
P1: GSY
CM173A-05 ACM-TRANSACTION November 10, 2003 13:53

Preference Formulas in Relational Queries

JAN CHOMICKI
University at Buffalo, Buffalo, New York

The handling of user preferences is becoming an increasingly important issue in present-day in-
formation systems. Among others, preferences are used for information filtering and extraction to
reduce the volume of data presented to the user. They are also used to keep track of user profiles
and formulate policies to improve and automate decision making.

We propose here a simple, logical framework for formulating preferences as preference formulas.
The framework does not impose any restrictions on the preference relations, and allows arbitrary
operation and predicate signatures in preference formulas. It also makes the composition of pref-
erence relations straightforward. We propose a simple, natural embedding of preference formulas
into relational algebra (and SQL) through a single winnow operator parameterized by a prefer-
ence formula. The embedding makes possible the formulation of complex preference queries, for
example, involving aggregation, by piggybacking on existing SQL constructs. It also leads in a nat-
ural way to the definition of further, preference-related concepts like ranking. Finally, we present
general algebraic laws governing the winnow operator and its interactions with other relational
algebra operators. The preconditions on the applicability of the laws are captured by logical formu-
las. The laws provide a formal foundation for the algebraic optimization of preference queries. We
demonstrate the usefulness of our approach through numerous examples.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Languages]: Math-
ematical Logic; H.2.3 [Database Management]: Languages—query Languages; H.2.4 [Database
Management]: Systems—query processing

General Terms: Languages, Theory

Additional Key Words and Phrases: Preference queries, preferences, query optimization, relational
algebra

1. INTRODUCTION

The handling of user preferences is becoming an increasingly important issue
in present-day information systems. Among others, preferences are used for
information filtering and extraction to reduce the volume of data presented to
the user. They are also used to keep track of user profiles and formulate policies
to improve and automate decision making.

The support of National Science Foundation under grant IIS-0307434 is gratefully acknowledged.
Author’s address: Department of Computer Science and Engineering, 201 Bell Hall, University at
Buffalo, State University of New York, Buffalo, NY 14260-2000; email: chomicki@cse.buffalo.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2003 ACM 0362-5915/03/1200-0001 $5.00

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003, Pages 1–40.

P1: GSY
CM173A-05 ACM-TRANSACTION November 10, 2003 13:53

2 • Jan Chomicki

ISBN Vendor Price
0679726691 BooksForLess $14.75
0679726691 LowestPrices $13.50
0679726691 QualityBooks $18.80
0062059041 BooksForLess $7.30
0374164770 LowestPrices $21.88

Fig. 1. The Book relation.

The research literature on preferences is extensive. It encompasses prefer-
ence logics [von Wright 1963; Mantha 1991; Hansson 2001], preference rea-
soning [Wellman and Doyle 1991; Tan and Pearl 1994; Boutilier et al. 1999],
prioritized nonmonotonic reasoning and logic programming [Brewka and Eiter
1999; Delgrande et al. 2000; Sakama and Inoue 2000], and decision theory
[Fishburn 1999; Fishburn 1970] (the list is by no means exhaustive). The re-
sarch on preferences in the context of database queries goes back a long time
[Lacroix and Lavency 1987; Kießling and Güntzer 1994; Köstler et al. 1995].
Nevertheless, only recently this area has attracted broader interest in the
database research community [Agrawal and Wimmers 2000; Börzsönyi et al.
2001; Govindarajan et al. 2001; Hristidis et al. 2001; Chomicki 2002; Kießling
2002; Kießling and Hafenrichter 2002; Kießling and Köstler 2002]. Two differ-
ent approaches have been pursued: qualitative and quantitative. In the qualita-
tive approach [Lacroix and Lavency 1987; Kießling and Güntzer 1994; Köstler
et al. 1995; Börzsönyi et al. 2001; Govindarajan et al. 2001; Chomicki 2002;
Kießling 2002; Kießling and Hafenrichter 2002; Kießling and Köstler 2002],
the preferences between tuples in the answer to a query are specified directly,
typically using binary preference relations.

Example 1.1. We introduce here one of the examples used throughout the
paper. Consider the relation Book(ISBN, Vendor, Price) and the following pref-
erence relation �C1 between Book tuples:

prefer one Book tuple to another if and only if their ISBNs are the
same and the Price of the first is lower.

Consider the instance r1 of Book in Figure 1.
Then clearly the second tuple is preferred to the first one which in turn is

preferred to the third one. There is no preference defined between any of those
three tuples and the remaining tuples.

In the quantitative approach [Agrawal and Wimmers 2000; Hristidis et al.
2001], preferences are specified indirectly using scoring functions that asso-
ciate a numeric score with every tuple of the query answer. Then a tuple t1 is
preferred to a tuple t2 iff the score of t1 is higher than the score of t2. The qualita-
tive approach is strictly more general than the quantitative one, since one can
define preference relations in terms of scoring functions. However, not every
intuitively plausible preference relation can be captured by scoring functions.

Example 1.2. There is no scoring function that captures the preference
relation described in Example 1.1. Since there is no preference defined between
any of the first three tuples and the fourth one, the score of the fourth tuple

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.

P1: GSY
CM173A-05 ACM-TRANSACTION November 10, 2003 13:53

Preference Formulas in Relational Queries • 3

should be equal to all of the scores of the first three tuples. But this implies that
the scores of the first three tuples are the same, which is not possible since the
second tuple is preferred to the first one which in turn is preferred to the third
one.

This lack of expressiveness of the quantitative approach is well known in
utility theory [Fishburn 1999, 1970]. On the other hand, preferences expressed
using scoring functions can also be expressed directly, as long as the func-
tions are explicitly defined. Qualitative approaches often offer various ways
to express such preferences, as described, for example, in [Kießling 2002] and
Section 7 of this article.

In the present article, we contribute to the qualitative approach by defining a
logical framework for formulating preferences and its embedding into relational
query languages.

We believe that combining preferences with queries is very natural and use-
ful. The applications in which user preferences are prominent will benefit from
applying the relational DBMS technology enhanced with a comprehensive sup-
port for preference queries. It will become possible to formulate as queries much
more sophisticated search and configuration problems involving quantifiers,
grouping, or aggregation. There are already promising applications of prefer-
ence queries in the area of personalized search engines and shopping agents
[Kießling and Köstler 2002]. Further potential applications include logical user
profiles in the form of materialized preference views. Such profiles could help to
partially automate (or guide) the customer’s decision process and also provide
useful customer information to vendors. Other potential applications involve
“soft” catalogs [Stolze 2000] and knowledge-based recommendation systems
[Burke 1999].

The framework presented in this article consists of two parts: A formal first-
order logic notation for specifying preferences and an embedding of preferences
into relational query languages. In this way, abstract properties of preferences
(like asymmetry or transitivity) and evaluation of preference queries can be
studied to a large degree separately.

Preferences are defined using binary preference relations between tuples.
Preference relations are specified using first-order formulas. We focus mostly
on intrinsic preference formulas. Such formulas can refer only to built-in pred-
icates. In that way, we capture preferences that are based only on the values
occuring in tuples, not on other properties like membership of tuples in database
relations. We show how the latter kind of preferences, called extrinsic, can also
be simulated in our framework in some cases.

We propose a new relational algebra operator called winnow that selects
from its argument relation the most preferred tuples according to the given
preference relation. Although the winnow operator can be expressed using other
operators of relational algebra, by considering it on its own we can on one hand
focus on the abstract properties of preference relations (e.g., transitivity) and on
the other, study special evaluation and optimization techniques for the winnow
operator itself. For SQL, we are faced with a similar choice: either the language
is appropriately extended with an SQL equivalent of winnow, or the occurrences

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.

P1: GSY
CM173A-05 ACM-TRANSACTION November 10, 2003 13:53

4 • Jan Chomicki

of winnow are translated into SQL. The first alternative looks more promising;
however, in this article, we don’t commit ourselves to any specific syntactic
expression of winnow in SQL.

We want to capture many different varieties of preference and related no-
tions: unconditional vs. conditional preferences, absolute vs. relative prefer-
ences, nested and hierarchical preferences, groupwise preferences, indifference,
preference composition, iterated preferences and ranking, and integrity con-
straints and vetoes.

The main contributions of this article are as follows:

(1) a simple, logical framework for formulating preferences as preference for-
mulas. The framework does not impose any restrictions on the prefer-
ence relations and allows arbitrary operation and predicate signatures in
preference formulas. It also makes the composition of preference relations
straightforward.

(2) a simple, natural embedding of preference formulas into relational algebra
(and SQL) through a single winnow operator parameterized by a prefer-
ence formula. The embedding makes possible the formulation of complex
preference queries, for example, involving aggregation, by piggybacking on
existing SQL constructs. It also leads in a natural way to the definition
of further, preference-related concepts like ranking. The notion of winnow,
first proposed in Chomicki [2002], was subsequently used in Torlone and
Ciaccia [2002] under the name of the Best operator. A similar concept was
independently proposed in Kießling [2002] and, in a more restricted form,
in Börzsönyi et al. [2001].

(3) general algebraic laws governing the winnow operator and its interaction
with other relational algebra operators. The preconditions on the applica-
bility of the laws are captured by logical formulas. The laws provide a formal
foundation for the algebraic optimization of preference queries. In particu-
lar, the laws are applicable to the optimization of skyline queries [Börzsönyi
et al. 2001], queries with scoring functions [Agrawal and Wimmers 2000;
Hristidis et al. 2001], and queries with preference constructors [Kießling
2002; Kießling and Köstler 2002].

The restriction to the relational model of data is not, in our opinion, a serious
limitation of the presented results. Although the data of interest may often be
nonrelational, preference is a relational notion par excellence. For instance, the
information about a book may be stored as an XML document. However, doc-
ument structure is rarely used to compare one document to another. Rather,
the relevant relational information, for example, price or year of publication,
is extracted from the documents to yield fixed-arity tuples of attribute values.
(Even Preference XPath, an extension of XPath with preference constructors
[Kießling et al. 2001], seems to largely conform to the relational paradigm.)

In Section 2, we define the basic concepts of preference relation, preference
formula, and winnow. We also introduce several examples that will be used
throughout the paper. In Section 3, we study the basic properties of preference
relations. In Section 4, we explore the composition of preferences. (This section

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.

P1: GSY
CM173A-05 ACM-TRANSACTION November 10, 2003 13:53

Preference Formulas in Relational Queries • 5

can be skipped if the reader is primarily interested in preference queries.)
In Section 5, we describe some basic properties of winnow and outline—for
completeness—a number of evaluation algorithms that were proposed else-
where. In Section 6, which contains the main technical contributions of the
article, we present the algebraic properties of the winnow operator. In Section
7, we show how the winnow operator together with other constructs of rela-
tional algebra and SQL makes it possible to express a wide variety of preference
queries. In Section 8, we introduce the ranking operator whose semantics is de-
fined using the iteration of winnow. In Section 9, we define a relaxed version of
winnow that is helpful for preference relations that are not strict partial orders.
We discuss related work in Section 10 and conclude with a brief discussion of
further work in Section 11. All the nontrivial proofs are given.

2. BASIC NOTIONS

We are working in the context of the relational model of data. For concreteness,
we consider two infinite domains: D (uninterpreted constants) and Q (rational
numbers). Other domains could be considered as well without influencing most
of the results of the article. When necessary, we assume that database instances
are finite. (Some results hold without the finiteness assumption.) Additionally,
we have the standard built-in predicates. In the article, we will move freely
between relational algebra and SQL.

2.1 Basic Definitions

Preference formulas are used to define binary preference relations.

Definition 2.1. Given a relation schema R(A1 · · · Ak) such that Ui, 1 ≤ i ≤
k, is the domain (either D or Q) of the attribute Ai, a relation � is a preference
relation over R if it is a subset of (U1 × · · · × Uk) × (U1 × · · · × Uk).

Intuitively, � will be a binary relation between tuples from the same
(database) relation. We say that a tuple t1 dominates a tuple t2 in � if t1 � t2.

Typical properties of the relation � include:

— irreflexivity: ∀x. x �� x,
—asymmetry: ∀x, y . x � y ⇒ y �� x,
—transitivity: ∀x, y , z. (x � y ∧ y � z) ⇒ x � z,
—negative transitivity: ∀x, y , z. (x �� y ∧ y �� z) ⇒ x �� z,
—connectivity: ∀x, y . x � y ∨ y � x ∨ x = y .

Clearly, those properties are not independent. Asymmetry implies irreflex-
ivity. Irreflexivity and transitivity imply asymmetry. However, it is often con-
venient to talk about them separately.

The relation � is:

—a strict partial order if it is irreflexive and transitive (thus also asymmetric);
—a weak order if it is a negatively transitive strict partial order;
—a total order if it is a connected strict partial order.

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.

P1: GSY
CM173A-05 ACM-TRANSACTION November 10, 2003 13:53

6 • Jan Chomicki

At this point, we do not assume any properties of �, although in most appli-
cations it will satisfy at least the properties of strict partial order. Some results
that we formulate in this article require that at least some of the properties of
strict partial order hold. This will be always explicitly stated. The restriction to
weak orders—which is rather strong—is necessary if preference relations are
to be represented using scoring functions. This issue is discussed in more depth
in Section 7.

Definition 2.2. A preference formula (pf) C(t1, t2) is a first-order formula
defining a preference relation �C in the standard sense, namely

t1 �C t2 iff C(t1, t2).

