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Abstract Preference queries incorporate the notion of bi-
nary preference relation into relational database querying.
Instead of returning all the answers, such queries return only
the best answers, according to a given preference relation.

Preference queries are a fast growing area of database re-
search. Skyline queries constitute one of the most thoroughly
studied classes of preference queries. A well known limi-
tation of skyline queries is that skyline preference relations
assign the same importance to all attributes. In this work, we
study p-skyline queries that generalize skyline queries by al-
lowing varying attribute importance in preference relations.

We perform an in-depth study of the properties of p-
skyline preference relations. In particular, we study the prob-
lems of containment and minimal extension. We apply the
obtained results to the central problem of the paper: eliciting
relative importance of attributes. Relative importance is im-
plicit in the constructed p-skyline preference relation. The
elicitation is based on user-selected sets of superior (pos-
itive) and inferior (negative) examples. We show that the
computational complexity of elicitation depends on whether
inferior examples are involved. If they are not, elicitation
can be achieved in polynomial time. Otherwise, it is NP-
complete. Our experiments show that the proposed elicita-
tion algorithm has high accuracy and good scalability.
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1 Introduction

Effective and efficient user preference management is a cru-
cial part of any successful sales-oriented business. Know-
ing what customers like and more importantly why they like
that and what they will like in the future is an essential part
of the modern risk management process. The essential com-
ponents of preference management include preference spec-
ification, preference elicitation, and querying using prefer-
ences. Many preference handling frameworks have been de-
veloped [Börzsönyi et al(2001),Kießling and Köstler(2002),
Brafman and Domshlak (2002), Chomicki(2003), P. Pu and
Torrens(2003), Hansson(1995), Fishburn(1970)].

Our starting point here is the skyline framework [Börz-
sönyi et al(2001)]. The skyline preference relation is defined
on top of a set of preferences over individual attributes. It
represents the Pareto improvement principle: a tuple o1 is
preferred to a tuple o2 iff o1 is as good as o2 according to
all the attribute preferences, and o1 is strictly better than
o2 according to at least one attribute preference. Now given
a set of tuples, the set of the best tuples according to this
principle is called a skyline.

Example 1 Assume the following cars are available for sale.

make price year
t1 ford 30k 2007
t2 bmw 45k 2008
t3 kia 20k 2007
t4 ford 40k 2008
t5 bmw 50k 2006

Also, assume that Mary wants to buy a car and her at-
tribute preferences are as follows:
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>make BMW is better than Ford, Ford is better than
Kia

>year the car should be as new as possible
>price the car should be as cheap as possible.

Then the skyline is

make price year
t1 ford 30k 2007
t2 bmw 45k 2008
t3 kia 20k 2007
t4 ford 40k 2008

A large number of algorithms for computing skyline que-
ries have been developed [Börzsönyi et al(2001), Chomicki
et al(2003),Godfrey et al(2005),Lin et al(2005)]. Elicitation
of skyline preference relations based on user-provided feed-
back has also been studied [Jiang et al(2008)].

One of the reasons of the popularity of the skyline frame-
work is the simplicity and intuitiveness of skyline seman-
tics. Indeed, in order to define a skyline preference rela-
tion, one needs to provide only two parameters: the set A
of relevant attributes and the set H of corresponding pref-
erences over each individual attribute in A . (In Example 1,
A = {make, price,year} and H = {>make,>price,>year}.)

At the same time, the simplicity of skyline semantics
comes with a number of well known limitations. One of
them is the inability of skyline preference relations to cap-
ture the important notion of difference in attribute impor-
tance. The Pareto improvement principle implies that all rel-
evant attributes have the same importance. However, in real
life, it is often the case that benefits in one attribute may out-
weigh losses in one or more attributes. For instance, given
two cars that differ in age and price, for some people the age
is crucial while the price is secondary. Hence, in that case,
the price has to be considered only when the benefits in age
cannot be obtained, i.e., when the age of the two cars is the
same.

Example 2 Assume that Mary decides that year is more im-
portant for her than make and price, which in turn are equally
important. Thus, regardless of the values of make and price,
a newer car is always better than an old one. At the same
time, given two cars of the same age, one needs to compare
their make and price to determine the better one. The set of
the best tuples according to this preference relation is

make price year
t2 bmw 45k 2008
t4 ford 40k 2008

Namely, t2 and t4 are better than all other tuples in year,
but t2 is better than t4 in make, and t4 is better than t2 in
price.

Another drawback of the skyline framework is that the
size of a skyline may be exponential in the number of at-
tribute preferences [Godfrey(2004)]. A query result of that
size is likely to overwhelm the user. In interactive preference
elicitation scenarios [Balke et al(2007)], user preferences
are elicited in a stepwise manner. A user is assumed to ana-
lyze the set of the best tuples according to the intermediate
preference relation and criticize it in some way. Clearly, if
such a tuple set is too large, it is hard to expect high quality
feedback from the user. The large size of a skyline is caused
by the looseness of the Pareto improvement principle. Pareto
improvement implies that if a tuple o is better than o′ in one
attribute, then the existence of an attribute in which o′ is bet-
ter than o makes the tuples incomparable. Thus, every addi-
tional attribute increases the number of incomparable tuples.

Here we develop the p-skyline framework which gener-
alizes the skyline framework and addresses its limitations
listed above: the inability to capture differences in attribute
importance and large query results. The skyline semantics is
enriched with the notion of attribute importance in a natural
way. Assuming two relevant attributes A and B such that A
is more important than B, a tuple with a better value of A
is unconditionally preferred to all tuples with worse values
of A, regardless of their values of B. However, given a tuple
with the same value of A, the one with a better value of B
is preferred (assuming no other attributes are involved). For
equally important attributes, the Pareto improvement princi-
ple applies. Therefore, skyline queries are also representable
in our framework.

Relative attribute importance implicit in a p-skyline pref-
erence relation is represented explicitly as a p-graph: a graph
whose nodes are attributes, and edges go from more to less
important attributes. Such graphs satisfy the properties quite
natural for importance relationships: transitivity and irref-
lexivity. We show that, in addition to representing attribute
importance, p-graphs play another important role in the p-
skyline framework: they can be used to determine equiva-
lence and containment of p-skyline relations, and tuple dom-
inance.

We notice that two p-skyline relations may differ in the
following aspects:

– the set A of relevant attributes,
– the set H of preferences over those attributes, and
– the relative importance of the corresponding attributes,

represented by a p-graph.

In this work, we are particularly interested in the class FH of
full p-skyline relations for which the set of relevant attributes
A consists of all the attributes and the set of corresponding
attribute preferences is H . Hence, two different p-skyline
relations from FH are different only in the corresponding p-
graphs. We show the following properties of such relations:
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– the containment and equivalence of p-skyline relations
are equivalent to the containment and equivalence of their
p-graphs;

– four transformation rules are enough to generate all min-
imal extensions of a p-skyline relation;

– the number of all minimal extensions of a p-skyline re-
lation is polynomial in |A |;

– every ⊂-chain in FH is of polynomial length, although
FH contains at least |A |! relations.

The properties listed above are used to develop the elici-
tation algorithm and prove its correctness. Incorporating at-
tribute importance into skyline relations allows not only to
model user preferences more accurately but also to make the
size of the corresponding query results more manageable.

At the same time, enriching the skyline framework with
attribute importance comes at a cost. To construct a p-sky-
line preference relation from a skyline relation, one needs to
provide a p-graph describing relative attribute importance.
However, requiring users to describe attribute importance
explicitly seems impractical for several reasons. First, the
number of pairwise attribute comparisons required may be
large. Second, users themselves may be not fully aware of
their own preferences.

To address this problem, we develop a method of elici-
tation of p-skyline relations based on simple user-provided
feedback. The type of feedback used in the method consists
of two sets of tuples belonging to a given set: superior exam-
ples [Jiang et al(2008)], i.e., the desirable tuples, and infe-
rior examples [Jiang et al(2008)] i.e., the undesirable tuples.
This type of feedback is quite natural in real life: given a set
of tuples, a user needs to examine them and identify some
tuples she likes and dislikes most. Moreover, it is advanta-
geous from the point of view of user interface design – a
user is required to perform a number of simple “check off”
actions to identify such tuples. Finally, such feedback can be
elicited automatically [Holland et al(2003)].

We consider the problems related to the construction of
p-skyline relations covering the given superior and inferior
examples. Specifically, we need to guarantee that the supe-
rior examples are among the best tuples and that the inferior
examples are dominated by at least one other tuple. Also, to
guarantee an optimal fit we postulate that the constructed re-
lation be maximal. We show that determining the existence
of a p-skyline relation covering the given examples is NP-
complete and constructing a maximal such relation FNP-
complete.

In real-life scenarios of preference elicitation using su-
perior and inferior examples, users may only be indirectly
involved in the process of identifying such examples. For
instance, the click-through rate may be used to measure the
popularity of products. Using this metric, it is easy to find
the superior examples – the tuples with the highest click-

through rate. However, the problem of identifying inferior
examples – those which the user confidently dislikes – is
harder. Namely, low click-through rate may mean that a tu-
ple is inferior, the user does not know about it, or it sim-
ply does not satisfy the search criteria. Thus, there is a need
for eliciting p-skyline relations based on superior examples
only. We address that problem here. We show a polynomial-
time algorithm for checking the existence of a p-skyline re-
lation covering a given set of superior examples, and a poly-
nomial-time algorithm for constructing a maximal p-skyline
relation of that kind. The latter algorithm is based on check-
ing the satisfaction of a system of negative constraints, each
of which captures the fact that one tuple does not domi-
nate another according to the p-skyline relation being con-
structed.

We provide two effective methods for reducing the size
of systems of negative constraints and hence improving the
performance of the elicitation algorithm. At the same time,
we show that the problem of minimizing the size of such a
system is unlikely to be efficiently solvable. The experimen-
tal evaluation of the algorithms on real life and synthetic
data sets demonstrates high accuracy and scalability of the
elicitation algorithm, as well as the efficacy of the proposed
optimization methods.

