression
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Q, the rules are applied bottom-up following the syntactic
structure of Q.4

Definition 5.4 (gvic Inference). Let ÿ be a set of assumptions

of the form Rj : I j. We say that Q : I is derivable from ÿ if

ÿ ‘ Q : I 1; . . . ; I l is derived by the rules in Fig. 4 and

I ¼ I 1 ffl . . . ffl I l.

To see the inference rules at work, consult Example 7.7.

As we saw in Example 5.1, in general single gvics are not

powerful enough to fully characterize independence in

queries. However, it is easy to see that gvics are sufficient in

the restricted case of conjunctive (PJR) queries: None of the

AX, RR, RP, and RJ inference rules can infer disjunction of

gvics from single gvics.
Now, we turn our attention to soundness and complete-

ness of the inference rules in Fig. 4

Theorem 5.5 (Soundness). The inference rules in Fig. 4 are

sound; i.e.,

ÿ ‘ Q : I 1; . . . ; Ik¼)ÿ � Q : I1; . . . ; Ik:

Proof. By inspection of the rules and an inductive extension

to query expressions. tu

Similarly to other nontrivial properties of first-order

queries, variable independence in query results is not

decidable.

Theorem 5.6. For arbitrary PJRUN queries, it is undecidable

whether ÿ � Q : I .

Proof. By reduction from query emptiness. Let Q0 be a

closed (Boolean) PJRUN query and R a constraint

relation over the schema fx; yg containing a single tuple

fx ¼ yg. Then, ; � ðQ0 ffl RÞ : IðfxgÞ if and only if Q0 is

empty. tu

We, therefore, concentrate on the positive fragment of

first-order queries—on the PJRU expressions.

Theorem 5.7 (Completeness for PJRU Queries). LetM be a
constraint domain that contains equality and Q a PJRU query.
Then,

ÿ � Q : I 1; . . . ; Ik¼)ÿ ‘ Q : I 1; . . . ; Ik:

Proof. Let

R : I1ðX1
1 ; . . . ; X1

k1
Þ; . . . ; I lðXl

1; . . . ; Xl
kl
Þ 2 ÿ

be the (disjunction of) gvics imposed on R by ÿ, where R
is an unrestricted relation in the schema of the constraint
database. We construct an instance D that satisfies ÿ as
follows: For the relation symbol Rðx1; . . . ; xlÞ, we define
an unrestricted instance represented by the following
constraint relation

S ¼
^

xi;xj2Xm
n ;0<i<j�l;0<n�km

xi ¼ xj

0@ 1A : 0 < m � l

8<:
9=;:

The above instance maximally satisfies the assumptions
posed on R in ÿ; that is, for each gvic Im, the constraint
relation S contains a constraint tuple that satifies the gvic
Im, but does not satisfy any gvic finer than Im (in the
sense of Definition 3.12).

Applying a relational operation f 2 f�; �V ;ffl;[g on
this instance produces a constraint relation representing
the result fðDÞ that maximally satisfies the gvics inferred
by the inference rules in Fig. 4 for the fðDÞ. The result
fðDÞ can be added to the constraint database instance
constructed above as a view. This view maximally
satisfies the gvics inferred by our inference system and
can be used as an input to further relational operations.
The theorem then follows by extending this construction
to (arbitrary) larger queries by composing the above
single-step completeness argument. tu

Taking into account the disjunctive nature of the
inference system, we have started with ÿ containing more
general assumptions of the form Ri : I i;1; . . . ; I i;k and
generated multiple maximal constraint tuples to maximally
satisfy such disjunctions of gvics. However, without loss of
generality, the assumptions for base relations R can all be of
the form R : I .
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The restriction to constraint domains that contain equal-
ity (or another symmetric-transitive binary relation that
cannot be decomposed to product of unary relations) is
essential—it allows us to construct counterexamples for
gvics not inferred by the rules in Fig. 4. Without equality the
inference system is incomplete even for conjunctive queries.
Consider the following example:

Example 5.8. Let all constraints be defined using <Q only
(i.e., the only nontrivial interpreted constraint is the strict
order on rational numbers). In this setting, for any binary
relation Rðx; yÞ, we have

R ffl ðR½x 7! y; y 7! x�Þ : IðfxgÞ

independently of the gvic(s) satisfied by R itself (where
½x 7! y; y 7! x� is a renaming that swaps x and y in R).