An intrinsic preference formula (ipf) is a preference formula that uses only
built-in predicates.

We will limit our attention to preference relations defined using preference
formulas. By using the notation �C for a preference relation, we assume that
there is an underlying preference formula C.

Because we consider two specific domains, D and Q, we will have two kinds
of variables, D-variables and Q-variables, and two kinds of atomic formulas:

—equality constraints. x = y , x �= y , x = c, or x �= c, where x and y are
D-variables, and c is an uninterpreted constant;

—rational-order constraints. xθ y or xθc, where θ ∈ {=, �=, <, >, ≤, ≥}, x and y
are Q-variables, and c is a rational number.

Without loss of generality, we will assume that ipfs are in DNF (Disjunctive
Normal Form) and quantifier-free (the theories involving the above domains
admit quantifier elimination). We also assume that atomic formulas are closed
under negation (also satisfied by the above theories). An ipf whose all atomic
formulas are equality (respectively, rational-order) constraints will be called an
equality (respectively rational-order) ipf.

In this article, we mostly restrict ourselves to ipfs and preference relations
defined by such formulas. The main reason is that ipfs are a special case of gen-
eral constraints [Kuper et al. 2000], and define fixed, although possibly infinite,
relations. As a result, they are computationally easier and more amenable to
syntactic manipulation that general pfs. For instance, transitively closing an
ipf results in a finite formula (Theorem 4.10), which is typically not the case for
pfs. However, we formulate in full generality the results that hold for arbitrary
pfs.

We define now an algebraic operator that picks from a given relation the set
of the most preferred tuples, according to a given preference formula.

Definition 2.3. If R is a relation schema and C a preference formula defin-
ing a preference relation �C over R, then the winnow operator is written as
ωC(R), and for every instance r of R:

ωC(r) = {t ∈ r | ¬∃t ′ ∈ r. t ′ �C t}.
ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.

P1: GSY
CM173A-05 ACM-TRANSACTION November 10, 2003 13:53

Preference Formulas in Relational Queries • 7

A preference query is a relational algebra query containing at least one oc-
currence of the winnow operator.

2.2 Examples

The first example illustrates how preference queries are applied to information
extraction: here obtaining the best price of a given book.

Example 2.4. Consider the relation Book(ISBN, Vendor, Price) (Example
1.1). The preference relation �C1 from this example can be defined using the
formula C1:

(i, v, p) �C1 (i′, v′, p′) ≡ i = i′ ∧ p < p′.

The answer to the preference query ωC1 (Book) provides for every book the infor-
mation about the vendors offering the lowest price for that book. For the given
instance r1 of Book (Figure 1), applying the winnow operator ωC1 returns the
tuples

ISBN Vendor Price
0679726691 LowestPrices $13.50
0062059041 BooksForLess $7.30
0374164770 LowestPrices $21.88

Note that in the above example, the preferences are applied groupwise: sep-
arately for each book. Note also that due to the properties of <, the preference
relation �C1 is irreflexive and transitive.

The second example illustrates how preference queries are used in auto-
mated decision making to obtain the most desirable solution to a (very simple)
configuration problem.

Example 2.5. Consider two relations Wine(Name, Type) and Dish(Name,
Type) and a view Meal that contains possible meal configurations

CREATE VIEW Meal(Dish,DishType,Wine,WineType) AS
SELECT * FROM Wine, Dish;

Now the preference for white wine in the presence of fish and for red wine in
the presence of meat can be expressed as the following preference formula C2
over Meal:

(d , dt, w, wt) �C2 (d ′, dt′, w′, wt′) ≡ (d = d ′ ∧ dt = ′fish′ ∧ wt = ′white′

∧dt′ = ′fish′ ∧ wt′ = ′red′)
∨(d = d ′ ∧ dt = ′meat′ ∧ wt = ′red′

∧dt′ = ′meat′ ∧ wt′ = ′white′)

Notice that this will force any white wine to be preferred over any red wine for
fish, and just the opposite for meat. For other kinds of dishes, no preference
is indicated. This is an example of a relative preference. Consider now the
preference query ωC2 (Meal). It will pick the most preferred meals, according to
the above-stated preferences. Notice that in the absence of any white wine, red
wine can be selected for fish.

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.

P1: GSY
CM173A-05 ACM-TRANSACTION November 10, 2003 13:53

8 • Jan Chomicki

The above preferences are conditional, since they depend on the type of the
dish being considered. Note that the relation �C2 in this example is irreflexive.
Transitivity is obtained trivially because the chains of �C2 are of length at
most 2. The preference relation is defined without referring to any domain
order.

Note also that the meals with a wine which is neither red nor white but, for
example, rosé, are not related through �C2 to the meals with either of those
kinds of wine. Therefore, the preference query ωC2 (Meal) will return also the
meals involving such wines, as they are not dominated by other meals. If this
is undesirable, one can express an absolute preference for white wine for fish
(and red wine for meat) using the formula C3:

(d , dt, w, wt) �C3 (d ′, dt′, w′, wt′) ≡ (d = d ′ ∧ dt = ′fish′ ∧ wt = ′white′

∧dt′ = ′fish′ ∧ wt′ �= ′white′)
∨(d = d ′ ∧ dt = ′meat′ ∧ wt = ′red′

∧dt′ = ′meat′ ∧ wt′ �= ′red′)

Similarly, an unconditional preference for red wine for any kind of meal can
also be defined as a first-order formula C4:

(d , dt, w, wt) �C4 (d ′, dt′, w′, wt′) ≡ d = d ′ ∧ wt = ′red′ ∧ wt′ �= ′red′.

3. PREFERENCE AND INDIFFERENCE

3.1 Properties of Preference Relations

Since pfs can be essentially arbitrary formulas, no properties of preference
relations can be assumed. So our framework is entirely neutral in this respect.

In the examples above, the preference relations were strict partial orders.
This is likely to be the case for most applications of preference queries. However,
there are cases where such relations fail to satisfy one of the properties of partial
orders. We will see in Section 7 when irreflexivity fails. For asymmetry: We may
have two tuples t1 and t2 such that t1 � t2 and t2 � t1 simply because we may
have one reason to prefer t1 over t2 and another reason to prefer t2 over t1.
Similarly, transitivity is not always guaranteed [Hughes 1980; Mantha 1991;
Fishburn 1999; Hansson 2001]. For example, t1 may be preferred over t2 and t2
over t3, but the gap between t1 and t3 with respect to some heretofore ignored
property may be so large as to prevent preferring t1 over t3. Or, transitivity may
have to be abandoned to prevent cycles in preferences. Composing preference
relations may also lead to violations of asymmetry or transitivity (see Section 4).
However, transitivity is essential for the correctness of some of the algorithms
that compute winnow (Section 5).

Due to the restricted syntax of ipfs, one can effectively check whether a
preference relation defined by an ipf is a strict partial order. To provide a more
fine-grained analysis, we assume that the size of a preference formula C (over a
relation R) in DNF is characterized by two parameters: width(C)—the number
of disjuncts in C, and span(C)—the maximum number of conjuncts in a disjunct
of C. Namely, if C = D1 ∨ · · · ∨ Dm, and each Di = Ci,1 ∧ · · · ∧ Ci,ki , then
width(C) = m and span(C) = max{k1, . . . , km}.
ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.

P1: GSY
CM173A-05 ACM-TRANSACTION November 10, 2003 13:53

Preference Formulas in Relational Queries • 9

THEOREM 3.1. If a preference relation is defined using an ipf C containing
only atomic constraints over the same domain and such that width(C) ≤ m,
span(C) ≤ n, and the time complexity of checking satisfiability of a conjunctive
ipf with n conjuncts is in O(T (n)), then the time complexity of checking the
properties of the preference relation is in:

— O(m T (n)) for irreflexivity;
— O(m2 T (n)) for asymmetry;
— O(m2 nm T (max(m, n))) for transitivity;
— O(m n2m T (max(m, n))) for negative transitivity;
— O(k n2m T (m)) for connectivity (where k is arity of R) .

Additionally, the time complexity of checking whether a preference formula C1
implies a preference formula C2, where width(C1) ≤ m, width(C2) ≤ m, span(C1) ≤
n, and span(C2) ≤ n, is in O(m nm T (max(m, n))).

PROOF. All of those results are proved in the same way. The property is
negated, yielding a satisfiability problem. We discuss first asymmetry, the re-
maining properties can be handled in a similar way. If C(t1, t2) = D1 ∨ · · · ∨ Dm
and C(t2, t1) = D′

1 ∨ · · · ∨ D′
m, we can write down the negation of asymmetry as

(D1 ∨· · ·∨ Dm)∧ (D′
1 ∨· · ·∨ D′

m). This formula is satisfiable iff at least one of m2

conjunctive formulas φi, j = Di ∧ D′
j , i, j = 1, . . . , m, is satisfiable. Testing for

transitivity, negative transitivity, connectivity and implication requires writing
down the negation of a DNF formula and distributing the negation inside.

Guo et al. [1996] contain several results about checking satisfiability of con-
junctive formulas. For instance, in the case of rational-order formulas, this
problem is shown to be solvable in O(n). This implies the following two corol-
laries.

COROLLARY 3.2. Checking the properties of a preference relation defined by
a rational-order ipf in DNF can be done in time:

— O(m n) for irreflexivity;
— O(m2 n) for asymmetry;
— O(m2 nm max(m, n)) for transitivity;
— O(m n2m max(m, n)) for negative transitivity;
— O(k m n2m) for connectivity.

Even more specifically, if a preference formula is conjunctive (m = 1), then
all of the above properties can be checked in at most cubic time.

COROLLARY 3.3. Implication of rational-order preference formulas can be
checked in O(m nm max(m, n)) time.

We note that the complexity here is measured in the size of the preference
formula. The latter is unlikely to be large in practice. This should be contrasted
with the data complexity measure [Vardi 1982]—commonly used to characterize
the cost of evaluating queries—where the input, a database, can be huge.

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.

P1: GSY
CM173A-05 ACM-TRANSACTION November 10, 2003 13:53

10 • Jan Chomicki

Table I. Properties Preserved by Boolean Composition

Union Intersection Difference
Strict partial order No Yes No
Weak order No No No
Total order No No No

For equality constraints, the situation is very much alike. Checking satisfia-
bility of conjunctive formulas can be done in almost-linear O(nα(n)) time, where
α is a very slowly growing function. This can be shown [Creignou et al. 2001] by
adapting a unification algorithm that explicitly constructs equivalence classes
of variables and constants using UNION-FIND, for example, that of Huet [Huet
1976; Knight 1989]. Thus, the complexity bounds obtained for checking various
properties of equality ipfs will be very close to those obtained for rational-order
ipfs. Therefore, in the rest of the paper we will only derive the latter in detail.

3.2 Indifference

Every preference relation �C generates an indifference relation ∼C: two tuples
t1 and t2 are indifferent (t1 ∼C t2) if neither is preferred to the other one, that
is, t1 ��C t2 and t2 ��C t1. Note that if the preference relation �C is irreflexive,
we have for every tuple t, t ∼C t.

PROPOSITION 3.4. For every preference relation �C, every relation r and every
tuple t1, t2 ∈ ωC(r), we have t1 = t2 or t1 ∼C t2.

It is a well-known result in utility theory [Fishburn 1999, 1970] that in order
for a preference relation to be representable using scoring functions the rela-
tion has to be a weak order. This implies, in particular, that the corresponding
indifference relation (defined as above) has to be transitive. This is not the case
for the preference relation �C1 defined in Example 1.1.

4. COMPOSITION OF PREFERENCES

Preference relations may be composed in many different ways. In general,
we distinguish between unidimensional and multidimensional composition.
In unidimensional composition, a number of preference relations over a sin-
gle database schema are composed, producing another preference relation over
the same schema. Examples include Boolean and prioritized composition (dis-
cussed below). We also consider the transitive closure of a preference relation.
In multidimensional composition, we have a number of preference relations
defined over several database relation schemas, and we define a preference
relation over the Cartesian product of those relations. Examples given below
include Pareto and lexicographic composition (Definition 4.13). Moreover, we
study the preservation of different kinds of orders by different composition op-
erators. The results are summarized in Tables I and II.

In our framework, preference relations are defined by first-order preference
formulas, therefore any first-order definable composition of preference relations
leads again to first-order preference formulas. The composition does not even
have to be first-order definable, as long as it produces a (first-order) preference

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.

P1: GSY
CM173A-05 ACM-TRANSACTION November 10, 2003 13:53

Preference Formulas in Relational Queries • 11

Table II. Properties Preserved by Other Kinds of Composition

Prioritized Pareto Lexicographic
composition composition composition

Strict partial order No No No
Weak order Yes No Yes
Total order Yes No Yes

formula. We’ll see an example of the latter later in this section when we discuss
transitive closure.

4.1 Boolean Composition

Union, intersection and difference of preference relations are obviously cap-
tured by the Boolean operations on the corresponding preference formulas. For
example, the following formula captures the preference �C0=�C1 ∩ �C2 :

x �C0 y ≡ x �C1 y ∧ x �C2 y .

We characterize below the preservation of the properties of preference rela-
tions (identified in Section 2) by the Boolean operations.

PROPOSITION 4.1. Strict partial order is preserved by intersection but not by
union or set difference.

PROOF. For union, consider

a �C1 b, b �C2 c.