The paper is organized as follows. In section 2, we in-
troduce the concepts used throughout the paper. In section
3, we describe p-skylines – skylines enriched with relative
attribute importance information. We also discuss the fun-
damental properties of such relations. In section 4, we study
the problem of eliciting p-skyline relations based on supe-
rior and inferior examples. In Section 5, we show the results
of the experimental evaluation of the proposed algorithms.
Section 6 concludes the paper with a discussion of related
and future work. The proofs of all the results presented in
the paper are provided in the Appendix.

2 Basic notations

2.1 Binary relations

A binary relation R over a (finite of infinite) set S is a subset
of S×S. Binary relations may be finite or infinite. To denote
(x,y) ∈ R, we may write R(x,y) or x R y. Here we list some
typical properties of binary relations. A binary relation R is

– irreflexive iff ∀x (¬R(x,x)),
– transitive iff ∀x,y,z (R(x,y)∧R(y,z)→ R(x,z)),
– connected iff ∀x,y (R(x,y)∨R(y,x)∨ x = y),
– a strict partial order (SPO) if it is irreflexive and transi-

tive,
– a weak order iff it is an SPO such that

∀x,y,z (R(x,y)→ R(x,z)∨R(z,y)),

– a total order if it is a connected SPO.
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The transitive closure TC(R) of a binary relation R is de-
fined as

(x,y) ∈ TC(R) iff Rm(x,y) for some m > 0,

where

R1(x,y)≡ R(x,y)

Rm+1(x,y)≡ ∃z (R(x,z)∧Rm(z,y))

A binary relation R⊆ S×S may be viewed as a directed
graph. The set S is called the set of nodes of R and denoted
as N(R). We say that the tuple xy is an R-edge from x to y
if (x,y) ∈ R. A path in R (or an R-path) from x to y for an
R-edge xy is a sequence of R-edges such that the start node
of the first edge is x, the end node of the last edge is y, and
the end node of every edge (except the last one) is the start
node of the next edge in the sequence. The length of an R-
path is the number of R-edges in the path. An R-sequence is
the sequence of nodes participating in an R-path. The length
of an R-sequence is the number of nodes in it.

Given a directed graph R and its node x,

– ChR(x) = {y | (x,y) ∈ R} is the set of children of x in R,
– PaR(x) = {y | (y,x) ∈ R} is the set of parents of x in R,
– DescR(x)= {y | (x,y)∈ TC(R)} is the set of descendents

of x in R,
– AncR(x) = {y | (y,x) ∈ TC(R)} is the set of ancestors of

x in R,

We also write Desc-sel fR(x) and Anc-sel fR(x) as short-
hands of (DescR(x)∪{x}) and (AncR(x)∪{x}), respectively.
Similarly, we define set versions of the above definitions,
e.g., ChR(X) = {y | ∃x ∈ X ((x,y) ∈ R)}.

Given two nodes x and y of R and two sets of nodes X
and Y of R, we write

– R |= x∼ y iff (x,y) 6∈ R and (y,x) 6∈ R;
– R |= X ∼ Y iff ∀x ∈ X ,y ∈ Y (R |= x∼ y);
– (X ,Y ) ∈ R iff ∀x ∈ X ,y ∈ Y ((x,y) ∈ R).

2.2 Preference relations

Below we describe some concepts of a variant of the prefer-
ence framework [Chomicki(2003)], which we adopt here.

Let A = {A1, ...,An} be a finite set of attributes (a rela-
tion schema). Every attribute Ai ∈ A is associated with an
infinite domain DAi . The domains considered here are ratio-
nals and uninterpreted constants (numerical or categorical).
We work with the universe of tuples U = ∏Ai∈A DAi . Given
a tuple o ∈U, we denote the value of its attribute Ai as o.Ai.

Preference relations we consider in this paper are of two
types: attribute and tuple.

Definition 1 (Attribute preference relation) An attribute
preference relation >Ai for an attribute Ai ∈ A is a subset of
DAi ×DAi , which is a total order over DAi .

An attribute preference relation describes a preference
over the values of a single attribute e.g., the red color is pre-
ferred to the blue color, or the make BMW is preferred to the
make Kia.

Definition 2 (Tuple preference relation) A tuple prefer-
ence relation� is a subset of U×U, which is a strict partial
order over U.

In contrast to an attribute preference relation, a tuple
preference relation describes a preference over tuples, e.g.,
a red BMW is preferred to a blue Kia. We say that

– a tuple o1 dominates (is preferred to, is better than) a
tuple o2, and

– o2 is dominated by (is worse than) o1,

according to a preference relation � iff o1 � o2. In the re-
maining part of the paper, tuple preference relations are sim-
ply referred to as preference relations.

We assume that both attribute and tuple preferences are
defined as quantifier-free formulas over some appropriate
signature. In this way both finite and infinite preference re-
lations can be captured. For instance, the following formula
defines an infinite tuple preference relation over the domains
of the attributes make, year, and price.

o1 �1 o2 = o1.year≥ o2.year∧o1.price≤ o2.price∧
(o1.make= BMW ∧o2.make= Ford ∨
o1.make= Ford ∧o2.make= Kia∨
o1.make= BMW ∧o2.make= Kia∨
o1.make= o2.make)∧ (o1.year 6= o2.year ∨
o1.price 6= o2.price∨o1.make 6= o2.make)

Given a tuple preference relation, the two most common
tasks are:

1. dominance testing: checking if a tuple is preferred to an-
other one, and

2. computing the best (most preferred) tuples in a given fi-
nite set of tuples.

The first problem is easily solved by checking if the for-
mula representing the preference relation evaluates to true
for the given pair of tuples. (Nevertheless, we will revisit
this problem in section 3.) To deal with the second prob-
lem, a new winnow relational algebra operator was proposed
[Chomicki(2003), Kießling(2002)].

Definition 3 (Winnow) If � is a tuple preference relation
over U, then the winnow operator ω�(A) is defined as

ω�(r) = {t ∈ r | ¬∃t ′ ∈ r (t ′ � t)}.

for every finite subset r of U.
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3 p-skylines

Let A = {A1, ...,An} be a finite set of attributes and H =

{>A1 , . . . ,>An} be a set of the corresponding attribute pref-
erence relations. Below we define the syntax and the seman-
tics of p-skyline relations.
Notation: We use “=” for syntactic identity of expressions
and “≡” for equality of relations viewed as sets of tuples.

Definition 4 (p-expression) An expression π is a p-expres-
sion if

– π is >Ai for Ai ∈ A , or
– π = π1 ⊗ π2 for two p-expressions π1 and π2, or
– π = π1 & π2, for two p-expressions π1 and π2.

Intuitively, expressions π1,π2 represent preference rela-
tions, and the operators ⊗ and & define the relative impor-
tance of the preference relations represented by π1,π2 in the
preference relation represented by π. The details are shown
further.

Definition 5 (Relevant attributes) Given a p-expression π,
the corresponding set of relevant attributes Var(π) is:

– {Ai}, if π is >Ai ;
– Var(π1)∪Var(π2) for π = π1 & π2 or π = π1 ⊗ π2,

where π1 and π2 are p-expressions.

o1 ≈X o2 iff ∀A ∈ X (o1.A = o2.A).

Definition 6 (Preference relation induced by p-expression)
The preference relation �π induced by a p-expression π is
defined as

1. if π is >Ai and Ai ∈ A ,

�π ≡ {(o,o′) | o,o′ ∈U . o.Ai >Ai o′.Ai},

and �π is also written as �Ai , and called an atomic pref-
erence relation,

2. for π = π1 & π2,

�π ≡ �π1 ∪ (≈Var(π1) ∩ �π2),

3. for π = π1 ⊗ π2,

�π ≡ (�π1 ∩ ≈Var(π2)) ∪ (�π2 ∩ ≈Var(π1)) ∪
(�π1 ∩ �π2),

where �π1 and �π2 are preference relations induced by the
p-expressions π1 and π2.

In the second case, we say that �π ≡ �π1 & �π2 and
in the third case, that �π ≡ �π1 ⊗ �π2 . We also refer to
the set of relevant attributes Var(π) of π as Var(�π). When
the context in clear, we may omit the subscript π and re-
fer to p-skyline relations as �,�1,�2, . . .. Note the differ-
ence between the attribute preference relation >A and the

tuple preference relation �A. However, the correspondence
between those two relations is straightforward.

The intuition behind Definition 6 is as follows. In the
first case, �Ai is the tuple preference relation corresponding
to the attribute preference relation >Ai . In the second case,
�π is composed of �π1 and �π2 a way that �π1 has higher
importance than �π2 : a tuple o is preferred to o′ according
to �π iff o is preferred to o′ according to �π1 (regardless of
�π2 ), or o and o′ are equal in all the relevant attributes of
�π1 and o is preferred to o′ according to �π2 . The opera-
tor & is called prioritized accumulation [Kießling(2002)].
Similarly, if π = π1 ⊗ π2, then �π1 and �π2 are con-
sidered to be equally important in �π. The operator ⊗ is
called Pareto accumulation [Kießling(2002)]. Some known
properties of the operators are summarized below.

Proposition 1 [Kießling(2002)] The operators ⊗ and &
are associative. The operator ⊗ is commutative.

Since accumulation operators are associative, we extend
them from binary to n-ary operators.

Proposition 2 [Kießling(2002)] A relation induced by a p-
expression is an SPO, i.e., a tuple preference relation.

Definition 7 (p-skyline relation) A p-skyline relation �π

is the relation induced by a p-expression π such that for all
subexpressions of π of the form π1 & π2 or π1 ⊗ π2:

– Var(π1)∩Var(π2) = /0;
– the relations induced by π1 and π2 are p-skyline rela-

tions.