A similar example can be exhibited for the [ operation as
well.

5.2 Constant Constraints and Constraint Selection

The inference system in the previous section concentrates
on inference of gvics from other gvics and ignores
interactions between gvics and constant constraints. In
particular, we express selection as a natural join with a
singleton constraint relation.

Definition 5.9. Let C be a constraint tuple and I a gvic. We say
that C inherently satisfies I if �C0C : I for all constraint
tuples C0.

This definition captures the relationship between con-
stant constraint selections and gvics. In particular, this
definition captures the fact that selections based on
constraint tuples satisfying this condition guarantee vari-
able independence in the result no matter how the input to
the selection may look. The following example shows that
gvics interact with the selection in a more complex way:

Example 5.10. Consider the query Q ¼ �x¼aðRÞ applied on a
binary relation Rðx; yÞ. Then, Q : IðfxgÞ.

Clearly, any query that returns finite (unrestricted)
results for a particular attribute satisfies a vic separating
this attribute from the rest as long as the constant
constraints can be defined in the underlying constraint
structure. In general, however, finiteness may not be the only
cause of inherent satisfaction of a gvic: This depends on
constraints definable in the underlying structure.

If an unrestricted relation inherently satisfies a gvic, then
this gvic is preserved by PJRU relational operations (unlike
normal gvics).

Example 5.11. Consider again the query Q ¼ �x¼aðRÞ. Then,
in any conjunctive query Q0 that uses Q as a subquery
the vic Ifxg holds (assuming x is a top-level variable in
Q0). This fact cannot be inferred by the gvic inference
rule for ffl .

There is another reason why not to include vic inference
based on finiteness into the inference system: In general,
while finiteness implies gvics, i.e., the existence of a finite
constraint representation in which every tuple satisfies a gvic,
there may be no limit on the size of such representation:

Example 5.12. Let ZZ ¼ ðZZ;�; fcgc 2 CÞ be a linearly ordered
set of integers with constants. Then, every bounded set in
Rðx1; . . . ; xkÞ � ZZk satisfies the gvic Iðfx1g; . . . ; fxkgÞ.

In particular,

�c1�x�c2^c3�y�c4
R

satisfies Iðfxg; fygÞ for any instance of R, in particular for
R ¼ fx ¼ yg. The result of this query is bounded by
minðc2; c4Þ ÿmaxðc1; c3Þ and independent of jRj.

5.3 Inference of Gvics in Constraint Datalog

The rules in Fig. 4 can also be used to deduce gvics holding
in relations defined by Constraint Datalog queries [19].

We use the inference rules in Fig. 4 to define an abstract
immediate consequence operator that, given a set (disjunc-
tion) of gvics for relation symbols in a Datalog program P ,
computes the immediate gvic consequences of the clauses
in P . Iterating this operator yields the desired result. More
formally:

Definition 5.13. Let P be a Constraint Datalog program. We
define

TPI ðIÞ ¼ fð�V ðIC ffl I1�1 ffl . . . ffl Ik�kÞÞ� : A

 C;B1; . . . ; Bk 2 P; I j : Bj 2 Ig;

where IC is the gvic associated with the constraint C, V is the
set of variables in the head of the clause, A, � is the renaming
from the variables in the clause to the schema of A, and �i a
renaming from schema of Bi to the variables in the clause.

Definition 5.14. Let P be a Constraint Datalog program. Then,

1. The closure ordinal of TPI is finite, and
2. If R : I 1; . . . ; R : Ik 2 ðTPI Þ!ð;Þ are all gvics asso-

ciated with R, then R : I 1 ffl . . . ffl Ik holds in the
answers of P . Moreover, the inference procedure is
complete; no finer (Definition 3.12) gvic holds in the
answer.

Proof. Item 1 follows from the fact that there are only
finitely many different gvics over a fixed schema, and
Item 2 follows from Theorems 5.5 and 5.7 and the fact
that the closure ordinal of TPI is finite. tu

The inference of gvics in the results of deductive queries
can be naturally relativized to an extensional database
(EDB); it is sufficient to provide gvics describing the
relations in the EDB as the input to the TPI iteration.