The relations �C1 and �C2 are strict partial orders, but the relation �C1 ∪ �C2

is not transitive (and thus not a partial order). For set difference, consider

a �C1 b, b �C1 c, a �C1 c, a �C2 c.

The relation �C1 − �C2 is not transitive (and thus not a partial order).

PROPOSITION 4.2. Weak order is not preserved by any Boolean operation.

PROOF. To show that weak order is not preserved by union, we cannot sim-
ply refer to the first counterexample from the proof of Proposition 4.1. The
orders used there were not weak, because they violated negative transitivity.
The counterexample needs to be more elaborate. Consider:

a �C1 b, b �C2 c, c �C1 b, b �C2 a.

The relations �C1 and �C2 are weak orders, but �C1∨C2 is not because it is not
transitive:

a �C1∨C2 b, b �C1∨C2 c, a ��C1∨C2 c.

For intersection and difference, consider:

a �C1 b, a �C1 c, a �C2 b, c �C2 b.

Then �C1∧C2= {(a, b)} is not a weak order since it violates negative transitivity:

a ��C1∧C2 c, c ��C1∧C2 b, a �C1∧C2 b.

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.

P1: GSY
CM173A-05 ACM-TRANSACTION November 10, 2003 13:53

12 • Jan Chomicki

Similarly, the difference of �C1 and �C2 consists only of the pair (a, c) and is not
a weak order.

PROPOSITION 4.3. Total order is not preserved by any Boolean operation.

PROOF. Take a total order and its inverse. Their union violates asymmetry.
Their intersection is empty and thus not a total order. For difference, consider
the difference of any total order and itself, whose result is empty.

4.2 Prioritized Composition

It is often the case that preferences are prioritized. For instance, I may have a
general preference for red wine but in specific cases, for example, when eating
fish, this preference is overridden by the one for white wine. Also a preference
for less expensive books (Example 1.1) can be overridden by a preference for
certain vendors. This situation may also occur in a multiagent environment
where the preferences of one agent override those of another agent.

Definition 4.4. Consider two preference relations �C1 and �C2 defined over
the same schema R. The prioritized composition �C1,2=�C1 � �C2 of �C1 and �C2

is a preference relation over R defined as:

t1 �C1,2 t2 ≡ t1 �C1 t2 ∨ (t1 ∼C1 t2 ∧ t1 �C2 t2).

The prioritized composition �C1 � �C2 has the following intuitive reading:
prefer according to �C2 unless �C1 is applicable.

Example 4.5. Continuing Example 1.1, instead of the preference relation
�C1 defined there as follows:

(i, v, p) �C1 (i′, v′, p′) ≡ i = i′ ∧ p < p′,

we consider the relation �C0,1≡�C0 � �C1 where �C0 is defined by the following
formula C0:

(i, v, p) �C0 (i′, v′, p′) ≡ i = i′ ∧ v = “BooksForLess” ∧ v′ = “LowestPrices.”

The definition of �C0,1 is easily obtained from the formulas C0 and C1 by substi-
tution. Then ωC0,1 (r1) returns the following tuples

ISBN Vendor Price
0679726691 BooksForLess $14.75
0062059041 BooksForLess $7.30
0374164770 LowestPrices $21.88

Note that now a more expensive copy of the first book is preferred, due to the
preference for “BooksForLess” over “LowestPrices.” However, “BooksForLess”
does not offer the last book, and that’s why the copy offered by “LowestPrices”
is preferred.

PROPOSITION 4.6. Weak and total orders are preserved by prioritized compo-
sition. Strict partial order is not preserved by prioritized composition.

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.

P1: GSY
CM173A-05 ACM-TRANSACTION November 10, 2003 13:53

Preference Formulas in Relational Queries • 13

PROOF. The first two facts are shown by case analysis. The third can be
obtained as for union (Proposition 4.1): prioritized composition does not have
to preserve transitivity for arbitrary strict partial orders.

THEOREM 4.7. Prioritized composition is associative:

(�C1 � �C2) � �C3 ≡ �C1 � (�C2 � � C3)

and distributes over union:

�C1 � (�C2 ∪ �C3) ≡ (�C1 � �C2) ∪ (�C1 � �C3).

Thanks to the associativity and distributivity of �, the above construction can
be generalized to an arbitrary finite partial priority order between preference
relations. Such an order can be viewed as a graph in which the nodes consist of
preference relations and the edges represent relative priorities (there would be
an edge (�C1 , �C2) in the situation described above). To encode this graph as a
single preference relation, one would construct first the definitions correspond-
ing to individual paths from roots to leaves, and then take a disjunction of all
such definitions.

There are many other ways of combining preferences. For instance, Andreka
et al. [2002] define an infinite family of unidimensional composition operators
for preference relations on the basis of two basic operators. Since all the def-
initions are first-order, every preference relation defined in the framework of
Andreka et al. [2002] can also be defined in ours. In Andreka et al. [2002], it
is proved that the operators in the defined family exhaust all operators sat-
isfying a number of intuitively plausible postulates. It turns out that the op-
erator � defined above cannot be captured in the framework of Andreka et al.
[2002], because it violates one of those postulates: it does not in general preserve
transitivity.

4.3 Transitive Closure

We address here the issue of transitively closing a preference relation. We have
seen an example (Example 1.1) of a preference relation that is already transi-
tive. However, there are cases when we expect the preference relation to be the
transitive closure of another preference relation which is not transitive.

Example 4.8. Consider the following relation:

x � y ≡ x = a ∧ y = b ∨ x = b ∧ y = c.

In this relation, a and c are not related though there are contexts in which this
might be natural. (Assume I prefer to walk than to drive, and to drive than to
ride a bus. Thus, I also prefer to walk than to ride a bus.)

In our framework, we can specify the preference relation �C∗ to be the tran-
sitive closure of another preference relation �C defined using a first-order for-
mula. This is similar to transitive closure queries in relational databases. How-
ever, there is an important difference. In databases, we are computing the
transitive closure of a finite relation, while here we are transitively closing
an infinite relation defined using a first-order formula.

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.

P1: GSY
CM173A-05 ACM-TRANSACTION November 10, 2003 13:53

14 • Jan Chomicki

Definition 4.9. The transitive closure of a preference relation �C over a
relation schema R is a preference relation �C∗ over R defined as:

t1 �C∗ t2 iff t1 �n
C t2 for some n ≥ 0,

where:

t1 �1
C t2 ≡ t1 �C t2

t1 �n+1
C t2 ≡ ∃t3. t1 �C t3 ∧ t3 �n

C t2.

Clearly, in general Definition 4.9 leads to infinite formulas. However, as
Theorem 4.10 shows, in the cases we consider in this article, the preference
relation �C∗ will in fact be defined by a finite formula.

THEOREM 4.10. If a preference relation �C is defined using an (equality or
rational-order) ipf C, the transitive closure �C∗ of �C is also defined using an
(equality or rational-order) ipf and that definition can be effectively obtained.

PROOF. The computation of the transitive closure can in this case be formu-
lated as the evaluation of Constraint Datalog. Suppose C is in DNF and thus
�C is defined as:

x �C y ≡ α1(x, y) ∨ · · · ∨ αn(x, y).

Then the Datalog program that computes the formula C∗ defining �C∗ looks as
follows:

T (x, y) ← α1(x, y).
· · ·
T (x, y) ← αn(x, y).
S(x, y) ← T (x, y).
S(x, y) ← T (x, z), S(z, y).

The evaluation of this program terminates [Kanellakis et al. 1995] and its
result, collected in S, represents the desired formula.

Example 4.11. Continuing Example 4.8, we obtain the following preference
relation �C∗ by transitively closing �C:

x �C∗ y ≡ x = a ∧ y = b ∨ x = b ∧ y = c ∨ x = a ∧ y = c.

Theorem 4.10 is not in conflict with the well-known nonfirst-order definabil-
ity of transitive closure on finite structures. In the latter case, it is shown that
there is no finite first-order formula expressing transitive closure for arbitrary
(finite) binary relations. In Theorem 4.10, the relation to be closed, although
possibly infinite, is fixed and finitely representable (using the given ipf). In
particular, given an encoding of a fixed finite binary relation using an ipf, the
transitive closure of this relation is defined using another ipf.

The use of Datalog in Theorem 4.10 is at a meta-level. The Datalog program
computes a preference formula, which can in turn be used as a parameter of
winnow. Datalog is not used for query evaluation. (Moreover, this is Constraint
Datalog, not relational Datalog. The latter can to a large degree be handled by
SQL:1999 systems.)

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.

P1: GSY
CM173A-05 ACM-TRANSACTION November 10, 2003 13:53

Preference Formulas in Relational Queries • 15

4.4 Multidimensional Composition

In decision theory, various ways of defining a preference relation on the Carte-
sian product of two relations have been studied. The two most common ones
are Pareto and lexicographic composition.

Definition 4.12. Given two relation schemas R1 and R2 and preference re-
lations �C1 over R1 and �C2 over R2, the Pareto composition P (�C1 , �C2) of �C1

and �C2 is a preference relation �C0 over the Cartesian product R1 × R2 defined
as:

(t1, t2) �C0 (t ′
1, t ′

2) ≡ t1 �C1 t ′
1 ∧ t2 �C2 t ′

2 ∧ (t1 �C1 t ′
1 ∨ t2 �C2 t ′

2),

where

x �C y ≡ x �C y ∨ x ∼C y .

Definition 4.13. Given two relation schemas R1 and R2 and preference re-
lations �C1 over R1 and �C2 over R2, the lexicographic composition L(�C1 , �C2)
of �C1 and �C2 is a preference relation �C0 over the Cartesian product R1 × R2
defined as:

(t1, t2) �C0 (t ′
1, t ′

2) ≡ t1 �C1 t ′
1 ∨ (t1 ∼C1 t ′

1 ∧ t2 �C2 t ′
2).

The preservation properties of different kinds of orders with respect to Pareto
and lexicographic composition are formulated below.

PROPOSITION 4.14. Strict partial order is not preserved by Pareto or lexico-
graphic composition.

PROOF. Consider the following preference relations �C1 and �C2 (and the
associated indifference relations):

c1 �C1 a1, a1 ∼C1 b1, b1 ∼C1 c1, a2 �C2 b2, b2 �C2 c2.

Assuming C0 = P (�C1 , �C2), we have:

(a1, a2) �C0 (b1, b2), (b1, b2) �C0 (c1, c2)

but (a1, a2) ∼C0 (c1, c2), violating the transitivity of �C0 . In the same example,
L(�C1 , �C2) is identical to P (�C1 , �C2), and thus also fails to be transitive.

It is easy to see that if �C1 and �C2 are weak orders, then both P (�C1 , �C2) and
L(�C1 , �C2) are strict partial orders. In fact, lexicographic composition preserves
weak and total orders.

PROPOSITION 4.15. Weak and total orders are preserved by lexicographic com-
position but not by Pareto composition.

PROOF. The first two facts are shown by case analysis. To see the failure of
Pareto composition in preserving weak and total orders, consider the example
in which:

t1 �C1 t ′′
1 �C1 t ′

1

and

t ′
2 �C2 t2 �C2 t ′′

2 .

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.

P1: GSY
CM173A-05 ACM-TRANSACTION November 10, 2003 13:53

16 • Jan Chomicki

Thus �C1 and �C2 are total orders (and thus also weak). If C0 = P (�C1 , �C2)
then

(t1, t2) ∼C0 (t ′
1, t ′

2), (t ′
1, t ′

2) ∼C0 (t ′′
1 , t ′′

2)

but

(t1, t2) �C0 (t ′′
1 , t ′′

2).

Thus the indifference ∼C0 is not transitive, which means that �C0 is not a weak
order (and thus not a total order as well).

5. THE WINNOW OPERATOR

In this section, we study various properties of the winnow operator, includ-
ing nonemptiness, monotonicity, and expressive power. In the next section, we
discuss the algebraic properties of winnow: commutativity and distributivity.
Establishing such properties is essential for the evaluation and optimization of
preference queries. We also briefly discuss some evaluation methods for winnow.

Although, as we show, the winnow operator can be expressed in relational
algebra, its explicit use makes possible a clean separation of preference for-
mulas from other aspects of the query. This has several advantages. First, the
properties of preference relations can be studied in an abstract way. Second,
specialized query evaluation methods for the winnow operator can be devel-
oped. Third, algebraic properties of that operator can be formulated, in order
to be used in query optimization.

5.1 Basic Properties

Several properties of winnow, also identified in Kießling and Köstler [2002],
follow directly from Definition 2.3.

PROPOSITION 5.1. For every preference relations �C1 and �C2 over a relation
schema R and every instance r of R:

ωC1 (r) ⊆ r
ωC1 (ωC1 (r)) = ωC1 (r)
ωC1∨C2 (r) = ωC1 (r) ∩ ωC2 (r)
ωFalse(r) = r
ωTrue(r) = ∅.

Note that ωC1∧C2 (r) = ωC1 (r) ∪ ωC2 (r) does not hold in general.

5.2 Nonemptiness

THEOREM 5.2. If a preference relation �C over R is a strict partial order, then
for every finite, nonempty instance r of R, ωC(r) is nonempty.

We show now that violating the premisses in Theorem 5.2 results in the
violation of the hypothesis. First, consider relaxing irreflexivity of �C. Thus
there is a tuple t0 such that t0 �C t0. But then ωC({t0}) = ∅. Second, if two tuples
are involved in a violation of asymmetry, they block each other from appearing
in the result of the winnow operator. Third, without transitivity a preference

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.