A p-skyline relation �π induced by π is full iff Var(π) = A .

Essentially, p-skyline relations are induced by those p-
expressions in which every member of H is used at most
once (exactly once in the case of full p-skyline relations).
The set of all full p-skyline relations for H is denoted by
FH . Further we consider only full p-skyline relations.

A key property of p-skyline relations is that the skyline
preference relation skyH is the p-skyline relation induced by
the p-expression >A1 ⊗ . . . ⊗ >An . That is, the p-skyline
framework is an extension of the skyline framework.

3.1 Syntax trees

Dealing with p-skyline relations, it is natural to represent
the corresponding p-expressions as syntax trees. This rep-
resentation is used in Section 3.4 for constructing minimal
extensions of a p-skyline relation.

Definition 8 (Syntax tree) A syntax tree T�π
of a p-skyline

relation �π is an ordered rooted tree representing the p-
expression π.
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Every non-leaf node of the syntax tree is labeled with an
accumulation operator and corresponds to the result of ap-
plying the operator to the p-skyline relations represented by
its children, from left to right. Every leaf node of the syntax
tree is labeled with an attribute A ∈ A and corresponds to
the attribute preference relation >A ∈ H (and the atomic
preference relation �A).

Definition 9 (Normalized syntax tree) A syntax tree is nor-
malized iff each of its non-leaf nodes is labeled differently
from its parent.

Clearly, for every p-skyline relation, there is a normal-
ized syntax tree which may be constructed in polynomial
time in the size of the original tree. To do that, one needs to
find all occurrences of syntax tree nodes C1 and their chil-
dren C2 such that C1 and C2 have the same label. After that,
C2 has to be removed from the list of children of C1, and the
list of children of C2 has to be added to the list of children of
C1 in place of C2. The correctness of this procedure follows
from Proposition 1.

We note that a normalized syntax tree is not unique for
a p-skyline relation. That is due to the commutativity of ⊗
(Proposition 1).

Example 3 Let a p-skyline relation � 1 be defined as

� = (�A ⊗ (�B & �C)) ⊗ (�D & (�E ⊗ �F))

An unnormalized syntax tree of � is shown in Figure 1(a).
Two normalized syntax trees of� are shown in Figures 1(b)
and 1(c).

⊗

A &

B C

⊗

&

D ⊗

E F

(a) Unnormalized

⊗

A
&

B C

&

D ⊗

E F

(b) Normalized

⊗

A&

B C

&

D ⊗

EF

(c) Equivalent normalized
Fig. 1 Syntax trees of �

Every node of a syntax tree is itself a root of another
syntax tree. Let us associate with every node C of a syntax
tree the set Var(C) of attributes which are descendants of
C in the syntax tree or C itself (if it is a leaf). Essentially,
Var(C) corresponds to Var(πC) where πC is the p-expression
represented by the subtree with the root node C.

1 Strictly speaking, we should use attribute preference relations
from H , instead of atomic preference relations. However, due to the
close correspondence of the two kinds of relations, we abuse the nota-
tion a bit.

A B

C
(a) p-graph Γ�1

A B C

(b) p-graph Γ�2

Fig. 2 P-graphs from Example 4

3.2 Attribute importance in p-skyline relations

Recall that the p-skyline relations composed using & (resp.
⊗) have different (resp. equal) importance in the resulting
relation. However, the composed p-skyline relations do not
have to be atomic and may themselves be composed using &
or ⊗. The problem we discuss in this section is how to rep-
resent relative importance of attributes in different subtrees.
For this purpose, we define another graphical representation
of a p-skyline relation – the p-graph.

Definition 10 (p-graph) The p-graph Γ� of a p-skyline re-
lation � is a directed graph with the set of nodes N(Γ�) =
Var(�) and the set of edges E(Γ�):

– E(Γ�) = /0, if � is an atomic preference relation;
– E(Γ�) = E(Γ�1) ∪ E(Γ�2), if � = �1 ⊗ �2;
– E(Γ�) = E(Γ�1) ∪ E(Γ�2) ∪ (Var(�1)×Var(�2)), if
� = �1 & �2,

for two p-skyline relations �1 and �2.

A p-graph represents the attribute importance relation-
ships implicit in a p-skyline relation� in the following way:
an edge in E(Γ�) goes from a more important attribute to
a less important attribute. This follows from Definition 10:
if � = �1 ⊗ �2 (i.e., �1 and �2 are equally important in
�), then no new attribute importance relationships are added
to E(Γ�), and those which exist in E(Γ�1) and E(Γ�2) are
preserved in E(Γ�). Similarly, if�=�1 & �2, then the at-
tribute importance relationships in E(Γ�1) and E(Γ�2) are
preserved in E(Γ�), but new importance relationships are
added: every attribute relevant to �1 is more important than
every attribute relevant to �2.

Example 4 Take the p-skyline relations�1 and�2 as below.
Their p-graphs are shown in Figure 2.

�1 ≡ (�A ⊗ �B) & �C

�2 ≡ �A ⊗ �B ⊗ �C

In the previous section, we showed that the skyline re-
lation skyH is constructed as the Pareto accumulation of all
the members of H . Hence, the following holds.

Proposition 3 The p-graph ΓskyH of the skyline relation skyH
has the set of nodes N(ΓskyH ) = A and the set of edges
E(ΓskyH ) = /0.
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Theorem 1 shows that p-graphs indeed represent attribute
importance. According to the theorem, a p-skyline relation
can be decomposed into “dimensions” which are attribute
preference relations. This decomposition shows which at-
tribute preferences (resp. the corresponding attributes) are
less important than a given attribute preference (resp. the
corresponding attribute) in a preference relation.

Theorem 1 Every p-skyline relation � ∈ FH is equal to

� ≡ TC

(⋃
A∈A

qA

)
,

where

qA ≡ {(o1,o2) | o1.A >A o2.A}∩ ≈A−(ChΓ� (A)∪{A}) .

The relation qA may be viewed as a “projection” of the p-
skyline relation� to a “dimension” which is a preference re-
lation over A. Comparing tuples on the attribute A, one needs
to consider only the attributes A−(ChΓ�(A)∪{A}) The val-
ues of the remaining attributes ChΓ�(A) do not matter: those
attributes are less important than A. The relation �′ above
can also be viewed as a relaxed ceteris paribus preference
relation [Boutilier et al(2004)], for which attribute prefer-
ences are unconditioned on each other, and “everything else
being equal” is replaced with “A− (ChΓ�(A) ∪{A}) being
equal”.

Now let us take a closer look at the properties of p-
graphs. Since p-graphs represent attribute importance im-
plicit in p-skyline relations, there are some properties of im-
portance relationships that p-graphs are expected to have,
for example SPO. In particular:

– no attribute should be more important than itself (irreflex-
ivity), and

– if an attribute A is more important than an attribute B
which is more important than an attribute C, A is ex-
pected to be more important than C too (transitivity).

As Theorem 2 shows, a p-graph is indeed an SPO2. How-
ever, a graph needs to satisfy some additional properties in
order to be a p-graph of some p-skyline relation. Namely,
there is a requirement that the p-expression inducing the
p-skyline relation contain exactly one occurrence of each
member of H . This requirement is captured by the Envelope
property visualized in Figure 3: if a graph Γ has the three
bold edges, then it must have at least one dashed edge.

Theorem 2 (SPO+Envelope)
A directed graph Γ with the set of nodes A is a p-graph of
some p-skyline relation iff

2 The SPO properties of p-graphs should not be confused with the
SPO properties of the p-skyline relations. In the former case, we are
talking about ordering attributes; in the latter, about ordering tuples.

1. Γ is an SPO, and
2. Γ satisfies the Envelope property:

∀A,B,C,D ∈ A ,all different

(A,B) ∈ Γ∧ (C,D) ∈ Γ∧ (C,B) ∈ Γ⇒
(C,A) ∈ Γ∨ (A,D) ∈ Γ∨ (D,B) ∈ Γ

B D

A C

Fig. 3 The Envelope property

We showed above that a p-graph represents the attribute
importance induced by a p-skyline relation. Hence, the SPO
properties of a p-graph are quite intuitive – they capture the
rationality of the importance relationship. The Envelope
property of a p-graph is due to the fact that each attribute
preference relation can have only one occurrence in a p-
skyline p-expression. According to that property, if a graph
Γ has the three edges shown bold in Figure 3, then it must
have at least one dashed edge.

We note that so far we have introduced two graph nota-
tions for p-skyline relations: syntax trees and p-graphs. Al-
though these notations represent different concepts, there is
a correspondence between them (Proposition 4).

Proposition 4 (Syntax tree and p-graph correspondence)
Let A and B be leaf nodes in a normalized syntax tree T� of
a p-skyline relation � ∈ FH . Then (A,B) ∈ Γ� iff the least
common ancestor C of A and B in T� is labeled by & , and
A precedes B in the left-to-right tree traversal.

3.3 Properties of p-skyline relations

In this section, we show several fundamental properties of
p-skyline relations. These properties are used later to effi-
ciently perform essential operations on p-skyline relations:
checking equivalence and containment of relations and (tu-
ple) dominance testing. Before going further, we note that
p-skyline relations are representable as formulas constructed
from the corresponding p-expressions. So one can use such
formulas to perform the operations mentioned above. For
example, relation containment corresponds to formula im-
plication. However, we show below more direct ways of per-
forming the operations on p-skyline relations. The results
presented in this section are used in sections 3.4 and 4.

Recall Example 3, where we showed that a p-skyline re-
lation may have more than one syntax tree (and hence p-
expression) defining it. In contrast, as shown in the next the-
orem, the p-graph corresponding to a p-skyline relation is
unique.