6 RESTRICTED AGGREGATION

As shown in [21], Klug’s relational calculus and algebra
with aggregation can be extended to constraint databases
with minor modifications, at least as far as the underlying
semantics on unrestricted relations is concerned. For our
purposes here, it is sufficient to assume that the algebra is
extended by the following operator for every aggregate
function, whose syntax was originally defined in [20]:

Definition 6.1. Let R be an unrestricted relation over U , X � U ,
Y \ U ¼ ;, and f an aggregate function that maps subsets of
DUÿX to DY (where D is the universe of values). Then, the
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aggregate operator hX; fi, when applied to R, produces a new

relation R0 with attributes X [ Y

RhX; fi ¼
½t; fðf�UÿXðt0Þ : t0 2 R ^ �Xðt0Þ ¼ tgÞ� : t 2 �XðRÞf g;

where ½t; f � is the tuple constructed by concatenating the value

assignments to X and Y contained in t and f , respectively. For

clarity, we write the occurrences of f as fYUÿX .

Intuitively, the above corresponds to grouping the tuples

in R on X and applying the aggregation operator to the

remaining attributes in each group. For more details,

including the construction of an equivalent calculus, see [21].
We can now express the query from Example 1.1 as

Rhfzg; areaax;yi. As shown in this example, constraint

relational algebra with aggregation may fail to be closed

even for dense order constraints [21]. In this section, we

impose a variable independence condition on the schema of

those relations to which aggregation is applied. In parti-

cular, we will stipulate that IðXÞ must hold in R (see

Definition 3.1).
This variable independence condition acts as a restriction

on applying the aggregate operator. So, the expression

Rhfzg; areaax;yi from Example 1.1 would not be permitted by

our restriction, as IðfzgÞ does not hold in R. We show that

for all reasonable constraint classes, relational algebra with

restricted aggregation is closed, i.e., the result of any relational

algebra expression can be represented as a constraint

relation.
Note that restricted aggregation, like other relational

algebra operators, can be nested. It should also be noted

that the relation R in Definition 6.1 can be either extensional

or intensional. We show later in this section how to

maintain the restriction in both of those cases.

Definition 6.2. The relational algebra with restricted

aggregation consists of the standard relational algebra

augmented with aggregation operators hX; fi such that their

every occurrence of the form QhX; fi, where Q is an

expression of the algebra, must satisfy the following condi-

tions:

1. IðXÞ is guaranteed to hold in QðDÞ for every
constraint database D, and

2. the set fðRÞ can be represented by a constraint relation
whenever R � DUÿX can be represented by a con-
straint relation.

We will show later in this section how to determine

whether those conditions hold.

Example 6.3. Let L be the cadastral relation in Example 1.2.

The relational algebra query

Lhfn; tg; areaax;yi

lists the area of land owned by each person at all times.

Since the unrestricted relation represented by L satisfies

IðXÞ, then the above query satisfies our restriction on the

use of aggregation.

Theorem 6.4. Relational algebra with restricted aggregation is

closed.

Proof. Let R be an unrestricted relation satisfying IðXÞ and
S ¼ fcX1 ^ cUÿX1 ; . . . ; cXl ^ cUÿXl g its finite constraint re-

presentation in which every tuple satisfies IðXÞ. We
construct a set fdX1 ; . . . ; dXk g of constraints in DX such
that, for all 0 < i � l; 0 < j � k:

1. dXj ! cXi ;

2. cXi ! di1 _ . . . _ dit ;
3. :ðdXi ^ dXj Þ if i < j.

This set always exists since it can be constructed by
considering all possible Boolean combinations of the
constraints cXi . Let

S0 ¼ fdXi ^ cUÿXj : dXi ! cXj g:

Then, S0 is a constraint relation that also represents R.
However, in S0, projections of the individual constraint
tuples into DX define pairwise-disjoint sets. Due to the

vic IðXÞ, the sets of valuations for variables U ÿX are
constant in each of these sets. We form

S0hX; fi ¼
fdXi ^ y ¼ fðft : cUÿXj ðtÞ; ðdXi ^ cUÿXj Þ 2 S0gÞ : dXi 2 �XðS0Þg:

The constraint relation S0hX; fi represents RhX; fi. tu

From the above proof, we can also derive the following
rule for inferring variable independence constraints in
results of queries with aggregation that parallels those for

the relational algebra operators presented in Section 5.