P1: GSY
CM173A-05 ACM-TRANSACTION November 10, 2003 13:53

Preference Formulas in Relational Queries • 17

relation may be asymmetric but have a cycle of length three or more, resulting
in the result of the winnow being empty. Finally, if the relation r is infinite, it
may happen that ωC(r) = ∅, for example, if r contains all natural numbers and
the preference relation is the standard ordering >.

5.3 Monotonicity

The winnow operator is not monotone or antimonotone with respect to its rela-
tion argument.

Example 5.3. Consider the following preference formula C6:

x �C6 y ≡ x = a ∧ y = b.

Then

{b} = ωC6 ({b}) �⊆ ωC6 ({a, b}) = {a}.
Thus, monotonicity and antimonotonicity fail.

However, partial antimonotonicity holds:

PROPOSITION 5.4. [CHERNOFF 1954]. If a preference relation �C over R is a
strict partial order, then for every pair of instances r1 and r2 of R:

r1 ⊆ r2 ⇒ r1 ∩ ωC(r2) ⊆ ωC(r1).

Moreover, a form of monotonicity with respect to the preference formula
parameter holds for winnow.

THEOREM 5.5. If �C1 and �C2 are preference relations over a relation schema
R, and the formula

∀t1, t2[C1(t1, t2) ⇒ C2(t1, t2)]

is valid, then for all instances r of R, ωC2 (r) ⊆ ωC1 (r). If �C2 is irreflexive, then
the converse also holds.

PROOF. The first part is obvious. To see that the second part also holds,
assume that for all relations r, ωC2 (r) ⊆ ωC1 (r) but C1 �⇒ C2. Thus, C1 ∧ ¬C2
is satisfiable, and there are two tuples t1 and t2 such t1 �C1 t2 but t1 ��C2 t2.
Consider now the instance r12 = {t1, t2}. Then t2 /∈ ωC1 (r12) but t2 ∈ ωC2 (r12), a
contradiction.

Theorem 5.5 implies that the query containment problem for winnow is iden-
tical to the implication problem for preference formulas. For example, if for the
class of preference formulas considered the implication problem is decidable,
then query containment for winnow can also be effectively tested.

5.4 Expressive Power

The winnow operator can be expressed in relational algebra, and thus does not
add any expressive power to it. Perhaps more surprisingly, winnow can be used
to simulate set difference.

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.

P1: GSY
CM173A-05 ACM-TRANSACTION November 10, 2003 13:53

18 • Jan Chomicki

By standard relational algebra, we mean relational algebra with the follow-
ing operators: selection, projection, Cartesian product, union, set difference and
renaming.

THEOREM 5.6. The expressive power of the standard relational algebra does
not change if set difference is replaced by winnow.

PROOF. Clearly, the winnow operator is first-order definable. Thus, any re-
lational algebra query with winnow can be translated to relational calculus,
and then back to relational algebra (without winnow). Such a construction is,
however, mainly of theoretical importance.

From a practical point of view, we show now the translation of the winnow
operator ωC(R) for C = D1 ∨ · · · ∨ Dk which is an (equality or rational-order)
ipf in DNF. Each Di, i = 1, . . . , k, is a formula over free variables t1 and t2. It
can be viewed as a conjunction Di ≡ φi ∧ ψi ∧ γi where φi refers only to the
variables of t1, ψi to the variables of t2, and γi to the variables of both t1 and t2.
The formula φi has an obvious translation to a selection condition �i over R,
and the formula ψi a similar translation to a selection condition �i over 	(R),
where 	 is a renaming of R. The formula γi can similarly be translated to a join
condition
i over R and 	(R). Then

ωC(R) = 	−1

(
	(R) − π	(R)

(
k⋃

i=1

(
σ�i (R) ��

i

σ�i ((R))
)))

,

where 	−1 is the inverse of the renaming 	.
Finally, we show how to simulate the set difference operator R − S using

winnow. Assume that R (and S) have the set of attributes X of arity k. Then

R − S = πX (σB=1(ωC5 (R × {1} ∪ S × {0})))
where B is the last attribute of R × {1} and

(x1, . . . , xk , b) �C5 (x ′
1, . . . , x ′

k , b′) ≡ x1 = x ′
1 ∧ · · · ∧ xk = x ′

k ∧ b = 0 ∧ b′ = 1.

This works as follows. Think of the attribute B as a tag. All the tuples in R
(respectively, S) are tagged with 1 (respectively 0). If a tuple is in R ∩ S, then
there are two copies of it in R × {1} ∪ S × {0}: one tagged with 1, the other
with 0. The latter one is preferred according to �C5 . Finally, the selection σB=1
eliminates all the tuples in S, keeping the tuples that are only in R.

5.5 Evaluating Winnow

Winnow is somewhat similar to the set difference operation in the sense that
a tuple is in the result of winnow if it is not killed by another tuple. For set
difference, killing means encountering another occurrence of the same tuple
in the second relation. For winnow, it means encountering an occurrence of a
dominating tuple. Although it has only one argument, winnow is more like a
binary operation than a unary one, because it requires comparing each tuple
to multiple (possibly all) tuples from the same input relation.

We show here several algorithms that can be used to compute the result of
the winnow operator ωC(R). Not surprisingly, the first is a simple nested-loops

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.

P1: GSY
CM173A-05 ACM-TRANSACTION November 10, 2003 13:53

Preference Formulas in Relational Queries • 19

(1) open a scan S1 on r;

(2) for every tuple t1 returned by S1:
(a) open a scan S2 on r;
(b) for every tuple t2 returned by S2:

if t2 �C t1, then goto 2d;
(c) output t1;
(d) close S2;

(3) close S1.

Fig. 2. NL: Nested Loops.

(1) clear the window W and the temporary table F ;

(2) make r the input;

(3) repeat the following until the input is empty:
(a) for every tuple t in the input:

— t is dominated by a tuple in W ⇒ ignore t,
— t dominates some tuples in W ⇒ eliminate the dominated

tuples and insert t into W ,
— t is incomparable with all tuples in W ⇒ insert t into W (if

there is room), otherwise add t to F ;
(b) output the tuples from W that were added there when F was

empty,
(c) make F the input, clear the temporary table.

Fig. 3. BNL: Blocked Nested Loops.

algorithm (Figure 2). The second is BNL, an algorithm proposed in Börzsönyi
et al. [2001] in the context of skyline queries, a specific class of preference
queries, but the algorithm is considerably more general (Figure 3). The third
[Chomicki et al. 2003] is a variant of the second, in which a presorting step
is used (Figure 4). All the algorithms use a fixed amount of main memory (a
window). However, for the algorithm NL, this is not made explicit, since it is
irrelevant for the properties of the algorithm that are of interest here. Our em-
phasis is not on the algorithms themselves—they are much more completely
described and analyzed in the original papers—but rather on determining their
scope. We will identify the classes of preference queries to which each of them
is applicable.

The NL algorithm is correct for any preference relation �C. In principle, the
preference relation might even be reflexive, since the algorithm explicitly com-
pares a tuple with itself. The BNL and SFS algorithms require the preference
relation be a strict partial order (for BNL this is noted in Börzsönyi et al. [2001]).
The algorithms require irreflexivity, because they do not compare a tuple with
itself. Neither do they handle correctly symmetry: the situation where there
are two tuples t1 and t2 such that t1 �C t2 and t2 �C t1. In this case, BNL will
break the tie depending on the order in which the tuples appear, and SFS will
fail altogether, being unable to produce a topological sort. To see the necessity
of transitivity, consider the following example.

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.

P1: GSY
CM173A-05 ACM-TRANSACTION November 10, 2003 13:53

20 • Jan Chomicki

(1) topologically sort r according to �C;

(2) make r the input;

(3) clear the window W and the temporary table F ;

(4) repeat the following until the input is empty:
(a) for every tuple t in the input:

— t is dominated by a tuple in W ⇒ ignore t,
— t is incomparable with all tuples in W ⇒ insert t into W (if

there is room), otherwise add t to F ;
(b) output the tuples from W , clear W .
(c) make F the input, clear the temporary table.

Fig. 4. SFS: Sort-Filter-Skyline.

Example 5.7. The preference relation C0 is defined as follows:

x �C0 y ≡ x = a ∧ y = b ∨ x = b ∧ y = c.

Now let us suppose that the window has room for only one tuple and the tuples
arrive in the following order: a, b, c. Then a will be in the window, and b will
be discarded, which prevents b from killing c. Therefore, BNL will output a
(correctly) and c (incorrectly). This example can be easily generalized to any
fixed window size, simply by assuming that a and b are separated in the input
by sufficiently many values different from a, b and c.

6. ALGEBRAIC PROPERTIES OF WINNOW

We present here a set of algebraic laws that govern the commutativity and
distributivity of winnow with respect to relational algebra operators. This
set constitutes a formal foundation for rewriting preference queries using
the standard strategies like pushing selections down. We prove the sound-
ness of the introduced laws. In the cases of selection, projection, union
and difference, we show that the preconditions on the applicability of the
laws are not only sufficient but also necessary. In the remaining cases, we
show that the violations of the preconditions lead to the violations of the
laws. In most interesting cases, the preconditions can also be efficiently
checked.

We adopt the set-based view of relational algebra operators and leave explor-
ing the multiset-based view for future research.

6.1 Commutativity of Winnow

We establish here a sufficient condition for winnow to be commutative. Commu-
tativity is a fundamental property that makes it possible to move the winnow
operator around in preference queries. Unfortunately, it seems that commu-
tativity requires idempotence, that is, two consecutive occurrences of winnow
commute if they can be collapsed to one of them.

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.

P1: GSY
CM173A-05 ACM-TRANSACTION November 10, 2003 13:53

Preference Formulas in Relational Queries • 21

THEOREM 6.1. If C1 and C2 are preference formulas over a schema R such
that

—the formula ∀t1, t2[C1(t1, t2) ⇒ C2(t1, t2)] is valid, and
—�C1 and �C2 are strict partial orders,

then for all finite instances r of R:

ωC1 (ωC2 (r)) = ωC2 (ωC1 (r)) = ωC2 (r).

PROOF. We prove here the first equality; the second can be proved in a similar
way.

Assume t /∈ ωC2 (ωC1 (r)) and t ∈ ωC1 (ωC2 (r)). Then also t ∈ ωC2 (r). There are
two possibilities: (1) ∃t ′ ∈ ωC1 (r) such that t ′ �C2 t. But then t ′ ∈ r, which
contradicts the fact that t ∈ ωC2 (r). (2) t /∈ ωC1 (r). But then by Theorem 5.5,
t /∈ ωC2 (r), a contradiction.

Assume t /∈ ωC1 (ωC2 (r)) and t ∈ ωC2 (ωC1 (r)). Then also t ∈ ωC1 (r). There are
two possibilities: (1) ∃t ′ ∈ ωC2 (r) such that t ′ �C1 t. But then also t ′ ∈ r, which
contradicts the fact that t ∈ ωC1 (r). (2) t /∈ ωC2 (r). Still t ∈ r, since otherwise
t /∈ ωC1 (r). Therefore, ∃t ′ ∈ r such that t ′ �C2 t. Now because �C2 is a strict
partial order and r is finite, we can choose t ′ ∈ ωC2 (r). If t ′ ∈ ωC1 (r), then in
view of the fact that t ∈ ωC1 (r) and t ′ �C2 t, we get a contradiction. On the other
hand, if t ′ /∈ ωC1 (r), then by Theorem 5.5 we get t ′ /∈ ωC2 (r), a contradiction.

Consider now what happens if the assumptions in Theorem 6.1 are relaxed.

Example 6.2. Let Emp(EmpNo, YearEmployed, Salary) be a relation
schema. Define the following preference relations over it:

(e, y , s) �C1 (e′, y ′, s′) ≡ s > s′

and

(e, y , s) �C2 (e′, y ′, s′) ≡ y < y ′.

Clearly, neither C1 ⇒ C2 nor C2 ⇒ C1. The database

r1 = {(1, 1975, 100K), (2, 1980, 150K)}.
Now

ωC1 (ωC2 (r1)) = {(1, 1975, 100K)} �= {(2, 1980, 150K)} = ωC2 (ωC1 (r1)).

Example 6.3. Consider the instance r2 = {a, b} and the following preference
relations:

x �C1 y ≡ x = a ∧ y = b

and

x �C2 y ≡ x = a ∧ y = b ∨ x = b ∧ y = a.

Clearly, C1 ⇒ C2. However, �C2 is not a strict partial order. We have

ωC1 (ωC2 (r2)) = ∅ �= {a} = ωC2 (ωC1 (r2)).

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.

P1: GSY
CM173A-05 ACM-TRANSACTION November 10, 2003 13:53

22 • Jan Chomicki

Theorem 3.1 gives a general characterization of the time complexity of check-
ing implication and the strict partial order property of preference formulas,
thus it can be directly used to establish the computational cost of checking
the precondition for the commutativity of winnow. In particular, it follows from
Corollary 3.3 that checking this precondition can be done in time quadratic
in the size of the formulas, if the formulas are conjunctions of rational-order
constraints.