Theorem 3 (p-graph uniqueness) Two p-skyline relations
�1, �2∈ FH are equal iff their p-graphs are identical.
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A1 A2 A3

(a) ΓskyH

A1 A2

A3

(b) Γ�1

A2 A3

A1

(c) Γ�2

A1 A2 A3

t1 2 1 0
t2 1 2 0
t3 1 0 2
t4 1 0 0

(d) r

Fig. 4 Containment of p-skyline relations

According to Theorem 3, to check equality of p-skyline
relations, one only needs to compare their p-graphs. As the
next theorem shows, containment of p-skyline relations may
be also checked using p-graphs.

Theorem 4 (p-skyline relation containment) For p-skyline
relations �1,�2 ∈ FH , �1 ⊂ �2 ⇔ E(Γ�1)⊂ E(Γ�2).

Theorem 4 implies an important result. Recall that in
Corollary 3 we showed that the edge set of the p-graph ΓskyH
of the skyline preference relation skyH is empty. Hence, the
following facts are implied by Theorem 4.

Corollary 1 For every relation instance r and p-skyline re-
lations �1, �2 ∈ FH , s.t. Γ�2 ⊂ Γ�1 , we have ω�1(r) ⊆
ω�2(r)⊆ ωskyH (r)

The importance of Corollary 1 is that for every p-skyline
relation, the winnow query result will always be contained
in the corresponding skyline. In real life, that means that if
user preferences are modeled as a p-skyline relation instead
of a skyline relation, the size of the query result will not be
larger than the size of the skyline, and may be smaller.

Example 5 Let A = {A1,A2,A3}, and for every attribute,
larger values are preferred. Consider the relations

skyH = �A1 ⊗ �A2 ⊗ �A3

�1 = (�A1 & �A3) ⊗ �A2

�2 = (�A2 & �A1) ⊗ �A3

whose p-graphs are shown in Figures 4(a), 4(b), and 4(c), re-
spectively. Theorems 4 and 3 imply that skyH ⊂�1, skyH ⊂
�2, �1 6⊆ �2, and �2 6⊆ �1. Take the relation instance r
shown in Figure 4(d). Then ωskyH (r) = {t1, t2, t3}, ω�1(r) =
{t1, t2}, and ω�2(r) = {t2, t3}.

In Theorem 5, we show how one can directly test tuple
dominance. The dominance is expressed in terms of con-
tainment constraints on attribute sets. This formulation is
essential for our approach to preference elicitation (Sec. 4).

Given two tuples o,o′ ∈ U, a p-skyline relation � and
its p-graph Γ�, let

– Di f f (o,o′) be the attributes in which o differs from o′:

Di f f (o,o′) = {A ∈ A | o1.A 6= o2.A},

A1

A2

A3

A4

A5

A6

A7

(a) Γ�

id A1 A2 A3 A4 A5 A6 A7

t1 1 1 1 1 1 1 1
t2 2 0 1 0 2 1 0
t3 2 0 1 0 1 2 0

(b) Tuples to compare

Fig. 5 Theorem 5 for dominance testing

– Top�(o,o′) be the topmost members of Di f f (o, o′):

Top�(o,o′) = {A | A ∈ Di f f (o,o′)∧
¬∃B ∈ Di f f (o,o′) (B ∈ PaΓ�(A)}),

– BetIn(o,o′) be the attributes in which o is better than o′:

BetIn(o1,o2) = {A ∈ A | o1.A >A o2.A}.

Theorem 5 (p-skyline dominance testing) Let o,o′ ∈ U
s.t. o 6= o′ and � ∈ FH . Then the following conditions are
equivalent:

1. o� o′;
2. BetIn(o,o′)⊇ Top�(o,o′);
3. ChΓ�(BetIn(o,o′))⊇ BetIn(o′,o).

Example 6 Let A = {A1, . . . ,A7}, and for every attribute,
larger values are preferred. Let a p-skyline relation � be
represented by the p-graph shown in Figure 5(a). Consider
the tuples t1, t2, t3 shown in Figure 5(b). BetIn(t1, t2) =
{A2,A4,A7}, BetIn(t2, t1) = {A1,A5}, Di f f (t1, t2) = {A1,

A2,A4,A5, A7}, and Top�(t1, t2) = {A1,A5}. Thus, t2 � t1,
t1 6� t2, BetIn(t1, t3)= {A2,A4,A7}, BetIn(t3, t1)= {A1,A6},
Di f f (t1, t3) = {A1, A2, A4, A6, A7}, and Top�(t1, t3) = {A1,

A4, A6}. So t3 6� t1 and t1 6� t3.

In Theorem 2, we showed that p-graphs satisfy SPO+
Envelope, where the property Envelopewas formulated
in terms of single p-graph nodes. However, it is often neces-
sary to deal with sets of nodes. The next theorem generalizes
the Envelope property to disjoint sets of nodes.

Theorem 6 (GeneralEnvelope) Let � be a p-skyline
relation with the p-graph Γ�, and A,B,C,D, disjoint node
sets of Γ�. Let the subgraphs of Γ� induced by those node
sets be singletons or unions of at least two disjoint sub-
graphs. Then

(A,B) ∈ Γ� ∧(C,D) ∈ Γ�∧ (C,B) ∈ Γ�⇒
(C,A) ∈ Γ�∨ (A,D) ∈ Γ�∨ (D,B) ∈ Γ�
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A1 A2 A3

A4 A5 A6
A7

Fig. 6 The GeneralEnvelope property
A1 A2 A3

A4 A5 A6
A7

Fig. 7 P-graph of a minimal p-extension for � from Example 7

Unlike Envelope which holds for every combination
of four different nodes, the property of GeneralEnve-
lope holds for node subsets of a special form. That form
is quite general. For instance, Var(�) induces disjoint sub-
graphs if � is defined as Pareto accumulation of p-skyline
relations. Theorem 6 is used in the following section.

Example 7 Let A = {A1, . . . ,A7}. Consider the p-graph Γ�
(Figure 6) of

�=((�A1 ⊗ �A2 ⊗ �A3) & (�A4 ⊗ �A5 ⊗ �A6))⊗ �A7

Let A = {A1}, B = {A4}, C = {A2,A3}, D = {A5,A6}. Then
the p-graph satisfies GeneralEnvelope because

(A,B) ∈ Γ�∧ (C,D) ∈ Γ�∧ (C,B) ∈ Γ�∧ (A,D) ∈ Γ�

3.4 Minimal extensions

We conclude this section by studying the notion of minimal
extension of a p-skyline relation. This notion is central for
our approach to preference elicitation (section 4). Intuitively,
we will construct a p-skyline relation that incorporates user
feedback using an iterative process that starts from the sky-
line relation and extends it repeatedly in a minimal way.

Definition 11 (p-extension) For a p-skyline relation � ∈
FH , a p-skyline relation �ext ∈ FH is a p-extension of � if
� ⊂ �ext . The p-extension �ext is minimal if there exists no
�′ ∈ FH such that � ⊂ �′ ⊂ �ext .

Theorem 4 implies that for every p-skyline relation �,
a p-extension �ext of �, if it exists, may be obtained by
constructing an extension Γ�ext of the p-graph Γ�. Hence,
the problem of constructing a minimal p-extension of a p-
skyline relation can be reduced to the problem of finding a
minimal set of edges that when added to Γ� form a graph
satisfying SPO+Envelope. However, it is not clear how to
find such a minimal set of edges efficiently: adding a sin-
gle edge to a graph may not be enough due to violation of
SPO+Envelope, as shown in the following example.

Example 8 Take the relation � from Example 7 (Figure 6),
and add the edge (A6,A7) to its p-graph. Then to preserve
SPO, we need to add the edges (A1, A7), (A2, A7), and (A3,

A7). The resulting graph satisfies SPO+Envelope. How-
ever, if instead of the edge (A6, A7), we add the edge (A3,

A7), then for preserving Envelope, it is enough to add (A1,

A7) and (A2, A7) (other extension possibilities exist too).
The resulting graph (Figure 7) satisfies SPO+Envelope.
The corresponding p-expression is

�′=(�A1 ⊗ �A2 ⊗ �A3) & (�A4 ⊗ �A5 ⊗ �A6 ⊗ �A7).

The method of constructing all minimal p-extensions we
propose in this paper operates directly on normalized p-ex-
pressions represented as syntax trees. In particular, we show
a set of transformation rules of syntax trees such that ev-
ery unique application of a rule from this set results in a
unique minimal p-extension of the original p-skyline rela-
tion. If all minimal p-extensions of a p-skyline relation are
needed, then one needs to apply to the syntax tree every rule
in every possible way.

The transformation rules are shown in Figure 9. On the
left hand side, we show a part of the syntax tree of an origi-
nal p-skyline relation. On the right hand side, we show how
this part is modified in the resulting relation. We assume that
the rest of the syntax tree is left unchanged. All the trans-
formation rules operate on two children Ci and Ci+1 of a
⊗ -node of the syntax tree. For simplicity, these nodes are
shown as consecutive children. However, in general Ci and
Ci+1 may be any pair of children nodes of the same ⊗ -node.
Their order is unimportant due to the commutativity of ⊗ .

Intuitively, Rule1 and Rule2 push the subtree Ci+1 of T�
down into the subtree Ci (denoted C′i in the resulting trees).
Rule3 replaces two nodes Ci and Ci+1 of R with the subtree
R′1, having Ci and Ci+1 as children. Rule4 results in redis-
tributing the subtrees of the trees Ci and Ci+1. Instead of Ci
and Ci+1, the resulting tree has two subtrees – R′1 and R′2 –
each of which has two branches combining the former sub-
trees of Ci and Ci+1.

Let us denote the original relation as � and the relation
obtained as the result of applying one of the transformation
rules as�ext . Observation 1 shows that all the rules only add
edges to the p-graph of the original preference relation and
hence extend the p-skyline relation.