Aggregation:

RAg:
ÿ ‘ Q : IðX1; . . . ; XkÞ

ÿ ‘ QhX; fi : IðY ;Xi1 ; . . . ; XilÞ
for X ¼ Xi1 � � �Xil and Y attributes defined by f

for Y standing for the set of variable names introduced by
the aggregate operator. The soundness of the rules follows

from the construction used in the proof of Theorem 6.4. In
particular, if R satisfies IðZÞ for Z � X, then all the

constraints dXi could have been written as conjunctions of
dZi and dXÿZi and, thus, the rule is sound.

To enforce the first condition of Definition 6.2, we must

be able to guarantee, given a constraint database D and a
relational expression QhX; fi, that IðXÞ holds in D. If Q is

some database relation R, this is accomplished by main-
taining the satisfaction of IðXÞ in every instance of R (see

Section 4). Otherwise, if Q is an arbitrary relational
expression, variable independence can be inferred at query

compile-time (see Section 5), under the assumption that all
vics in D are properly maintained. Note that the above is
accomplished without affecting the runtime query perfor-

mance; as a result, we believe that restricted aggregation is a
very promising approach to assuring the closure of queries

with aggregation.
The second condition of Definition 6.2 is also important

and, unfortunately, can be easily violated by natural

aggregation operators.
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Example 6.5 [23]. Let R ¼ fxy : x2 þ y2 < 1g. This relation
defines a unit circle using polynomial constraint(s) with
rational coefficients. However,

Rh;; areaax;yi

cannot be defined using polynomial constraint(s) with
rational coefficients as the result is a singleton relation
fð�Þg that is not definable even when allowing algebraic
numbers as constants.

Essentially, the rational (and also algebraic) numbers
cannot provide sufficiently many “constants” to define
volumes. However, unlike [2], this constraint can be
approximated arbitrarily tightly using polynomial con-
straint(s) with rational coefficients (follows from density
of QQ in IR and the fact that the variable independence
condition guarantees there are only finitely many volume
values needed). On the other hand, using semilinear sets
evades this issue.

Theorem 6.6. For bounded constraint relations defined using
semilinear constraints with rational (algebraic) coefficients, the
result of the area aggregate operator is always definable by
linear equality with rational (algebraic) coefficients.

We conclude this section by noting that perhaps
Definition 6.2 is overly restrictive. It may happen that a
relational algebra expression is closed while some of its
subexpressions aren’t.

Example 6.7. Consider the query

�a<1ðRhfzg; areaax;yiÞ

for the relation R from Example 1.1. This query is
excluded by Definition 6.2 because the application of
aggregation violates the vic Iðfx; ygÞ. However, the
result of this query is obtained by solving quadratic
inequalities and can thus always be represented using
order constraints.

7 APPLICATIONS IN TEMPORAL, SPATIOTEMPORAL,
AND CONSTRAINT DATABASES

We discuss here further applications of variable indepen-
dence. As we show, this notion arises naturally in
spatiotemporal databases (in the context of discrete
change), point-based temporal query languages, and gap-
order constraint databases.

7.1 Spatiotemporal Databases

Spatiotemporal relation schemas contain three kinds of
attributes: spatial, temporal, and thematic. In the context of
constraint databases, such relations are modeled as con-
straint relations consisting of conjunctions of constraints
over three sets of variables: spatial, temporal, and thematic.
In general, a single constraint may involve multiple kinds of
variables. For example, to represent continuous change, it is
necessary to have spatial and temporal variables related
together.

However, as pointed out in the introduction, in many
spatiotemporal database applications, it is natural to

consider only discrete changes. This observation was made

first by Worboys [37], [38], who proposed a spatiotemporal

data model in which temporal attributes are represented

using products-of-intervals and spatial attributes using

polygons. Worboys’ model has a natural reconstruction

using linear constraint databases with constraint relations in

which spatial, temporal, and thematic variables are inde-

pendent. Consider the signature 
 ¼ fþ; <; 0; 1g interpreted

over the reals.