6.2 Commuting Selection and Winnow

We identify in Theorem 6.4 below a sufficient and necessary condition under
which the winnow operator and a relational algebra selection commute. This is
helpful for pushing selections past winnow operators in preference queries. It
is well known that moving selections down in the query tree reduces the size of
(and the time needed to materialize) intermediate results and has a potential
of enabling the use of indexes (if a selection is pushed all the way down to a
database relation that has an index matching the selection condition). In an
operation like winnow that requires comparing pairs of tuples from the same
relation, it is “doubly” beneficial to push a selection down, since that reduces
the number of tuples on both sides of the comparisons. Only in extreme cases,
it would be advantageous to pull a selection up through a winnow.

THEOREM 6.4. Given a relation schema R, a selection condition C1 over R
and a preference formula C2 over R, if the formula

∀t1, t2[(C1(t2) ∧ C2(t1, t2)) ⇒ C1(t1)]

is valid, then for all instances r of R:

σC1 (ωC2 (r)) = ωC2 (σC1 (r)).

The converse holds under the assumption that �C2 is irreflexive.

PROOF. We have that:

t ∈ σC1 (ωC2 (r)) ≡ t ∈ r ∧ C1(t) ∧ (¬∃t ′[t ′ ∈ r ∧ C2(t ′, t)]).

On the other hand:

t ∈ ωC2 (σC1 (r)) ≡ t ∈ r ∧ C1(t) ∧ (¬∃t ′[t ′ ∈ r ∧ C1(t ′) ∧ C2(t ′, t)]).

Clearly, the first formula implies the second. To see that the opposite implication
also holds, assume t �∈ σC1 (ωC2 (r)). There are three cases: C1(t) does not hold,
t �∈ r, and C1(t) holds but there is a tuple t0 ∈ r such that C2(t0, t). In the first two
cases, it is immediately clear that t �∈ ωC2 (σC1 (r)). In the third case, C1(t0) holds
too, because the formula ∀t1, t2[(C1(t2) ∧ C2(t1, t2)) ⇒ C1(t1)] is valid. However,
then t0 ∈ σC1 (r), which implies that t �∈ ωC2 (σC1 (r)).

To see the necessity of the condition of the theorem, assume that there are
tuples t1 and t2 such that C1(t2) ∧ C2(t1, t2) ∧ ¬C1(t1). Then

ωC2 (σC1 ({t1, t2})) = {t2} �= ∅ = σC1 (ωC2 ({t1, t2})).
The irreflexivity of �C2 is necessary to ensure that ωC2 (σC1 ({t1, t2})) is
nonempty.

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.

P1: GSY
CM173A-05 ACM-TRANSACTION November 10, 2003 13:53

Preference Formulas in Relational Queries • 23

If the formulas C1 and C2 in Theorem 6.4 are rational-order ipfs in DNF,
it follows from Theorem 3.1 that the time complexity of checking the validity
of the formula ∀(C1(t2) ∧ C2(t1, t2)) ⇒ C1(t1) is in O(m1 m2 nm1

1 max(n1, n2, m1))
time, where m1 = width(C1), m2 = width(C2), n1 = span(C1), and n2 = span(C2).
So if both C1 and C2 are conjunctive (m1 = m2 = 1), checking the precondition
of Theorem 6.4 can be done in quadratic time.

Example 6.5. Consider the relation Book(ISBN, Vendor, Price) from
Example 1.1. The preference relation �C1 is defined as

(i, v, p) �C1 (i′, v′, p′) ≡ i = i′ ∧ p < p′.

Consider the query σPrice<15(ωC1 (Book)). Now

∀p, p′, i, i′[(p′ < 15 ∧ i = i′ ∧ p < p′) ⇒ p < 15]

is a valid formula, thus by Theorem 6.4

ωC1 (σPrice<15(Book)) = σPrice<15(ωC1 (Book)).

On the other hand, consider the query σPrice>15. Then

∀p, p′, i, i′[(p′ > 15 ∧ i = i′ ∧ p < p′) ⇒ p > 15]

is not a valid formula, thus in this case the selection does not commute with win-
now. Finally, the query σISBN=c for any string c commutes with with ωC1 (Book),
because

∀p, p′, i, i′[(i′ = c ∧ i = i′ ∧ p < p′) ⇒ i = c]

is a valid formula.

6.3 Commuting Projection and Winnow

We deal now with projection. For winnow to commute with projection, the pref-
erence formula—which is the parameter of the winnow—needs to be restricted
to the attributes in the projection. Below we propose a restriction of this kind.
We denote by t[X] the tuple (t[A1], . . . , t[Ak]), where X = A1 · · · Ak is a set of
attributes.

Definition 6.6. Given a relation schema R, a set of attributes X of R, and a
preference relation �C over R, the restriction θx(�C) of �C to X is a preference
relation �C′ over πX (R) defined using the following formula:

u �C′ u′ ≡ ∀t, t ′[(t[X] = u ∧ t ′[X] = u′) ⇒ t �C t ′].

It is easy to see that if �C is a strict partial order, so is θx(�C).
In the following theorem, a precondition is imposed on the given preference

relation to allow winnow to commute with projection. The precondition cap-
tures the intuition that the preference formula depends only on the attributes
in the projection. Clearly, if the formula uses the projected-out attributes in an
essential way, the winnow will usually fail to commute with projection.

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.

P1: GSY
CM173A-05 ACM-TRANSACTION November 10, 2003 13:53

24 • Jan Chomicki

THEOREM 6.7. Given a relation schema R, a set of attributes X of R, and a
preference formula C over R, if the following formulas are valid:

∀t1, t2, t3[(t1[X] = t2[X] ∧ t1[X] �= t3[X] ∧ t1 �C t3) ⇒ t2 �C t3],
∀t1, t3, t4[(t3[X] = t4[X] ∧ t1[X] �= t3[X] ∧ t1 �C t3) ⇒ t1 �C t4],

then for all instances r of R:

πX (ωC(r)) = ωC′ (πX (r)),

where �C′= θx(�C) is the restriction of �C to X . The converse holds under the
assumption that �C is irreflexive.

PROOF. Assume u ∈ πX (ωC(r)). Then there exists a tuple t ∈ ωC(r) such that
t[X] = u. Assume u /∈ ωC′ (πX (r)). Since u ∈ πX (r), there exists a tuple u′ ∈ πX (r)
such that u′ �C′ u and a tuple t ′ ∈ r such that t ′[X] = u′. Since u′ �C′ u, it has
to be the case that t ′ �C t, which contradicts the fact that t ∈ ωC(r).

For the opposite direction, assume that u ∈ ωC′ (πX (r)) and u /∈ πX (ωC(r)).
Then for each tuple t ∈ r such that t[X] = u, there is another tuple t ′ ∈ r
such that t ′ �C t and t ′[X] �= t[X]. By the assumption of the theorem, each
tuple t ′ that dominates (in �C) one tuple t such that t[X] = u, also dominates
each such tuple. Also, any two tuples that agree on X dominate the same set
of tuples. Therefore, if u′ = t ′[X], then u′ �C′ u, which contradicts the fact that
u ∈ ωC′ (πX (r)).

To show the converse, assume that the first condition is violated, that is, there
are three tuples t1, t2 and t3 such that t1[X] = t2[X], t1[X] �= t3[X], t1 �C t3
and t2 ��C t3. Let r0 = {t1, t2, t3}. Then t3 /∈ ωC(r0), so πX (ωC(r0)) = {t1[X]}. Now
t1[X] ��C′ t3[X] (because t2 ��C t3) and t1[X] �= t3[X]. Thus

ωC′ (πX (r)) = {t1[X], t3[X]} �= {t1[X]} = πX (ωC(r0)).

The violation of the second condition also leads to a contradiction in a similar
way.

If the formula C in Theorem 6.7 is a rational-order ipf in DNF, it follows from
Theorem 3.1 that checking the precondition in Theorem 6.7 can be done in time
O(m k nm max(k, m, n)), where m = width(C), n = span(C), and k = |X |. So if C
is conjunctive (m = 1) and X fixed, this task can be accomplished in quadratic
time. If C is an ipf, then C′ can be presented in an equivalent, quantifier-free
form.

Example 6.8. Consider again the preference relation �C1 from Example 1.1:

(i, v, p) �C1 (i′, v′, p′) ≡ i = i′ ∧ p < p′

over the relation schema Book(ISBN, Vendor, Price). Then the preference rela-
tion

�C′= θISBN,Price(�C1)

is defined as

(i, p) �C′ (i′, p′) ≡ ∀t, t ′[(t[X] = (i, p)∧t ′[X] = (i′, p′)) ⇒ t �C1 t ′] ≡ i = i′∧p < p′.

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.

P1: GSY
CM173A-05 ACM-TRANSACTION November 10, 2003 13:53

Preference Formulas in Relational Queries • 25

This confirms the intuition that the projection does not affect this particular
preference relation. It is easy to see that the condition of Theorem 6.7 is also
satisfied, so winnow commutes with projection in this case.

6.4 Distributing Winnow over Cartesian Product

For winnow to distribute (possibly in a modified form) over the Cartesian prod-
uct of two relations, the preference formula—the parameter of the winnow—
needs to be decomposed into the formulas that will distribute into the argument
relations. Thus, it is natural to consider in this context preference relations that
are themselves built by multidimensional composition. In Section 3, we have
defined two kinds of multidimensional composition: Pareto and lexicographic,
both well known in multi-attribute utility theory [Fishburn 1970]. Preference
queries involving Pareto composition are quite common: the skyline queries
[Börzsönyi et al. 2001] without DIFF attributes, discussed in Section 7, are of
this form.

THEOREM 6.9. Given two relation schemas R1 and R2, an irreflexive pref-
erence relation �C1 over R1 and an irreflexive preference relation �C2 over R2,
for any relations r1 and r2 which are instances of R1 and R2, respectively, the
following property holds:

ωC0 (r1 × r2) = ωC1 (r1) × ωC2 (r2),

where C0 = P (�C1 , �C2).

PROOF. Assume (t1, t2) ∈ ωC0 (r1 × r2) but (t1, t2) /∈ ωC1 (r1) × ωC2 (r2). Then
t1 /∈ ωC1 (r1) or t2 /∈ ωC2 (r2). Assume the first. Since (t1, t2) ∈ r1 × r2 and t1 ∈ r1,
there must be a tuple t ′

1 ∈ r1 such that t ′
1 �C1 t1. Then the tuple (t ′

1, t2) ∈ r1 × r2
and (t ′

1, t2) �C0 (t1, t2) (we use irreflexivity of �C2 to infer t2 ∼C2 t2), which
contradicts the fact that (t1, t2) ∈ ωC0 (r1 × r2). The second case is symmetric.

Assume now that (t1, t2) ∈ ωC1 (r1) × ωC2 (r2) and (t1, t2) /∈ ωC0 (r1 × r2). Then
there is a tuple (t ′

1, t ′
2) ∈ r1 × r2 such that (t ′

1, t ′
2) �C0 (t1, t2). Consequently,

t ′
1 �C1 t1 or t ′

2 �C2 t2. Both cases lead to a contradiction with the fact that
(t1, t2) ∈ ωC1 (r1) × ωC2 (r2).

Theorem 6.9 makes it possible to derive an interesting corollary that val-
idates the transformation rule pushing winnow through Cartesian product.
Assume that �C2 is the empty relation, and ∼C2 is the complete relation (i.e.,
contains every pair of tuples). Then, �C0 is defined purely in terms of the first
dimension:

(t1, t2) �C0 (t ′
1, t ′

2) ≡ t1 �C1 t ′
1.

In this case Theorem 6.9 implies that for every r1 and r2

ωC0 (r1 × r2) = ωC0 (r1) × r2,

because ωC2 (r2) = r2 for every instance r2. So we can say that winnow with a one-
dimensional preference formula can be pushed down the appropriate argument
of the product.

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.

P1: GSY
CM173A-05 ACM-TRANSACTION November 10, 2003 13:53

26 • Jan Chomicki

We show now that a slight variation of the Pareto composition, even though
it appears to be more natural, fails to achieve the distributivity of winnow over
product.

Example 6.10. Define a different composition �C′
0

of two preference rela-
tions �C1 and �C2 as follows:

(t1, t2) �C′
0

(t ′
1, t ′

2) ≡ t1 �C1 t ′
1 ∧ t2 �C2 t ′

2.

Consider the following preference relations:

x �C1 y ≡ x �C2 y ≡ x > y .

Then if r1 = {1} and r2 = {1, 2}, then

ωC1 (r1) × ωC2 (r2) = {(1, 2)} �= {(1, 1), (1, 2)} = ωC′
0
(r1 × r2).

For lexicographic composition, we obtain the same property as for Pareto
composition. Its proof parallels that of Theorem 6.9.

THEOREM 6.11. Given two relation schemas R1 and R2, an irreflexive pref-
erence relation �C1 over R1 and an irreflexive preference relation �C2 over R2,
for any relations r1 and r2 which are instances of R1 and R2, resp., the following
property holds:

ωC0 (r1 × r2) = ωC1 (r1) × ωC2 (r2),

where C0 = L(�C1 , �C2).

6.5 Distributing Winnow over Union and Difference

For completeness, we show that it is possible to distribute winnow over union
or difference only in the trivial case where the preference relation is an empty
set. We call two relation schemas compatible if they have the same number of
attributes and the corresponding attributes have the same domains.