Observation 1 If T�ext is obtained from T� using some of
Rule1, . . . , Rule4, then E(Γ�)⊂ E(Γ�ext ). Moreover,

– if T�ext is a result of Rule1(T�,Ci,Ci+1), then

E(Γ�ext ) =E(Γ�)∪{(X ,Y ) | X ∈Var(N1),Y ∈Var(Ci+1)}

– if T�ext is a result of Rule2(T�,Ci,Ci+1), then

E(Γ�ext ) =E(Γ�)∪{(X ,Y ) | X ∈Var(Ci+1),Y ∈Var(Nm)}

– if T�ext is a result of Rule3(T�,Ci,Ci+1), then

E(Γ�ext ) = E(Γ�)∪ (Ci,Ci+1)
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– if T�ext is a result of Rule4(T�,Ci,Ci+1,s, t) for s ∈ [1,
n−1], t ∈ [1,m−1], then E(Γ�ext ) = E(Γ�)∪

{(X ,Y ) | X ∈
⋃

p∈1...s

Var(Np),Y ∈
⋃

q∈t+1...n

Var(Mq)} ∪

{(X ,Y ) | X ∈
⋃

p∈1...t

Var(Mp),Y ∈
⋃

q∈s+1...m

Var(Nq)}

We note that every & - and ⊗ -node in a syntax tree
has to have at least two children nodes. This is because the
operators & and ⊗ must have at least two arguments.
However, as a result of a transformation rule application,
some & - and ⊗ -nodes may end up with only one child
node. These nodes are:

1. R′ if k = 2 for Rule1,Rule2,Rule3,Rule4;
2. R′2 if m = 2 for Rule1,Rule2;
3. R′3 or R′5 if s = 1 or s = m−1, respectively, for Rule4;
4. R′4 or R′6 if t = 1 or t = n−1, respectively, for Rule4.

In such cases, we remove the nodes with a single child
and connect the child directly to the parent (Figure 8).

Before single-child
node elimination

δ

N

After single-child
node elimination

N
Fig. 8 Single-child node elimination (δ ∈ { & , ⊗ })

Theorem 7 (minimal p-extension) Let � ∈ FH , and T�
be a normalized syntax tree of �. Then �ext is a minimal
p-extension of � iff the syntax tree T�ext of �ext is obtained
from T� by a single application of a rule from Rule1, . . . ,

Rule4, followed by a single-child node elimination if neces-
sary.

For instance, the minimal extension �′ for � from Ex-
ample 8 was computed by applying Rule1(T�, C1, C2), for
the tree C1 repsenenting (�A1 ⊗ �A2 ⊗ �A3) & (�A4

⊗ �A5 ⊗ �A6) and having two children: the subtrees N1
representing (�A1 ⊗ �A2 ⊗ �A3) and N2 representing
(�A4 ⊗ �A5 ⊗ �A6); and C2 representing �A7 .

Theorem 7 has two important corollaries describing prop-
erties of minimal p-extensions.

Corollary 2 For a p-skyline relation � with a normalized
syntax tree T�, a syntax tree T�ext of each of its minimal p-
extensions �ext may be constructed in time O(|A |).

In Corollary 2, we assume the adjacency-list representa-
tion of syntax trees. The total number of nodes in a tree is
linear in the number of its leaf nodes [Cormen et al(2001)],
which is |A |. Thus the number of edges in T� is O(|A |).
The transformation of T� using every rule requires remov-
ing O(|A |) and adding O(|A |) edges.

Original tree part

⊗

C1 . . .

&

Ci+1. . . Ck

N1. . .Nm

R

Ci

Transformed tree part

⊗

C1 . . .Ci−1 Ci+2. . . Ck

&

N1 ⊗

Ci+1&

Nm. . .N2

R′

C′i

R′1

R′2

(a) Rule1(T�,Ci,Ci+1)

Original tree part

⊗

C1 . . .

&

Ci+1. . . Ck

N1 . . .Nm

R

Ci

Transformed tree part

⊗

C1 . . .Ci−1 Ci+2. . . Ck

&

Nm⊗

Ci+1 &

Nm−1. . .N1

R′

C′i

R′1

R′2

(b) Rule2(T�,Ci,Ci+1)

Original tree part

⊗

C1 . . . Ci Ci+1 . . . Ck

R

Transformed tree part

⊗

C1 . . .Ci−1 Ci+2. . . Ck

&

Ci Ci+1

R′

R′1

(c) Rule3(T�,Ci,Ci+1)

Original tree part

⊗

C1 . . . . . . Ck

&

N1 . . . Nm

&

M1 . . . Mn

R

Ci Ci+1

Transformed tree part

⊗

C1 Ci−1. . . Ci+2 . . . Ck

&

⊗

& &

Ns+1. . . Nm Mt+1. . . Mn

⊗

&&

Mt. . .M1Ns. . .N1

R′

C′i

R′2R′1

R′3

R′4 R′5

R′6

(d) Rule4(T�,Ci,Ci+1,s, t)

Ci - leaf node

Ci - leaf or non-leaf node
Fig. 9 Syntax tree transformation rules

Corollary 3 For a p-skyline relation �, the number of its
minimal p-extensions is O(|A |4).

The justification for Corollary 3 is as follows. The set of
minimal-extension rules is complete due to Theorem 7. Ev-
ery rule operates on two nodes Ci and Ci+1 of the syntax tree.
Hence, the number of such node pairs is O(|A |2). Rule4 also
relies on some partitioning of the sequence of child nodes
of Ci and Ci+1. The total number of such partitionings is
O(|A |2). Thus, the total number of different rule applica-
tions is O(|A |4). Consequently, the number of minimal p-
extensions is polynomial in the number of attributes. This
differs from the number of all p-extensions of a p-skyline
relation, which is Ω(|A |!).

The last property related to p-extensions that we con-
sider here is as follows. By Theorem 4, a p-extension of a
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p-skyline relation is obtained by adding edges to its p-graph.
However, the total number of edges in a p-graph is at most
O(|A |2). Hence, the next Corollary holds.

Corollary 4 Let S be a sequence of p-skyline relations

�1, . . . ,�k ∈ FH

such that for every i ∈ [1,k−1], �i+1 is a p-extension of �i.
Then |S|= O(|A |2).

4 Elicitation of p-skyline relations

In Section 3, we proposed a class of preference relations
called p-skyline relations. In this section, we introduce a
method of constructing p-skyline relations based on user-
provided feedback.

4.1 Feedback-based elicitation

As we showed in the previous section, the p-skyline frame-
work is a generalization of the skyline framework. The main
difference between those frameworks is that in the p-skyline
framework one can express varying attribute importance. On
the other hand, one of the main distinguishing properties of
the skyline framework is the simplicity of representing pref-
erences. Namely, the user needs to provide only a set of at-
tribute preferences to specify a preference relation. For p-
skylines, an additional piece of information, the relative im-
portance of the attributes (in the form of, e.g., a p-graph or a
p-expression), has to be also provided by the user. But how
can relative attribute importance be specified? It seems im-
practical to ask the user to compare distinct attributes pair-
wise for importance: even though some relationships can be
deduced by transitivity, the number of comparisons may still
be too large. Another issue is even more serious: the users
themselves may be not fully aware of their own preferences.

In this section, we propose an alternative approach to
elicitation of attribute importance relationships, based on
user feedback. We use the following scenario. A fixed, finite
set of tuples is stored in a database relation O ⊆U. All the
tuples have the same set of attributes A . We assume that, in
addition to A , a corresponding set of attribute preference re-
lations H is given. The user partitions O into three disjoint
subsets: the set G of tuples she confidently likes (superior
examples), the set W of tuples she confidently dislikes (infe-
rior examples), and the set of remaining tuples about which
she is not sure. The output of our method is a p-skyline re-
lation � (with the set of relevant attributes A), according to
which all tuples in G are superior and all tuples in W are
inferior. A tuple o ∈ O is superior if O does not contain any
tuples preferred to o, according to �. A tuple o ∈ O is infe-
rior if there is at least one superior example in O, which is
preferred to o. The last assumption is justified by a general

principle that the user considers something bad because she
knows of a better alternative.

Formally: given A , H , O, G, and W , we want to con-
struct a p-expression inducing a p-skyline relation �∈ FH
such that

1. G ⊆ ω�(O), i.e., the tuples in G are among the most
preferred tuples in O, according to �, and

2. for every tuple o′ in W , there is a tuple o in G such that
o� o′, i.e., o′ is an inferior example.

Such a p-skyline relation � is called favoring G and disfa-
voring W in O. We may also skip “in O” when the context
is clear.

The first problem we consider is the existence of a p-
skyline relation favoring G and disfavoring W in O.

Problem DF-PSKYLINE. Given a set of attributes A ,
a set of attribute preference relations H , a set of superior
examples G and a set of inferior examples W in a set O, de-
termine if there exists a p-skyline relation � ∈ FH favoring
G and disfavoring W in O.

In most real life scenarios, knowing that a favoring/ dis-
favoring p-skyline relation exists is not sufficient. One needs
to know the contents of such a relation.

Problem FDF-PSKYLINE. Given a set of attributes A ,
a set of attribute preference relations H , a set of superior
examples G and a set of inferior examples W in a set O,
construct a p-skyline relation � ∈ FH favoring G and dis-
favoring W in O.

We notice that FDF-PSKYLINE is the functional ver-
sion [Papadimitriou(1994)] of DF-PSKYLINE. Namely, gi-
ven subsets G and W of O, an instance of FDF-PSKYLINE
outputs “no” if there is no �∈ FH favoring G and disfavor-
ing W in O. Otherwise, it outputs some p-skyline relation
�∈ FH favoring G and disfavoring W in O.

Example 9 Let the set O consist of the following tuples de-
scribing cars for sale:

make price year
t1 ford 30k 2007
t2 bmw 45k 2008
t3 kia 20k 2007
t4 ford 40k 2008
t5 bmw 50k 2006

Assume also Mary wants to buy a car and her prefer-
ences over automobile attributes are as follows.