Definition 7.1. A Worboys relation is a constraint relation S

over 
 with the schema DST such that unrestricted relation R

represented by S satisfies the gvic IðD;S;TÞ, where

. D is the set of variables corresponding to thematic
attributes,

. S is the set of variables of cardinality at most 2,
corresponding to spatial attributes, and

. T is the set of variables corresponding to temporal
attributes.

A Worboys database is a set of Worboys relations.

Example 7.2. The following constraint relation:

fn ¼ 935 ^ x > 0 ^ x < 1 ^ y > 0 ^ t > 0g

is a Worboys relation with D ¼ fng, S ¼ fx; yg, and

T ¼ ftg.
Worboys [37] also proposed a query language for his

model. The language is essentially a version of relational

algebra, in which care is taken to ensure that every operator

produces a Worboys relation. This is a serious limitation in

expressive power since it makes it impossible to formulate

queries in which intermediate results have multiple sets of

spatial attributes. Such queries are essential, for example, to

compare spatial objects corresponding to different time

instants.

Example 7.3. Consider the class C of queries of the

following form:

�S;T;Dð��ðD;D0Þð��ðT;T0Þð�ðS;S0ÞðRðS;T;DÞ
�R0ðS0;T0;D0ÞÞÞÞÞ:

Such queries express joins involving temporal, spatial,

and thematic attributes, followed by a projection. As an

example, consider a query that for any time point,

returns the part of a given spatial object that overlaps

with some other spatial object. It can be written as

�S;T;Dð�D6¼D0Þð�T¼T0 ð�S¼S0 ðRðS;T;DÞ �RðS0;T0;D0ÞÞÞÞÞ:

Queries in C cannot be expressed in the query language

of the Worboys model because they require intermediate

results with multiple sets of spatial (S;S0) attributes.

We propose to use the standard relational algebra to

query Worboys databases. To obtain closure, we will

consider only queries that compute Worboys relations.

However, the intermediate results may contain multiple

sets of spatial attributes and thus fail to be Worboys

relations. Such a scenario is termed data interoperability [11]

(see Fig. 5).
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To capture intermediate results that are more general

than Worboys relations, we introduce the notion of general

Worboys relation.

Definition 7.4. Assume a fixed database schema consisting of

Worboys relations R1; . . . ; Rn. A general Worboys relation
is a constraint relation S over 
 with attributes DST such

that the unrestricted relation R represented by S satisfies a

finite set of gvics of the form IðD;S1; . . . ;Sk;TÞ, where:

. D is a set of thematic variables, each of which
corresponds to a thematic variable (possibly renamed)
in one of R1; . . . ; Rn,

. Si, 1 � i � k, is a set of spatial variables, consisting of
some spatial variables (possibly renamed) occurring in
one of R1; . . . ; Rn, and

. T is a set of temporal variables, each of which
corresponds to a temporal variable (possibly renamed)
in one of R1; . . . ; Rn.

We will use here the relational algebra defined in Section 2.

The atomic expressions in this algebra will be the given
Worboys relations or built-in relations (arbitrary linear
constraints). We note that built-in relations satisfy in general
only trivial gvics. We will require that every equijoin R ffl S,

where R (or S) is built-in is a selection �RðSÞ (respectively,
�SðRÞ) in which R (respectively, S) involves only the
thematic, the spatial, or the temporal variables of S (respec-

tively, R). (This is not restrictive since built-in relations
typically involve attributes of the same type.)

Theorem 7.5. Assume a fixed database schema consisting of

Worboys relations R1; . . . ; Rn and possibly some built-in

relations. Let Q be a relational algebra query with the

restrictions listed above. Then, for any Worboys database D

over 
 corresponding to the above schema, QðDÞ is a general

Worboys relation.

Proof. By structural induction, using the inference rules in

Fig. 4. tu
Corollary 7.6. Under the assumptions of Theorem 7.5, let Q be a

query in which we additionally require that it return a

constraint relation with schema DST, where D consists of

(possibly renamed) thematic variables, S (jSj � 2) of (possibly

renamed) spatial variables, and T of (possibly renamed)

temporal variables. Then, for every Worboys database D over


, QðDÞ is a Worboys relation.