THEOREM 6.12. Given two compatible relation schemas R and S and an
asymmetric preference relation �C over R, we have for every instance r of R and
every instance s of S

ωC(r ∪ s) = ωC(r) ∪ ωC(s)

and

ωC(r − s) = ωC(r) − ωC(s)

if and only if �C= ∅.

PROOF. Clearly, if �C= ∅, then

ωC(r) ∪ ωC(s) = r ∪ s = ωC(r ∪ s).

To show that this is a necessary condition, assume that �C �= ∅. Then there are
two tuples t1 and t2 such that t1 �C t2, and t2 ��C t1 (by asymmetry). Now

ωC({t1, t2}) = {t1} �= {t1, t2} = ωC({t1}) ∪ ωC({t2}).
The proof for difference is similar.

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.

P1: GSY
CM173A-05 ACM-TRANSACTION November 10, 2003 13:53

Preference Formulas in Relational Queries • 27

Fig. 5. Two-dimensional skyline.

7. APPLICATIONS AND EXTENSIONS

We show here how to use winnow to express special classes of preference
queries: skylines and queries involving scoring functions, and how to use win-
now together with other operators of the relational algebra to express more
complex decision problems involving preferences. We consider the following:
integrity constraints, extrinsic preferences, and aggregation.

7.1 Special Classes of Preference Queries

7.1.1 Skylines. Skyline queries [Börzsönyi et al. 2001] find all the tuples in
a relation that are not dominated by any other tuples in the same relation in all
dimensions. This is exactly the notion of Pareto composition (Definition 4.12) in
an arbitrary number of dimensions. Typically, skyline queries are formulated
in the context of multidimensinal Euclidean space where the dominance rela-
tionship is > or <. Figure 5 shows an example of a skyline in two-dimensional
Euclidean space where the dominance relationship is >. The skyline elements
are marked with thick black dots.

Börzsönyi et al. [2001] propose to write skyline queries using the following
extension to SQL:

SELECT ... FROM ... WHERE ...
GROUP BY ... HAVING ...
SKYLINE OF A1 [MIN | MAX | DIFF]

...
An [MIN | MAX | DIFF]

The values of a MIN attribute are minimized, those of a MAX attribute maxi-
mized. A DIFF attribute indicates that tuples with different values of that at-
tribute are incomparable. The SKYLINE clause is applicable after all other SQL
clauses.

Clearly, skylines can be expressed using winnow. The winnow is applied to
an SQL view that expresses the nonskyline constructs in a skyline query. The
corresponding rational-order ipf is easily obtained from the SKYLINE clause.

Example 7.1. The skyline query

SELECT * FROM R
SKYLINE OF A DIFF, B MAX, C MIN

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.

P1: GSY
CM173A-05 ACM-TRANSACTION November 10, 2003 13:53

28 • Jan Chomicki

is equivalent to ωC(R) where

(x, y , z) �C (x ′, y ′, z ′) ≡ x = x ′ ∧ y ≥ y ′ ∧ z ≤ z ′ ∧ (y > y ′ ∨ z < z ′).

We note that ωC1 (Book) from Example 2.4 is also a skyline query in which
the skyline clause looks as follows:

SKYLINE OF ISBN DIFF, PRICE MIN.

Thus, clearly skylines cannot be captured using scoring functions (Example
1.1).

In view of the above, the algebraic laws that characterize the properties of
winnow are also applicable to skylines. Thus, Corollary 3.3 implies that if a
selection condition is a rational-order ipf, then checking whether it commutes
with a skyline can be done in O(m1 k nm1

1 max(n1, k)) time, where m1 is the
width of the selection condition, n1 its span, and k the dimension of the skyline
space. Thus, if the selection condition is conjunctive (m1 = 1), checking the
commutativity precondition can be done in cubic time.

7.1.2 Queries Involving Scoring Functions. We compare here two different
ways of representing preferences: a qualitative one using binary preference
relations and a quantitative one using scoring (also called utility) functions.

Definition 7.2. A real-valued function f over a schema R represents a pref-
erence relation �C over R iff

∀t1, t2 [t1 �C t2 iff f (t1) > f (t2)].

In other words, f is an order-isomorphism.
We can ask for the motivation behind this notion of representation. It is easy

to show that

THEOREM 7.3. A real-valued function f represents a preference relation �C
iff for every finite instance r of R, the set ωC(r) is equal to the set of tuples of r
assuming the maximum value of f .

Thus in this case a particularly simple, linear-time method of computing
ωC(r) becomes possible: determine the maximum value of f in r and return the
tuples in r that assume it. And vice-versa, finding the tuples in an instance r
that maximize a scoring function f can be done by computing ωC(r). Moreover,
the algebraic laws for winnow presented in Section 5 become applicable to
queries with scoring functions.

Theorem 7.3 implies that if a scoring function does not represent a preference
relation, that fact can be detected by winnow evaluated over some instance.

Example 7.4. Consider again Example 1.1. Let r1 = {t1, t2, t3, t4, t5} be the
instance from that example where t1 is the first tuple etc. We can construct a
scoring function f with the property that in the given instance r1 it is maximized
in exactly those tuples that are in ωC1 (r1). For example, let f (t1) = 0.9, f (t2) =
1.0, f (t3) = 0.8, f (t4) = 1.0 and f (t5) = 1.0. Then f is maximized in t2, t4
and t5, and ωC1 (r1) = {t2, t4, t5}. However, in the instance r ′

1 = {t1, t3, t4, t5}, the
function f is maximized in t4 and t5, while ωC1 (r

′
1) = {t1, t4, t5}.

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.

P1: GSY
CM173A-05 ACM-TRANSACTION November 10, 2003 13:53

Preference Formulas in Relational Queries • 29

Unfortunately, as pointed out earlier, not every preference relation that is
a strict partial order can be expressed using a scoring function. A necessary
condition is that the relation be a weak order [Fishburn 1970]. Therefore, the
approach using preference relations is strictly more general than the one that
uses scoring functions.

Winnow can be used not only to compute the top scoring tuples but also
those whose score differs from the top score by at most a given value or a given
percentage. For example, the tuples that differ from the top score by at most d
are computed by ωC f −d (r), where

t �C f −d t ′ ≡ f (t) − d > f (t ′).

Queries that return the tuples with top-K scores [Carey and Kossmann 1997;
Bruno et al. 2002] can also be captured using winnow together with SQL, using
the approach described later in this section. Essentially, for each tuple t we will
determine using SQL the number n(t) of tuples with higher scores than t and
use the expression N −n(t), where N is the number of tuples in the relation, to
define a new scoring function. This function is then used to define a preference
relation as in the preceding paragraph. It appears, however, that in terms of
the efficiency of query evaluation this approach will be inferior to the approach
in which top-K queries are supported directly by the query engine.

Finally, we note that there are other, weaker forms of representation than
Definition 7.2. For instance, if we only require that

∀t1, t2 [t1 �C t2 ⇒ f (t1) > f (t2)],

then for every strict partial order there is a scoring function representing it
[Fishburn 1970]. Such a function is an order-homomorphism. However, in that
case, we can only guarantee that the set of tuples in a given instance r that
maximize f is a subset of ωC(r).

7.2 Integrity Constraints

There are cases when we wish to impose a constraint on the result of the winnow
operator. In Example 1.1, we may say that we are interested only in the books
under $15. In Example 2.5, we may restrict our attention only to the meat or
fish dishes (note that currently the dishes that are not meat or fish do not have a
preferred kind of wine). In the same example, we may ask for a specific number
of meal recommendations.

In general, we need to distinguish between local and global constraints. A
local constraint imposes a condition on the components of a single tuple, for
instance Book.Price<$15. A global constraint imposes a condition on a set of
tuples. The first two examples above are local constraints; the third is global. To
satisfy a global constraint on the result of the winnow operator, one would have
to construct a maximal subset of this answer that satisfies the constraint. Since,
in general, there may be more than one such subset, the required construction
cannot be described using a single relational algebra query. On the other hand,
local constraints are easily handled, since they can be expressed using selection.

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.

P1: GSY
CM173A-05 ACM-TRANSACTION November 10, 2003 13:53

30 • Jan Chomicki

In general, it matters whether the selection is applied before or after the winnow
operator. Theorem 6.4 identifies sufficient and necessary conditions for winnow
and selection to commute.

Example 7.5. Consider the situation where we have a specific preference
ordering for cars, for example, prefer BMW to Chevrolet, but also have a limited
budget (captured by a selection condition). Then clearly, selecting the most
desirable affordable car will not give the same result as selecting the most
desirable cars if they are affordable.

A veto expresses a prohibition on the presence of a specific set of values in
the elements of the answer to a preference query and thus can be viewed as a
local constraint. To veto a specific tuple w = (a1, . . . , an) in a relation S (which
can be defined by a preference query) of arity n, we write the selection:

σA1 �=a1∨···∨An �=an(S).

7.3 Intrinsic vs. Extrinsic Preferences

So far we have talked only about intrinsic preference formulas. Such formulas
establish the preference relation between two tuples purely on the basis of the
values occurring in those tuples. Extrinsic preference formulas may refer not
only to built-in predicates but also to other constructs, for example, database
relations. In general, extrinsic preferences can use a variety of criteria: prop-
erties of the relations from which the tuples were selected, properties of other
relations, or comparisons of aggregate values, and do not even have to be defined
using first-order formulas.

It is possible to express some extrinsic preferences using the winnow operator
together with other relational query constructs using the following multistep
strategy:

(1) using a relational query, combine all the information relevant for the pref-
erence in a single relation,

(2) apply the appropriate winnow operator to this relation,
(3) project out the extra columns introduced in the first step.

The following example demonstrates the above strategy, as well as the use
of aggregation for the formulation of preferences.

Example 7.6. Consider again the relation Book(ISBN, Vendor, Price). Sup-
pose for each book a preferred vendor (there may be more than one) is a vendor
that sells the maximum total number of books. Clearly, this is an extrinsic pref-
erence since it cannot be established solely by comparing pairs of tuples from
the Book relation. However, we can provide the required aggregate values and
connect them with individual books through new, separate views:

CREATE VIEW BookNum(Vendor,Num) AS
SELECT B1.Vendor, COUNT(DISTINCT B1.ISBN)
FROM Book B1
GROUP BY B1.Vendor;

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.

P1: GSY
CM173A-05 ACM-TRANSACTION November 10, 2003 13:53

Preference Formulas in Relational Queries • 31

CREATE VIEW ExtBook(ISBN,Vendor,Num) AS
SELECT B1.ISBN, B1.Vendor, BN.Num
FROM Book B1, BookNum BN
WHERE B1.Vendor=BN.Vendor;

Now the extrinsic preference is captured by the query

πISBN, Vendor(ωC5 (ExtBook))

where the preference formula C5 is defined as follows:

(i, v, n) �C5 (i′, v′, n′) ≡ i = i′ ∧ n > n′.

Example 7.7. To see another example of extrinsic preference, consider the
situation in which we prefer any tuple from a relation R over any tuple from a
relation S which is disjoint from R. Notice that this is truly an extrinsic pref-
erence, since it is based on where the tuples come from and not on their values.
It can be handled in our approach by tagging the tuples with the appropriate
relation names:

SELECT A1, . . . , An, ′r ′ FROM R
UNION
SELECT A1, . . . , An, ′s′ FROM S.

Then the preference relation is defined using the tags:

(x1, . . . , xn, t) �C (x ′
1, . . . , x ′

n, t ′) ≡ t = ′r ′ ∧ t ′ = ′s′.

If there is a tuple which belongs both to R and S, then the above preference rela-
tion will fail to be irreflexive and the simulation using intrinsic preferences will
not work. Note also that an approach similar to tagging was used in Example
2.5 (wine and dish types play the role of tags).

Example 7.8. Suppose user preferences are stored in a database relation
Pref(A,B). Then one can define an extrinsic preference relation:

x �Pref y ≡ Pref (x, y).

Such a preference relation cannot be defined using an intrinsic preference for-
mula, because each ipf is true of a fixed set of tuples, and one can always choose
the instance of Pref to be different from that set.

8. ITERATED PREFERENCES AND RANKING

A natural notion of ranking is implicit in our approach. Ranking is defined
using iterated preference.

Definition 8.1. Given a preference relation � defined by a pf C, the nth
iteration of the winnow operator ωC in r is defined as:

ω1
C(r) = ωC(r)

ωn+1
C (r) = ωC(r − ⋃

1≤i≤n ωi
C(r))

For example, the query ω2
C(R) computes the set of “second-best” tuples.

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.

P1: GSY
CM173A-05 ACM-TRANSACTION November 10, 2003 13:53

32 • Jan Chomicki

Example 8.2. Continuing Example 1.1, ω2
C1

(r1) returns

ISBN Vendor Price
0679726691 BooksForLess $14.75

and ω3
C1

(r1) returns

ISBN Vendor Price
0679726691 QualityBooks $18.80

Therefore, by iterating the winnow operator one can rank the tuples in a given
relation instance.

THEOREM 8.3. If a preference relation �C over a relation schema R is a strict
partial order, then for every finite instance r of R and every tuple t ∈ r, there
exists an i, i ≥ 1, such that t ∈ ωi

C(r).

PROOF. Assume there is a tuple t0 ∈ r such that for all i ≥ 1, t0 /∈ ωi
C(r).