>make: BMW is better than Ford, Ford is better than Kia.
>year: higher values of year are preferred.
>price: lower values of price are preferred.

Let G = {t4}, W = {t3}. We elicit a p-skyline relation
� favoring G and disfavoring W . First, >make cannot be
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more important than all other attribute preferences, since
then t2 and t5 dominate t4 and thus t4 is not superior. More-
over, >price cannot be more important than the other at-
tribute preferences, because then t3 and t1 dominate t4. How-
ever, if >year is more important than the other attribute pref-
erences, then t4 dominates t1, t3, t5 and t2 does not dominate
t4 in >year. At the same time, both t2 and t4 are the best ac-
cording to >year, but t2 dominates t4 in >make. Therefore,
>make should not be more important than >price. Thus, for
example, the p-skyline relation 3 �1 = �year & (�price
⊗ �make) favors G and disfavors W in O. The set of the
best tuples in O according to �1 is {t2, t4}.

Generally, there may be zero, one or more p-skyline re-
lations favoring G and disfavoring W in O. When more than
one such relation exists, we pick a maximal one (in the set-
theoretic sense). Larger preference relations imply more dom-
inated tuples and fewer most preferred ones. Consequently,
the result of ω�(O) is likely to get more manageable due to
its decreasing size. Moreover, maximizing� corresponds to
minimizing ω�(O)−G, which implies more precise corre-
spondence of � to the real user preferences. Thus, the next
problem considered here is constructing maximal p-skyline
relations favoring G and disfavoring W .

Problem OPT-FDF-PSKYLINE. Given a set of attributes
A , a set of attribute preference relations H , a sets of supe-
rior examples G and a set of inferior examples W in a set O,
construct a maximal p-skyline relation � ∈ FH favoring G
and disfavoring W in O.

Example 10 Take G, W , and �1 from Example 9. Note that
to make t4 dominate t2, we need to make price more impor-
tant than year. As a result, the relation

�2 = �year & �price & �make

also favors G and disfavors W in O but the set of best tuples
in O according to �2 is {t4}. Moreover, �2 is maximal. The
justification is that no other p-skyline relation favoring G
and disfavoring W contains �2 since the p-graph of �2 is a
total order of the attributes {year, price,make} and thus �2
is a maximal SPO.

Even though the notion of maximal favoring/disfavoring
reduces the space of alternative p-skyline relations, there
may still be more than one maximal favoring/disfavoring p-
skyline relation, given A , H , G, W , and O.

4.2 Negative and positive constraints

We formalize now the kind of reasoning from Examples 9
and 10 using constraints on attribute sets. The constraints

3 Here we again replace attribute preference relations by atomic
preference relations.

guarantee that the constructed p-skyline relation favors G
and disfavors W in O.

Consider the notion of favoring G in O first. For a tuple
o′ ∈ G to be in the set of the most preferred tuples of O, o′

must not be dominated by any tuple in O. That is,

∀o ∈ O,o′ ∈ G (o 6� o′) (1)

Using Theorem 5, we can rewrite (1) as

∀o ∈ O,o′ ∈ G (ChΓ�(BetIn(o,o′)) 6⊇ BetIn(o′,o)), (2)

where BetIn(o1,o2) = {A∈A | o1.A >A o2.A}. Note that no
tuple can be preferred to itself by irreflexivity of �. Thus, a
p-skyline relation favoring G in O should satisfy (|O|−1) ·
|G| negative constraints τ in the form:

τ : ChΓ�(Lτ) 6⊇ Rτ

where Lτ = BetIn(o,o′),Rτ = BetIn(o′,o). We denote this
set of constraints as N (G,O).

Example 11 Take Example 9. Then some p-skyline relation
�∈ FH favoring G = {t3} in O has to satisfy each negative
constraint below

t1 6� t3 ChΓ�({make}) 6⊇ {price}
t2 6� t3 ChΓ�({make,year}) 6⊇ {price}
t4 6� t3 ChΓ�({make,year}) 6⊇ {price}
t5 6� t3 ChΓ�({make}) 6⊇ {price,year}

Now consider the notion of disfavoring W in O. Accord-
ing to the definition, a p-skyline relation � favoring G dis-
favors W in O iff the following holds

∀o′ ∈W ∃o ∈ G (o� o′). (3)

Following Theorem 5, it can be rewritten as a set of positive
constraints P (W,G)

∀o′ ∈W
∨

oi∈G

ChΓ�(BetIn(oi,o′))⊇ BetIn(o′,oi). (4)

Therefore, in order for � to disfavor W in O, it has to
satisfy |W | positive constraints.

Example 12 Take Example 9. Then every p-skyline relation
� ∈ FH favoring G = {t1, t3} and disfavoring W = {t4} in
O has to satisfy the constraint (t1 � t4 ∨ t3 � t4), which is
equivalent to the following positive constraint

ChΓ�({price})⊇ {year}∨ChΓ�({price})⊇ {year,make},

which in turn is equivalent to

ChΓ�({price})⊇ {year,make}.
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Notice that positive and negative constraints are formu-
lated in terms of relative importance of the attributes cap-
tured by the p-graph of the constructed p-skyline relation.
Since p-skyline relations are uniquely identified by p-graphs
(Theorem 3), we may refer to a p-skyline relation satisfy-
ing/not satisfying a system of positive/negative constraints.
Formally, a p-skyline relation satisfies a system of (positive
or negative) constraints iff it satisfies every constraint in the
system.

Let us summarize the kinds of constraints we have con-
sidered so far. To construct a p-skyline relation � favoring
G and disfavoring W in O, we need to construct a p-graph
Γ� that satisfies SPO+Envelope to guarantee that � be a
p-skyline relation, N (G,O) to guarantee favoring G in O,
and P (W,G) to guarantee disfavoring W in O. By Theorem
4, the p-graph of a maximal � is maximal among all graphs
satisfying SPO+Envelope, N (G,O), and P (W,G).

4.3 Using superior and inferior examples

In this section, we study the computational complexity of the
problems of existence of a favoring/disfavoring p-skyline re-
lation and of constructing a favoring/disfavoring p-skyline
relation.

Theorem 8 DF-PSKYLINE is NP-complete.

Now consider the problems of constructing favoring/dis-
favoring p-skyline relations. First, we consider the problem
of constructing some p-skyline relation favoring G and disfa-
voring W in O. Afterwards we address the problem of con-
structing a maximal p-skyline relation. The results shown
below are based on the following proposition.

Proposition 5 Let � be a p-skyline relation, O a finite set
of tuples, and G and W disjoint subsets of O. Then the next
two operations can be done in polynomial time:

1. verifying if � is maximal favoring G and disfavoring W
in O;

2. constructing a maximal p-skyline relation �ext that fa-
vors G and disfavors W in O, and is a p-extension of �
favoring G and disfavoring W in O.

Theorem 9 FDF-PSKYLINE is FNP-complete

Surprisingly, the problem of constructing a maximal fa-
voring/disfavoring p-skyline relation is not harder then the
problem of constructing some favoring/disfavoring p-skyline
relation.

Theorem 10 OPT-FDF-PSKYLINE is FNP-complete

4.4 Using only superior examples

In view of Theorems 8, 9, and 10, we consider now restricted
versions of the favoring/disfavoring p-skyline relation prob-
lems, where we assume no inferior examples (W = /0). De-
note as DF+-PSKYLINE, FDF+-PSKYLINE, and OPT-
FDF+-PSKYLINE the subclasses of DF-PSKYLINE, FDF-
PSKYLINE, and OPT-FDF-PSKYLINE in which the sets
of inferior examples W are empty. We show now that these
problems are easier than their general counterparts: they can
all be solved in polynomial time.

Consider DF+-PSKYLINE first. We showed in Corol-
lary 1 that the set of the best objects according to the skyline
preference relation is the largest among all p-skyline rela-
tions. Hence, the next proposition holds.
Proposition 6 There exists a p-skyline relation � ∈ FH fa-
voring G in O iff G⊆ ωskyH (O).

Proposition 6 implies that to solve DF+-PSKYLINE,
one needs to run a skyline algorithm over O and check if
the result contains G. This clearly can be done in polyno-
mial time.

FDF+-PSKYLINE can also be solved in polynomial time:
if G⊆ ωskyH (O), then skyH is a relation favoring G and dis-
favoring W in O. Otherwise, there is no such a relation.

Now consider OPT-FDF+-PSKYLINE. To specify a p-
skyline relation � favoring G in O, we need to construct
the corresponding graph Γ� which satisfies N (G,O) and
SPO+Envelope. Furthermore, to make the relation�max-
imal favoring G in O, Γ� has to be a maximal graph satis-
fying these constraints. In the next section, we present an
algorithm for constructing maximal p-skyline relations.

4.4.1 Syntax tree transformation

Our approach to constructing maximal favoring p-skyline
relations favoring G is based on iterative transformations
of normalized syntax trees. We assume that the provided
set of superior examples G satisfies Proposition 6, i.e., G ⊆
ωskyH (O). The idea beyond our approach is as follows. First,
we generate the set of negative constraints N (G,O). The p-
skyline relation we start with is skyH since it is the least
p-skyline relation favoring G in O. In every iteration of the
algorithm, we pick an attribute preference relation in H and
apply a fixed set of transformation rules to the syntax tree
of the current p-skyline relation. As a result, we obtain a
“locally maximal” p-skyline relation satisfying the given set
N (G,O) of negative constraints. Recall that a negative con-
straint in N (G,O) represents the requirement that no tuple
in G is dominated by a tuple in O. Eventually, this technique
produces a maximal p-skyline relation satisfying N (G,O).

Let us describe what we mean by “locally maximal”.