Example 7.7. We illustrate how the queries of class C
defined in Example 7.3 can be shown to return Worboys
relations (provided the database contains Worboys
relations). We will use the inference rules in Fig. 4,
replacing equijoin with a built-in relation by the
corresponding selection.

1. R : IðD;S;TÞ and R0 : IðD0;S0;T0Þ (original
assumptions),

2. R�R0 : IðS;D;T;S0;D0;T0Þ (join � cartesian
product),

3. �ðS;S0ÞðR�R0Þ : IðSS0;D;T;D0;T0Þ (join � selec-
tion),

4. ��ðT;T0Þð�ðS;S0ÞðR�R0ÞÞ : IðSS0;TT0;D;D0Þ (join
� selection),

5. ��ðD;D0Þð��ðT;T0Þð�ðS;S0ÞðR�R0ÞÞÞ:
IðDD0;SS0;TT0Þ (join � selection),

6. �S;T;Dð��ðD;D0Þð��ðT;T0Þð�ðS;S0ÞðR�R0ÞÞÞÞ:
IðD;S;TÞ (projection).

Worboys relations have an advantage over general
spatiotemporal relations from the point of view of query
evaluation. Grumbach et al. [14] note that, if time and space
are independent, then the intersection of two spatiotempor-
al objects, done tuple-wise, consists of intersecting the
temporal and spatial parts of each tuple. If those parts are
represented using well-established constructs like products-
of-intervals for the temporal and polygons (or polytopes)
for the spatial, the intersection can be done very efficiently.

Our notion of Worboys relation is slightly more general
than Worboys’ since we allow spatial attributes to describe
unbounded spatial objects, and thematic and temporal
variables to participate in linear constraints. It can be shown
that, under the more restricted notion, we will also obtain
closure for positive relational algebra (without the set
difference operator).

7.2 Temporal Extensions of SQL

SQL/TP [32] is a temporal extension of SQL. Here, tuples in
temporal relations are extended with an extra attribute
(variable) storing the time instant associated with the tuple.
Individual tuples are not stored separately. Rather the set of
tuples whose nontemporal components are identical and
temporal components are consecutive time instants is
stored as a single tuple with the set of time instants
represented as an interval.
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The originality of SQL/TP compared to other temporal
extensions of SQL is that the interval-based representation
is not exposed in the query language. Instead, the user
writes queries in terms of time instants as he would do if he
were dealing with a constraint-based representation (see the
example below).

However, SQL/TP is not implemented like typical
constraint query languages, e.g., DEDALE [15]. Instead,
SQL/TP queries are compiled into plain SQL where results
are to be represented as (products of) intervals. Therefore,
SQL/TP uses vics to restrict allowed queries as follows:
1) the temporal attributes in the result of the query are
independent; 2) the aggregate operations must obey the vics
required for aggregation in Section 6.

Example 7.8. Consider a temporal database containing a
single relation r with a temporal attribute year. The
query in which only r1.year appears in the select list
does not violate variable independence requirement:

select r1:year
from r r1; r r2

where r1:year < r2:year

The following SQL/TP query, however, is not allowed
because the attributes r1.year and r2.year are not
independent, violating the first requirement.

select r1:year; r2:year
from r r1; r r2

where r1:year < r2:year

Evaluating this query on a nonempty instance of r,
e.g., an instance containing, e.g., a single tuple for which
year ¼ ½1900; 2000� yields a result that cannot be repre-
sented in the SQL/TP data model.

The result of this query is a constraint relation represent-
ing a triangle (or a set of triangles), these cannot be
represented by a (similarly sized) set of products of
intervals. Even in cases where the instance of r is bounded
and, thus, the result is finite, we do not admit such a query
as the number of independent tuples in the result may be
extremely large (cf. Example 5.12).

Example 7.9 The following query is also not allowed
because it leads to a lack of closure under aggregation:

select countðr1:yearÞ; r2:year
from r r1; r r2

where r1:year < r2:year
group by r2:year

The closure problem is the same as the problems
outlined in Examples 1.1 and 1.2

7.3 Gap-Order Datalog

Gap-order constraints in Z are atomic formulas of the form
xþ c � y, x � d, and d � x for c; d 2 ZZ; c > 0. Constraint
tuples formed from gap-order constraints over variables
x1; . . . ; xk can be represented by a directed graph on kþ 2
[28] or equivalently by a matrix representation of such a
graph [13]. In both cases, the representation is quadratic in k
(worst case).