Select the least i0 such that ∀i ≥ io, ωi
C(r) = ∅ (such an i0 always exists due to

the finiteness of r). Clearly, t0 ∈ r − ⋃
1≤i≤i0−1 ωi

C(r). Because t0 /∈ ω
i0
C (r), there

must be a tuple t1 such that t1 �C t0 and t1 ∈ r − ⋃
1≤i≤i0−1 ωi

C(r) (otherwise,
t0 ∈ ω

i0
C (r)). But t1 /∈ ω

i0
C (r) either. Since �C is a strict partial order, there has to

be an infinite increasing chain in r, a contradiction with the finiteness of r.

We define now the ranking operator ηC(R).

Definition 8.4. If R is a relation schema and C a preference formula defin-
ing a preference relation �C over R, then the ranking operator is written as
ηC(R), and for every instance r of R:

ηC(r) = {(t, i) | t ∈ ωi
C(r)}.

Note that the ranking operator is defined inductively using recursion with
non-stratified negation. It cannot be expressed in SQL, even using the recur-
sive definitions of SQL:1999 [Eisenberg and Melton 1999]. On the other hand,
ranking can be efficiently computed using extended versions of the evaluation
algorithms BNL and SFS (Section 5). For instance, SFS can use multiple win-
dows, one for each rank, and compare input tuples with the contents of each
window (in rank order). This will be discussed in more detail in the full version
of Chomicki et al. [2003].

One can study the algebraic properties of the ranking operator that parallel
those that we established for winnow in Section 5. We list here only one property
which is the most important one from a practical point of view: commutativity
of selection with ranking. In this context, ranking enjoys identical properties
to winnow.

THEOREM 8.5. Given a relation schema R, a selection condition C1 over R
and a preference formula C2 over R, if the formula

∀t1, t2[(C1(t2) ∧ C2(t1, t2)) ⇒ C1(t1)]

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.

P1: GSY
CM173A-05 ACM-TRANSACTION November 10, 2003 13:53

Preference Formulas in Relational Queries • 33

is valid, then for all instances r of R:

σC1 (ηC2 (r)) = ηC2 (σC1 (r)).

The converse holds under the assumption that �C2 is irreflexive.

PROOF. The proof is by induction on tuple rank. The base case follows from
Theorem 6.4 and the inductive case from the observation that

σC1

(
ωn+1

C2
(r)

) = σC1

(
ωC2

(
r −

⋃
1≤i≤n

ωi
C2

(r)
))

= ωC2

(
σC1

(
r −

⋃
1≤i≤n

ωi
C2

(r)
))

,

which is equal to

ωC2

(
σC1 (r) − σC1

(⋃
1≤i≤n

ωi
C2

(r)
))

= ωC2

(
σC1 (r) −

⋃
1≤i≤n

σC1

(
ωi

C2
(r)

))
.

By the inductive assumption, the last expression is equal to

ωC2

(
σC1 (r) −

⋃
1≤i≤n

ωi
C2

(σC1 (r))
)

= ωn+1
C2

(σC1 (r)).

9. RELAXED WINNOW

If a preference relation is not a strict partial order, then Theorems 5.2 and
8.3 may fail to hold. This may occur, for example, if the preference relation is
obtained through composition (Section 4). However, even in this case there may
be weaker forms of winnow and ranking available.

Example 9.1. Consider Examples 1.1 and 4.5. If the preference formula C′

is defined as C0 ∨C1, then the first two tuples of the instance r1 block each other
from appearing in the result of ωC′ (r1), since according to C0 the first tuple is
preferred to the second but just the opposite is true according to C1. Intuitively,
both those tuples should be preferred to (and ranked higher) than the third
tuple. But since neither the first not the second tuple is a member of ωC′ (r1),
none of the first three tuples can be ranked.

To deal with preference relations that are not strict partial orders, we define a
new, relaxed form of the winnow operator. We relax the irreflexivity requirement
but preserve transitivity. Thus, we also allow violations of asymmetry.

To define the relaxed winnow operator, we notice that as long as the pref-
erence relation �C is transitive, we can use it to define another preference
relation �C>

which is a strict partial order:

x �C>
y ≡ x �C y ∧ y ��C x.

Definition 9.2. If R is a relation schema and �C a transitive preference
relation over R, then the relaxed winnow operator is written as ψC(R) and for
every instance r of R, ψC(r) = ωC>

(r).

As the following theorem shows, the relaxed winnow operator returns all the
tuples that are dominated only by the tuples that they dominate themselves.

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.

P1: GSY
CM173A-05 ACM-TRANSACTION November 10, 2003 13:53

34 • Jan Chomicki

THEOREM 9.3. If R is a relation schema and �C a transitive preference rela-
tion over R, then for every instance r of R

ψC(r) = {t ∈ r | ∀t ′ ∈ r. t �C t ′ ∨ t ′ ��C t}.
PROOF. We have

t ∈ ψC(r) ≡ t ∈ ωC>
(r) ≡ t ∈ r ∧ ¬∃t ′ ∈ r. t ′ �C>

t ≡
t ∈ r ∧ ¬∃t ′ ∈ r. t ′ �C t ∧ t ��C t ′ ≡ t ∈ r ∧ ∀t ′ ∈ r. t ′ ��C t ∨ t �C t ′.

Example 9.4. Considering Example 9.1, we see that the query ψC′ (r1) re-
turns now

ISBN Vendor Price
0679726691 BooksForLess $14.75
0679726691 LowestPrices $13.50
0062059041 BooksForLess $7.30
0374164770 LowestPrices $21.88

Below we formulate a few properties of the relaxed winnow operator. We
note that because of Definition 9.2, the implementation algorithms and the
properties of winnow (including the algebraic properties) immediately carry
over to relaxed winnow. Using Theorems 5.2 and 5.5 (notice that C> ⇒ C), we
obtain the following theorem.

THEOREM 9.5. If R is a relation schema and �C a transitive preference rela-
tion over R, then:

—for every instance r of R, ωC(r) ⊆ ψC(r).
—for every finite, nonempty relation instance r of R, ψC(r) is nonempty.

One can define the iteration of the relaxed winnow operator similarly to that
of the winnow operator (Definition 8.1).

THEOREM 9.6. If a preference relation �C over a relation schema R is tran-
sitive, then for every finite instance r of R and for every tuple t ∈ r, there exists
an i, i ≥ 1, such that t ∈ ψ i

C(r).

10. RELATED WORK

10.1 Preference queries

Lacroix and Lavency [1987] originated the study of preference queries. It pro-
posed an extension of the relational calculus in which preferences for tuples
satisfying given logical conditions can be expressed. For instance, one could
say: Pick the tuples of R satisfying Q ∧ P1 ∧ P2; if the result is empty, pick the
tuples satisfying Q ∧ P1 ∧ ¬P2; if the result is empty, pick the tuples satisfying
Q ∧¬P1 ∧ P2. This can be simulated in our framework in a very natural fashion
as

ωC2 (ωC1 (σQ (R)))

where
C1(t1, t2) ≡ P1(t1) ∧ ¬P1(t2)
C2(t1, t2) ≡ P2(t1) ∧ ¬P2(t2).

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.

P1: GSY
CM173A-05 ACM-TRANSACTION November 10, 2003 13:53

Preference Formulas in Relational Queries • 35

Other kinds of logical conditions from Lacroix and Lavency [1987] can also
be expressed in our framework. Maximum/minimum value preferences (as in
Example 1.1) are handled in Lacroix and Lavency [1987] through the explicit
use of aggregate functions. The use of such functions is implicit in the definition
of the winnow operator.

Unfortunately, Lacroix and Lavency [1987] does not contain a formal defini-
tion of the proposed language, so a complete comparison with our approach is
not possible. It should be noted, however, that the framework of Lacroix and
Lavency [1987] seems unable to capture very simple conditional preferences
like the ones in Examples 2.5 and 4.8. Also, it can only handle strict partial
orders of bounded depth (except in the case where aggregate functions can be
used, as in Example 1.1). Composition or iteration of preferences is not con-
sidered. Neither is addressed the issue of algebraic optimization of preference
queries.

It is interesting to note that a logical approach to preferences, similar to the
one proposed in the present article, was first studied in the context of deduc-
tive databases in Kießling and Güntzer [1994] and Köstler et al. [1995] and—
independently—in Govindarajan et al. [1995, 2001]. All of those papers propose
extending Datalog with clausally defined preference relations. Govindarajan
et al. [2001] demonstrate that this approach subsumes, among others, the class
of preference queries discussed in Lacroix and Lavency [1987]. The cited papers
present declarative and operational semantics for the proposed Datalog exten-
sions. The operational semantics extends the standard bottom-up [Köstler et al.
1995; Govindarajan et al. 2001] or top-down [Govindarajan et al. 1995] evalua-
tion method for logic programs. In the context of database queries, the approach
proposed in the present article achieves similar goals to that of Kießling and
Güntzer [1994], Köstler et al. [1995], and Govindarajan et al. [1995, 2001],
remaining, however, entirely within the relational data model and SQL, and
not requiring a specialized query evaluation engine. Moreover, Kießling and
Güntzer [1994], Köstler et al. [1995], and Govindarajan et al. [1995, 2001] do
not address some of the issues we deal with in the present paper like transitive
closure of preferences, prioritized composition, or ranking (a similar concept
to the last one is presented in Govindarajan et al. [1995] under the name of
“relaxation”). More importantly, the issues of embedding the framework into
a real relational query language and optimizing preference queries are not
addressed.

Kießling et al. [Kießling 2002; Kießling and Köstler 2002; Kießling and
Hafenrichter 2002] propose an independently developed framework similar to
the one presented in this article and in Chomicki [2002]. A formal language for
formulating preference relations is described. The language has a number of
base preference constructors and their combinators (Pareto and lexicographic
composition, intersection, disjoint union, and others). In this language, all the
examples we have presented in Section 2 can be expressed. Clearly, all the
preference constructors and their combinators can be captured in our frame-
work. On the other hand, Kießling [2002] and Kießling and Köstler [2002]
do not consider the possibility of having arbitrary constraints in preference
formulas.

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.

P1: GSY
CM173A-05 ACM-TRANSACTION November 10, 2003 13:53

36 • Jan Chomicki

Example 10.1. The following preference relation cannot be expressed in
the framework of Kießling et al.:

(x, y) �C (x ′, y ′) ≡ x = y ∧ x ′ �= y ′.

However, the above framework has been recently extended with a facility to
define preference relations using arbitrary Boolean tests (W. Kießling, 2003,
personal communication). Moreover, Kießling et al. allow only very limited ver-
sions of extrinsic (“persistent”) preferences and transitive closure. The embed-
ding into relational query languages they use is identical to ours (it is called Best
Match Only, instead of winnow). Thus, although complex preferences involving
aggregation are not explicitly considered in Kießling [2002] and Kießling and
Köstler [2002], such preferences can be formulated in that framework.

While some possible rewritings for preference queries are presented in
Kießling [2002] and some algebraic laws in Kießling and Hafenrichter [2002],
those results are mostly less general that those we gave in Section 6. In partic-
ular, Theorems 6.1 and 6.4 have no corresponding results in Kießling [2002],
Kießling and Köstler [2002], and Kießling and Hafenrichter [2002], while
Theorems 6.7, 6.9 and 6.11 are significantly more general that the correspond-
ing results in [Kießling and Hafenrichter 2002]. On the other hand, Kießling
and Hafenrichter [2002] contains several results about pushing a unary oper-
ator or winnow into a subtree headed by a binary operator or winnow, without
removing the occurrence of the top-level operator. We didn’t consider this kind
of transformation. Also, Kießling and Hafenrichter [2002] has a result about
pushing winnow through selection which is not a special case of Theorem 6.4.
However, that does not contradict the necessity of the precondition used in that
theorem, since the proposed transformation is applicable only if the argument
of the selection is of a special form. Further work in this direction is presented in
Kießling and Hafenrichter [2003]. The implementation of winnow and ranking
is also studied in Torlone and Ciaccia [2002, 2003].

In general, the logical formulation of preferences in our approach makes it
possible to view the preconditions for the application of algebraic laws involving
winnow as logical validity problems. For instance, we can capture the connec-
tion between a selection condition and a preference criterion, since both are
expressed as logical formulas. This is not directly possible in the approach of
Kießling et al. On the other hand, the constructs proposed by Kießling et al.
can be formulated logically, enabling the application of our results in that con-
text as well. Kießling and Köstler [2002] describes an implementation of the
framework of Kießling [2002] using a language called Preference SQL, which
is translated to SQL, and several deployed applications.

Börzsönyi et al. [2001] introduces the skyline operator and describes several
evaluation methods for this operator. As shown in Section 7, skyline is a special
case of winnow. It is restricted to use an ipf which is a conjunction of pairwise
comparisons of corresponding tuple components. So, in particular, Example
2.5 does not fit in that framework. Some examples of possible rewritings for
skyline queries are given in Börzsönyi et al. [2001] but no general rewriting
rules are formulated. Algortithms for computing skylines are also described
in Kossmann et al. [2002], Papadias et al. [2003], and [Chomicki et al. 2003].

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.

P1: GSY
CM173A-05 ACM-TRANSACTION November 10, 2003 13:53

Preference Formulas in Relational Queries • 37

The algorithms in Kossmann et al. [2002] and Papadias et al. [2003] are based
on nearest-neighbor computations and thus do not seem to generalize beyond
skyline queries.