Definition 12 Let M be a nonempty subset of A . A p-skyline
relation � ∈ FH that favors G in O such that E(Γ�) ⊆
M×M is M-favoring G in O.
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We note that, similarly to a maximal favoring p-skyline
relation, a maximal M-favoring p-skyline relation is often
not unique for given G, O, and M.

id A1 A2 A3 A4

t1 0 0 0 0
t2 1 0 −1 0
t3 −1 1 −1 0
t4 1 0 1 −1

(a) Set of tuples O

L R
τ1 {A1} {A3}
τ2 {A2} {A1,A3}
τ3 {A1,A3} {A4}

(b) Negative constraints
N (G,O)

A1

A2

A3

A4

(c) maximal
M-favoring
p-skyline
relation

Fig. 10 Example 13

Example 13 Let A = {A1,A2,A3,A4} and H = {>A1 , >A2 ,

>A3 ,>A4}, where a greater value of the corresponding at-
tribute is preferred, according to every >Ai . Let the set of
objects O be as shown in Figure 10(a) and G = {t1}. Then
the set of negative constraints N (G,O) is shown in Figure
10(b): τ1,τ2,τ3 represent t2 6� t1, t3 6� t1, and t4 6� t1, resp.
Consider the p-skyline relation� represented by the p-graph
Γ� shown in Figure 10(c). It is a maximal {A1, A2, A3}-
favoring relation because: 1) all the edges of Γ� go between
the nodes {A1, A2, A3}, 2) Γ� satisfies all the constraints in
N (G,O) and 3) every additional edge from one attribute to
another attribute in {A1,A2,A3} violates N (G,O). In par-
ticular, the edge (A1,A3) violates τ1 and the edge (A2,A1)

violates τ2. Every other edge between A1, A2 and A3 induces
one of the two edges above.

At the same time,� is not a maximal A-favoring relation
because, for example, the edge (A4,A1) may be added to Γ�
without violating N (G,O).

By Definition 12, the edge set of the p-graph of every
maximal M-favoring relation is maximal among all the p-
graphs of M-favoring relations. Note that if M is a singleton,
the edge set of a p-graph Γ� of a maximal M-favoring rela-
tion � is empty, i.e., �= skyH . If M = A , then a maximal
p-skyline relation M-favoring G in O is also a maximal p-
skyline relation favoring G in O. Thus, if we had a method
of transforming a maximal M-favoring p-skyline relation to
a maximal (M∪{A})-favoring p-skyline relation for each at-
tribute A, we could construct a maximal favoring p-skyline
relation iteratively. A useful property of such a transforma-
tion process is shown in the next proposition.

Proposition 7 Let a relation � ∈ FH be a maximal M-fa-
voring relation, and a p-extension �ext of � be (M∪{A})-
favoring. Then every edge in E(Γ�ext )− E(Γ�) starts or
ends in A.

Example 14 Consider N (G,O) from Example 13 (also de-
picted in Figure 11(a)), and the maximal {A1,A2,A3}-favoring

L R
τ1 {A1} {A3}
τ2 {A2} {A1,A3}
τ3 {A1,A3} {A4}

(a) Negative constraints
N (G,O)

A1

A2

A3

A4

(b) Γ�1

A1

A2

A3

A4

(c) Γ�2

Fig. 11 Example 14

relation �. Several different maximal A-favoring p-skyline
relations containing � exist. Two of them are �1 and �2
whose p-graphs are shown in Figures 11(b) and 11(c).

�{A}= sky

�{A,B}

�{A,B,C}

�{A,B,C,D}

Fig. 12 A path to a maximal A-favoring p-skyline relation. The path
starts from the maximal singleton-favoring p-skyline relation: the sky-
line relation. Every step is a minimal p-extension. The path goes
through maximal M-favoring p-skyline relations (�{A},�{A,B}, . . .) for
incrementally increasing M. The path ends with a maximal M-favoring
p-skyline relation for M = A .

In section 3.4, we showed four syntax tree transforma-
tion rules , Rule1 – Rule4, for extending p-skyline relations
in a minimal way. Although a maximal (M∪{A})-favoring
p-skyline relation is a p-extension of a maximal M-favoring
p-skyline relation, it is not necessary a minimal p-extension
in general. However, an important property of the rule set is
its completeness, i.e., every minimal p-extension can be con-
structed using them. Hence, a maximal (M∪{A})-favoring
p-skyline relation can be produced from a maximal M-favo-
ring p-skyline relation by iterative application of the mini-
mal extension rules. This process is illustrated by Figure 12.

We use the following idea for constructing maximal (M∪
{A})-favoring relations. We start with a maximal M-favoring
p-skyline relation �0 and apply the transformation rules to
T�0 in every possible way guaranteeing that the new edges
in the p-graph go only from or to A. In other words, we con-
struct all minimal (M ∪{A})-favoring p-extensions of �0.
We construct such p-extensions until we find the first one
which does not violate N (G,O). When we find it (denote it
as�1), we repeat all the steps above but for�1. This process
continues until for some �m, every of its constructed mini-
mal p-extension violates N (G,O). Since in every iteration
we construct all minimal (M∪{A})-favoring p-extensions,
�m is a maximal (M∪{A})-favoring p-extension of �0.

There is subtle point here. We can limit ourselves to min-
imal p-extensions because if a minimal p-extension violates
N (G,O), so do all non-minimal p-extensions containing it.
Also, if there exists a p-extension satisfying N (G,O), so
does some minimal one. In fact, each p-extension of a p-
skyline relation can be obtained through a finite sequence of
minimal p-extensions. Those properties are characteristic of
negative constraints. The properties do not hold for positive
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constraints and thus our approach cannot be directly gener-
alized to such constraints.

An important condition to apply Theorem 7 is that the
input syntax tree for every transformation rule be normal-
ized. At the same time, syntax trees returned by the transfor-
mation rules are not guaranteed to be normalized. Therefore,
we need to normalize a tree before applying transformation
rules to it.

Consider the rules Rule1 – Rule4 which can be used to
construct an (M∪{A})-favoring p-skyline relation from an
M-favoring one. By Proposition 7, such rules may only add
to the p-graph the edges that go to A or from A. Accord-
ing to Observation 1, Rule1 adds edges going to the node A
if Ci+1 = A or N1 = A. Similarly, Rule2 adds edges going
from A if Ci+1 = A or Nm = A. Rule3 adds edges going from
or to A if Ci = A or Ci+1 = A correspondingly. However,
Rule4 can only be applied to a pair of & -nodes. Hence, as
we showed in section 3.4, Rule4 adds edges going from at
least two nodes to at least two different nodes of a p-graph.
Hence, every application of Rule4 violates Proposition 7. We
conclude that Rule1,Rule2, and Rule3 are sufficient to con-
struct every maximal (M∪{A})-favoring p-skyline relation.

4.4.2 Efficient constraint checking

Before going into the details of the algorithm of p-skyline
relation elicitation, we consider an important step of the al-
gorithm: testing if a p-extension of a p-skyline relation sat-
isfies a set of negative constraints. We propose now an effi-
cient method for this task.

Recall that a negative constraint is of the form

τ : ChΓ�(Lτ) 6⊇ Rτ.

It can be visualized as two layers of nodes Lτ and Rτ. For a
p-skyline relation � ∈ FH satisfying τ, its p-graph Γ� may
contain edges going between the nodes of the layers Lτ and
Rτ. However, in order for � to satisfy τ, there should be at
least one member of Rτ with no incoming edges from Lτ.

The method of efficient checking of negative constraints
against a p-graph that we propose here is based on the fact
that the edge set of the p-graph of a transformed p-skyline
relation monotonically increases. Therefore, while we trans-
form a p-skyline relation �, we can simply drop the ele-
ments of Rτ which already have incoming edges from Lτ. If
we do so after every transformation of the p-skyline relation
�, the negative constraint τ will be violated by Γ� only if Rτ

is empty. The next proposition says that such a modification
of negative constraints is valid.

Proposition 8 Let a relation � ∈ FH satisfy a system of
negative constraints N . Construct the system of negative
constraints N ′ from N in which every constraint τ′ ∈ N ′

is created from a constraint τ of N in the following way:

– Lτ′ = Lτ

– Rτ′ = Rτ−{B ∈ Rτ | ∃A ∈ Lτ ((A,B) ∈ Γ�})

Then every p-extension �′ of � satisfies N iff �′ satisfies
N ′.

A constraint τ′ constructed from τ as shown in Proposi-
tion 8 is called a minimal negative constraint w.r.t. �. The
corresponding system of negative constraints N ′ is called a
system of minimal negative constraints w.r.t. �.

Minimization of a system of negative constraints is illus-
trated in the next example.

L R
τ1 {A1} {A3}
τ2 {A2} {A1,A3}
τ3 {A1,A3} {A4}

(a) Original system of nega-
tive constraints N

A1

A2

A3

A4

(b) Maximal
M-favoring
p-skyline
relation

L R
τ′1 {A1} {A3}
τ′2 {A2} {A1}
τ′3 {A1,A3} {A4}

(c) System of minimal
negative constraints N ′

Fig. 13 Example 15

Example 15 Consider the system of negative constraints N
and the p-skyline relation � from Example 13 (they are
shown in Figures 13(a) and 13(b) correspondingly). The re-
sult N ′ of minimization of N w.r.t � is shown in Figure
13(c). Only the constraint τ′2 is different from τ2 because
(A2,A3) ∈ Γ� and A2 ∈ Lτ2 , A3 ∈ Rτ2 .

The next proposition summarizes the constraint check-
ing rules over a system of minimal negative constraints.

Proposition 9 Let a relation � ∈ FH satisfy a system of
negative constraints N , and N be minimal w.r.t. �. Let
�′ be a p-extension of � such that every edge in E(Γ�′)−
E(Γ�) starts or ends in A. Denote the new parents and chil-
dren of A in Γ�′ as PA and CA correspondingly. Then �′
violates N iff there is a constraint τ ∈N such that

1. Rτ = {A}∧PA∩Lτ 6= /0, or
2. A ∈ Lτ∧Rτ ⊆CA

Proposition 9 is illustrated in the next example.