A Gap-Order Datalog query (program) is a finite set of
Horn clauses with variables constrained by gap-order
constraints. Thus, both the bottom-up evaluation [28] and
the top-down, memoing-based evaluation [33] of Gap-order
Datalog queries need to manipulate �ðk2Þ sized tuples in
the iterative construction of the least model or in the
memoing tables [39], respectively. However, in many cases,
the variables in the literals of the Datalog query are
independent. Using Theorem 5.14, we can infer variable
independence for all atoms in a given Datalog query and
then tailor the representation to minimize the required
space to store constraint tuples. Similarly to [16], it is
sufficient to have only representation with

Pk
i¼1 jXij2 size

for each atom r satisfying the gvic IðX1; . . . ; XkÞ.

8 RELATED WORK

The notion of variable independence was first proposed in [8]
by three authors of the present paper. A similar notion of
orthographic dimension was proposed later in [16]. Both
papers claimed decidability of variable independence for
linear constraint databases; as pointed out by Libkin [23],
the proofs of both claims were incorrect. The first correct
proof of the decidability of variable independence for linear
and polynomial constraint databases5 appears in [24]. The
proof works by formulating variable independence as a
formula in an appropriate, decidable constraint theory. Our
approach in the present paper is different, as it draws on the
techniques and results from computational geometry [18].
In addition, our approach not only decides the validity of a
vic but also explicitly constructs a constraint relation that
satisfies the vic, if one exists.

Spatiotemporal data models that require the spatial and
temporal attributes be independent are described in [14],
[37], [38]. Grumbach et al. [16] provide a test whether a
relational expression introduces additional dependencies
between attributes. This test can be used to achieve the
same conclusions that we did in the temporal and
spatiotemporal database examples in Section 7.

Most of the previous work on aggregation, with the
exception of [20], [26], [21], [9], [17], [2], has concentrated on
a fixed set of aggregation operators motivated by traditional
database applications. Such operators are applicable to
finite relations and do not generalize to infinite ones. In [9],
a special aggregation operator for constraint relations that
preserved closure of relational algebra operations was
proposed. The issue of closure of general aggregation
operators was not, however, addressed. An approach to
aggregation based on approximation was presented in [17].
However, that approach does not solve the closure problem,
as it does not show how to compute the result of the
aggregate function when nonclosure arises (cf. Example 1.1).
In fact, the application of aggregation seems still to require
variable independence as a precondition, as in the current
paper.

Benedikt and Libkin [2] have presented a comprehen-
sive study of aggregation in the context of constraint
databases. The conclusions of that paper can be summar-
ized as follows: First, the authors show that existing
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approximation-based approaches to computing aggrega-

tion are infeasible for polynomial and linear arithmetic

constraint databases because they introduce a huge blow-

up in the representation size. Second, the authors show

that adding new functions to the signature does not help.

Third, they propose a new query language FOþ POLY þ
SUM that consists of relational calculus with polynomial

constraints augmented with standard discrete aggregation

operators applied to the outputs of range-restricted

constraint queries. In this language, queries computing

volumes of sets defined by linear arithmetic constraints

can be expressed. This elegant approach requires, how-

ever, moving beyond linear constraints to represent

aggregation results (which is unavoidable). Chomicki

and Libkin [10] provide a summary of the recent work

on aggregation in constraint databases.

9 CONCLUSIONS AND FURTHER WORK

We have presented the notion of variable independence

conditions (vics) that enriches the constraint data model.

We have shown how to use this notion in a number of

contexts, including closure under aggregation, data inter-

operability, and query evaluation in temporal and spatio-

temporal databases. We have also established the

decidability of vics in linear constraint databases and

studied their inference.
Further extensions of this work include decision proce-

dures for vics for larger classes of constraints, the interaction

of gvics with other types of integrity constraints, e.g.,

functional dependencies, equational constraints, etc., in-

cluding axiomatization and/or decision procedures for

such combinations, and applications to non-first-order

query languages with aggregation [25], [29], [31], [34].
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