Agrawal and Wimmers [2000] uses quantitative preferences (scoring func-
tions) in queries and focuses on the issues arising in combining such prefer-
ences. Hristidis et al. [2001] explores in this context the problems of efficient
query processing using materialized views. As pointed out repeatedly in the
present paper (and well known in decision theory [Fishburn 1970]), the ap-
proach based on scoring functions is inherently less expressive than the one
based on preference relations. In particular, skyline queries cannot be captured
using scoring functions. Moreover, since the quantitative approach is based on
comparing the scores of individual tuples under given scoring functions, the
preferences represented in this way have to be intrinsic. However, the simu-
lation of extrinsic preferences using intrinsic ones (Section 7) is not readily
available in this approach because the scoring functions are not integrated
with the query language. So, for instance, Example 7.6 cannot be handled. In
fact, even for preference relations that satisfy the property of transitivity of
the corresponding indifference relation (and thus representable using scoring
functions), it is not clear whether the scoring function capturing the prefer-
ence relation can be defined intrinsically (i.e., the function value be determined
solely by the the values of the tuple components). The general construction of a
scoring function on the basis of a preference relation [Fishburn 1999, 1970] does
not provide such a definition. Moreover, it is not clear how to compose scoring
functions to achieve an effect similar to various preference relation composition
operators, for example, those discussed in Section 4.

10.2 Preferences in Logic and Artificial Intelligence

The papers on preference logics [von Wright 1963; Mantha 1991; Hansson
2001] address the issue of capturing the common-sense meaning of preference
through appropriate axiomatizations. Preferences are defined on formulas, not
tuples, and with the exception of Mantha [1991] and Cristani [2002] limited
to the propositional case. Mantha [1991] proposes a modal logic of preference,
and Cristani [2002] studies preferences in the context of relation algebras. The
application of the results obtained in this area to database queries is unclear.

The papers on preference reasoning [Wellman and Doyle 1991; Tan and Pearl
1994; Boutilier et al. 1999] attempt to develop practical mechanisms for mak-
ing inferences about preferences and solving decision or configuration problems
similar to the one described in Example 2.5. A central notion there is that of
ceteris paribus preference: preferring one outcome to another, all else being
equal. Typically, the problems addressed in that work are propositional (or
finite-domain). It appears that such problems can be encoded in the relational
data model and the inferences obtained by evaluating preference queries. A de-
tailed study of such an approach remains still to be done. We note that the
use of a full-fledged query language in this context makes it possible to for-
mulate considerably more complex decision and configuration problems than
before.

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.

P1: GSY
CM173A-05 ACM-TRANSACTION November 10, 2003 13:53

38 • Jan Chomicki

The work on prioritized logic programming and nonmonotonic reasoning
[Brewka and Eiter 1999; Delgrande et al. 2000; Sakama and Inoue 2000] has
potential applications to databases. However, like Govindarajan et al. [2001],
it relies on specialized evaluation mechanisms, and the preferences considered
are typically limited to rule priorities.

11. CONCLUSIONS AND FUTURE WORK

We have presented a framework for specifying preferences using logical formu-
las and its embedding into relational algebra. As the result, preference queries
and complex decision problems involving preferences can be formulated in a
simple and clean way.

Clearly, our framework is limited to applications where the preferences can
be entirely modeled within the relational model of data. Here are several ex-
amples that do not quite fit in this paradigm:

—preferences defined between sets of elements;
—heterogenous preferences between tuples of different arity or type (how to say

I prefer a meal without a wine to a meal with one in Example 2.5?);
—preferences requiring nondeterministic choice. We believe this is properly

handled using a nondeterministic choice [Giannotti et al. 1997] or witness
[Abiteboul et al. 1995] operator.

In addition to addressing the above limitations, future work directions
include:

—evaluation and optimization of preference queries, including cost-based
optimization;

—materialized preference views (views defined using preference queries);
—extrinsic preferences;
—multiagent preferences and preference revision [Wong 1994];
—preference query elicitation (how to construct preference queries based on

user input).

ACKNOWLEDGMENTS

This paper is dedicated to the memory of Javier Pinto whose premature
death prevented him from participating in this research. The numerous dis-
cussions on preferences with Svet Braynov, Agnieszka Grabska, Jarek Gryz,
Bharat Jayaraman, and Jorge Lobo were highly appreciated. Thanks also go to
Werner Kießling for his detailed comments and to the referees for their useful
suggestions.

REFERENCES

ABITEBOUL, S., HULL, R., AND VIANU, V. 1995. Foundations of Databases. Addison-Wesley, Reading,
Mass.

AGRAWAL, R. AND WIMMERS, E. L. 2000. A framework for expressing and combining preferences.
In Proceedings of the ACM SIGMOD International Conference on Management of Data. ACM,
New York, 297–306.

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.

P1: GSY
CM173A-05 ACM-TRANSACTION November 10, 2003 13:53

Preference Formulas in Relational Queries • 39

ANDREKA, H., RYAN, M., AND SCHOBBENS, P.-Y. 2002. Operators and laws for combining preference
relations. J. Logic Comput. 12, 1, 13–53.

BÖRZSÖNYI, S., KOSSMANN, D., AND STOCKER, K. 2001. The skyline operator. In Proceedings of
the IEEE International Conference on Data Engineering. IEEE Computer Society Press, Los
Alamitos, Calif., 421–430.

BOUTILIER, C., BRAFMAN, R. I., HOOS, H. H., AND POOLE, D. 1999. Reasoning with conditional ceteris
paribus preference statements. In Proceedings of the Symposium on Uncertainty in Artificial
Intelligence.

BREWKA, G. AND EITER, T. 1999. Preferred answer sets for extended logic programs. Artif. In-
tel. 109, 1-2, 297–356.

BRUNO, N., CHAUDHURI, S., AND GRAVANO, L. 2002. Top-k selection queries over relational databases:
Mapping strategies and performance evaluation. ACM Trans. Datab. Syst. 27, 2 (June), 153–187.

BURKE, R. 1999. Integrating knowledge-based and collaborative-filtering recommender systems.
In Proceedings of the AAAI Workshop on AI and Electronic Commerce.

CAREY, M. AND KOSSMANN, D. 1997. On saying enough already! in SQL. In Proceedings of
the ACM SIGMOD International Conference on Management of Data. ACM, New York, 219–
230.

CHERNOFF, H. 1954. Rational selection of decision functions. Econometrica 22, 422–443.
CHOMICKI, J. 2002. Querying with intrinsic preferences. In Proceedings of the International Con-

ference on Extending Database Technology. Springer-Verlag, Lecture Notes in Computer Science,
vol. 2287, Springer-Verlag, New York, 34–51.

CHOMICKI, J., GODFREY, P., GRYZ, J., AND LIANG, D. 2003. Skyline with presorting. In Proceedings of
the IEEE International Conference on Data Engineering. Poster. IEEE Computer Society Press,
Los Alamitos, Calif.

CREIGNOU, N., HERMANN, M., AND PICHLER, R. 2001. Complexity of Constraint Solving Problems.
In Proceedings of the International Conferences on Constraint Programming and Logic Program-
ming. Tutorial Notes.

CRISTANI, M. 2002. Many-sorted preference relations. In Proceedings of the International Confer-
ence on Principles of Knowledge Representation and Reasoning.

DELGRANDE, J. P., SCHAUB, T., AND TOMPITS, H. 2000. Logic programs with compiled preferences.
In Proceedings of the European Conference on Artificial Intelligence.

EISENBERG, A. AND MELTON, J. 1999. SQL:1999, formerly known as SQL3. ACM SIGMOD
Record 28, 1, 131–138.

FISHBURN, P. C. 1970. Utility Theory for Decision Making. Wiley, New York.
FISHBURN, P. C. 1999. Preference structures and their numerical representations. Theoret.

Comput. Sci. 217, 359–383.
GIANNOTTI, F., GRECO, S., SACCA, D., AND ZANIOLO, C. 1997. Programming with nondeterminism in

deductive databases. Ann. Math. Artif. Intel. 19, 3–4.
GOVINDARAJAN, K., JAYARAMAN, B., AND MANTHA, S. 1995. Preference logic programming. In Pro-

ceedings of the International Conference on Logic Programming. 731–745.
GOVINDARAJAN, K., JAYARAMAN, B., AND MANTHA, S. 2001. Preference queries in deductive databases.

New Gen. Comput., 57–86.
GUO, S., SUN, W., AND WEISS, M. 1996. Solving satisfiability and implication problems in database

systems. ACM Trans. Datab. Syst. 21, 2, 270–293.
HANSSON, S. O. 2001. Preference logic. In Handbook of Philosophical Logic, D. Gabbay, Ed. Vol. 8.
HRISTIDIS, V., KOUDAS, N., AND PAPAKONSTANTINOU, Y. 2001. PREFER: A system for the efficient

execution of multiparametric ranked queries. In Proceedings of the ACM SIGMOD International
Conference on Management of Data. ACM, New York, 259–270.

HUET, G. 1976. Ph.D. dissertation. Univ. de Paris VII, Paris, France.
HUGHES, R. 1980. Rationality and intransitive preferences. Analysis 40, 132–134.
KANELLAKIS, P. C., KUPER, G. M., AND REVESZ, P. Z. 1995. Constraint query languages. J. Comput.

Syst. Sci. 51, 1 (Aug.), 26–52.
KIEßLING, W. 2002. Foundations of preferences in database systems. In Proceedings of the Inter-

national Conference on Very Large Data Bases.
KIEßLING, W. AND GÜNTZER, U. 1994. Database reasoning—A deductive framework for solving

large and complex problems by means of subsumption. In Proceedings of the 3rd Workshop on

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.

P1: GSY
CM173A-05 ACM-TRANSACTION November 10, 2003 13:53

40 • Jan Chomicki

Information Systems and Artificial Intelligence. Lecture Notes in Computer Science, vol. 777,
Springer-Verlag, New York, 118–138.

KIEßLING, W. AND HAFENRICHTER, B. 2002. Optimizing preference queries for personalized web
services. In Proceedings of the IASTED International Conference on Communications, Internet
and Information Technology. Also Tech. Rep. 2002-12, July 2002, Institute of Computer Science,
University of Augsburg, Germany.

KIEßLING, W. AND HAFENRICHTER, B. 2003. Algebraic optimization of relational preference queries.
Tech. Rep. 2003-1, Institut für Informatik, Universität Augsburg.

KIEßLING, W., HAFENRICHTER, B., FISCHER, S., AND HOLLAND, S. 2001. Preference XPATH—A query
language for E-commerce. In Proceedings of the 5th International Conference Wirtschaftsinfor-
matik. Augsburg, Germany, 43–62.

KIEßLING, W. AND KÖSTLER, G. 2002. Preference SQL - Design, implementation, experience. In
Proceedings of the International Conference on Very Large Data Bases.

KNIGHT, K. 1989. Unification: A multidisciplinary survey. ACM Comput. Surv. 21, 1, 93–124.
KOSSMANN, D., RAMSAK, F., AND ROST, S. 2002. Shooting stars in the sky: An online algorithm for

skyline queries. In Proceedings of the International Conference on Very Large Data Bases.
KÖSTLER, G., KIEßLING, W., THÖNE, H., AND GÜNTZER, U. 1995. Fixpoint iteration with subsumption

in deductive databases. J. Intel. Inf. Syst. 4, 123–148.
KUPER, G., LIBKIN, L., AND PAREDAENS, J., Eds. 2000. Constraint Databases. Springer-Verlag.
LACROIX, M. AND LAVENCY, P. 1987. Preferences: Putting More Knowledge Into Queries. In Pro-

ceedings of the International Conference on Very Large Data Bases. 217–225.
MANTHA, S. M. 1991. First-order preference theories and their applications. Ph.D. thesis, Uni-

versity of Utah.
PAPADIAS, D., TAO, Y., FU, G., AND SEEGER:, B. 2003. An optimal and progressive algorithm for

skyline queries. In Proceedings of the ACM SIGMOD International Conference on Management
of Data. ACM, New York, 467–478.

SAKAMA, C. AND INOUE, K. 2000. Prioritized logic programming and its application to commonsense
reasoning. Artif. Intel. 123, 185–222.

STOLZE, M. 2000. Soft navigation in product catalogs. Int. J. Digital Lib. 3, 1, 60–66.
TAN, S.-W. AND PEARL, J. 1994. Specification and evaluation of preferences under uncertainty.

In Proceedings of the International Conference on Principles of Knowledge Representation and
Reasoning.

TORLONE, R. AND CIACCIA, P. 2002. Which are my preferred items? In Proceedings of the Workshop
on Recommendation and Personalization in E-Commerce.

TORLONE, R. AND CIACCIA, P. 2003. Management of user preferences in data intensive applications.
In Proceedings of the 11th Italian Symposium on Advanced Database Systems (SEBD).

VARDI, M. Y. 1982. The complexity of relational query languages. In Proceedings of the ACM
Symposium on Theory of Computing. ACM, New York, 137–146.

VON WRIGHT, G. H. 1963. The Logic of Preference. Edinburgh University Press.
WELLMAN, M. P. AND DOYLE, J. 1991. Preferential semantics for goals. In Proceedings of the Na-

tional Conference on Artificial Intelligence. 698–703.
WONG, S. T. C. 1994. Preference-based decision making for cooperative knowledge-based systems.

ACM Trans. Inf. Syst. 12, 4, 407–435.

Received September 2002; revised February 2003; accepted July 2003

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.