Example 16 Take the system of minimal negative constraints
N ′ w.r.t.� from Example 15. Construct a p-extension�′ of
� such that every edge in E(Γ�′)−E(Γ�) starts or ends in
A4. Consider possible edges going to A4. Use Proposition 9
to check if a new edge violates N ′. The edge (A1,A4) is not
allowed in Γ�′ because then A1 ∈ Lτ′3

and {A4} = Rτ′3
(and

thus the constraint τ′3 is violated). The edge (A3,A4) is not
allowed in Γ�′ because A3 ∈ Lτ′3

and {A4}= Rτ′3
. However,

the edge (A2,A4) is allowed in Γ�′ . The p-graph of the re-
sulting �′ is shown in Figure 14. One can analyze the edges
going from A4 in a similar fashion.
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A1

A2

A3

A4

Fig. 14 Γ�′ from Example 16

4.4.3 p-skyline elicitation

In this section, we show an algorithm for p-skyline relation
elicitation which exploits the ideas developed in the previous
sections.

The function elicit (Algorithm 1) is the main func-
tion of the algorithm. It takes four arguments: the set of su-
perior examples G, the entire set of tuples O, the set of at-
tribute preferences H , and the set of all relevant attributes A .
It returns a normalized syntax tree of a maximal p-skyline
relation favoring G in O. Following Proposition 6, we re-
quire G to be a subset of ωskyH (O). First, we construct the
set of negative constraints N for the superior tuples G. We
start with skyH as the initial p-skyline relation favoring G
in O. After that, we take the set M consisting of a single at-
tribute. In every iteration, we enlarge it and construct a max-
imal M-favoring p-skyline relation. As a result, the function
returns a maximal p-skyline relation favoring G in O. The
construction of a maximal (M∪{A})-favoring relation from
a maximal M-favoring relation is performed in the repeat/
until loop (lines 5-8). Here we use the function push
which constructs a minimal (M∪{A})-favoring p-extension
of the relation represented by the syntax tree T . It returns
true if T has been (minimally) extended to a relation not vio-
lating N , and further p-extensions are feasible (though they
may still violate N ). Otherwise, it returns f alse. The syntax
tree T passed to push has to be normalized. Hence, after
extending the relation, we normalize its syntax tree (line 7)
using the normalization procedure sketched in Section 3.1.
The repeat/until loop terminates when all minimal ex-
tensions of T violate N .

Algorithm 1 elicit(G, O, H , A)
Require: G⊆ ωskyH (O)
1: N = N (G,O)
2: T = a normalized syntax tree of skyH
3: M = set containing an arbitrary attribute from A
4: for each attribute A in A−M do
5: repeat
6: r = push(T , M, A, N );
7: normalizeTree(root of T );
8: until r is false
9: M = M∪{A}

10: end for
11: return T

Let us now take a closer look at the function push (Al-
gorithm 2). It takes four arguments: a set M of attributes,

a normalized syntax tree T of an M-favoring p-skyline re-
lation �, the current attribute A, and a system of negative
constraints N minimal w.r.t. �. It returns true if a trans-
formation rule q ∈ {Rule1,Rule2,Rule3} has been applied
to T without violating N , and f alse if no transformation
rule can be applied to T without violating N . When push
returns true, N and T have been changed. Now N is mini-
mal w.r.t. the p-skyline relation represented by the modified
syntax tree, and T has been modified by the rule q and is
normalized.

The goal of push is to find an appropriate transforma-
tion rule which adds to the current p-graph edges going from
M to A or vice versa. The function has two branches: the first
for the parent of the node A in the syntax tree T being a & -
node (i.e., we may apply Rule1 where N1 is A or Rule2 where
Nm is A), and the second for it being ⊗ -node (i.e., we may
apply Rule1 or Rule2 where Ci+1 is A, or Rule3 where Ci or
Ci+1 is A). In the first branch (line 2-14), we distinguish be-
tween applying Rule1 (line 3-8) and Rule2 (line 9-14). It is
easy to notice that, with the parameters specified above, the
rules are exclusive, but the application patterns are similar.
First, we find an appropriate child Ci+1 of R (lines 4 and 10).
(It is important for Var(Ci+1) to be a subset of M because we
want to add edges going from M to A or from A to M.) Then
we check if the corresponding rule application does not vio-
late N using the function checkConstr (lines 5 and 11),
as per Proposition 9. If the rule application does not violate
N , we apply the corresponding rule to T (lines 6 and 12)
and minimize N w.r.t. the p-skyline relation which is the re-
sult of the transformation (Proposition 8) using the function
minimize.

The second branch of push is similar to the first one
and different only in the transformation rules applied. So it
is easy to notice that push checks every possible rule appli-
cation not violating N , and adds to the p-graph only edges
going from A to the elements of M or vice versa.

In our implementation of the algorithm, all sets of at-
tributes are represented as bitmaps of fixed size |A |. Simi-
larly, every negative constraint τ is represented as a pair of
bitmaps corresponding to Lτ and Rτ. With every node Ci of
the syntax tree, we associate a variable storing Var(Ci). Its
value is updated whenever the children list of Ci is changed.

Theorem 11 The function elicit returns a syntax tree of
a maximal p-skyline relation favoring G in O. Its running
time is O(|N | · |A |3).

The order in which the attributes are selected and added
to M in elicit is arbitrary. Moreover, the order of rule
application in push may be also changed. That is, we cur-
rently try to apply Rule1 (line 21) first and Rule2 (line 25)
afterwards. However, one can apply the rules in the opposite
order. The same observation applies to Rule3(T,A,Ci) and
Rule3(T,Ci,A) (lines 30 and 34, respectively). If the algo-
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Algorithm 2 push(T , M, A, N )
Require: T is normalized
1: if the parent of A in T is of type &
2: Ci← parent of A in T ; R← parent of Ci in T ;
3: if R is defined, and A is the first child of Ci
4: for each child Ci+1 of R s.t. Var(Ci+1)⊆M
5: if checkConstr(N , A, /0, Var(Ci+1))
6: apply Rule1(T,Ci,Ci+1)
7: N ← minimize(N ,Var(A),Var(Ci+1))
8: return true
9: else if R is defined, and A is the last child of Ci

10: for each child Ci+1 of R s.t. Var(Ci+1)⊆M
11: if checkConstr(N , A, Var(Ci+1), /0)
12: apply Rule2(T,Ci,Ci+1)
13: N ← minimize(N ,Var(Ci+1),Var(A))
14: return true
15: else // the parent of A in T is of type ⊗
16: R← parent of A in T ;
17: for each child Ci of R s.t. Var(Ci)⊆M
18: if Ci is of type &
19: N1← first child of Ci, Nm← last child of Ci
20: if checkConstr(N , A, Var(N1), /0)
21: apply Rule1(T,Ci,A)
22: N ←minimize(N , Var(N1), Var(A))
23: return true
24: else if checkConstr(N , A, /0, Var(Nm))
25: apply Rule2(T,Ci,A)
26: N ← minimize(N , Var(A), Var(Nm))
27: return true
28: else // Ci is a leaf node, since T is normalized
29: if checkConstr(N , A, Var(Ci), /0)
30: apply Rule3(T,Ci,A)
31: N ←minimize(N , Var(Ci), Var(A))
32: return true
33: else if checkConstr(N , A, /0, Var(Ci)
34: apply Rule3(T,A,Ci)
35: N ←minimize(N , Var(A), Var(Ci))
36: return true
37: return f alse

Algorithm 3 checkConstr(N , A, PA, CA)
for each τ ∈N do

if Rτ = {A}∧PA∩Lτ 6= /0 or A ∈ Lτ∧Rτ ⊆CA then
return f alse

end if
end for
return true

Algorithm 4 minimize(N , U , D)
1: for each constraint τ in N do
2: if U ∩Lτ 6= /0 then
3: Rτ← Rτ−D
4: end if
5: end for
6: return N

rithm is changed along those lines, the generated p-skyline
relation may be different. However, even if the p-skyline re-
lation is different, it will still be a maximal p-skyline relation
favoring G in O. Note also that due to the symmetry of ⊗ ,
the order of children nodes of a ⊗ -node may be different

in normalized p-skyline trees of equivalent p-skyline rela-
tions. Hence, the order in which the leaf nodes are stored in
the normalized syntax tree of skyH (line 2 of elicit) also
affects the resulting p-skyline relation.

τ1 : t1 6� t3 ChΓ� ({make}) 6⊇ {price}
τ2 : t2 6� t3 ChΓ� ({make,year}) 6⊇ {price}
τ3 : t4 6� t3 ChΓ� ({make,year}) 6⊇ {price}
τ4 : t5 6� t3 ChΓ� ({make}) 6⊇ {price,year}

(a)

⊗

price make year

(b)

⊗

& year

price make

(c)

&

⊗price

make year

(d)

&

price yearmake

(e)

Fig. 15 Example 17

Example 17 Take O and H from Example 9, and G from
Example 11. Then the corresponding system of negative con-
straints N = N (G,O) (Example 11) is shown in Figure
15(a). Consider the attributes in the following order: make,
price, year. Run elicit. The tree T (line 2) is shown
in Figure 15(b). The initial value of M is {make}. First,
call push(T, {make}, price,N ). The parent of price is a ⊗-
node (Figure 15(b)), so we go to line 16 of push, where
R is set to the ⊗-node (Figure 15(b)). After Ci is set to
the node make in line 17, we go to line 29 because it is
a leaf node. The checkConstr test in line 29 fails be-
cause N prohibits the edge (make, price). Hence, we go to
line 33 where the checkConstr test succeeds. We ap-
ply Rule3(T, price,Ci), push returns true, and the result-
ing syntax tree T is shown in Figure 15(c). Next time we
call push(T,{make}, price,N ) in the line 6 of elicit,
we get to the line 4 of push. Since year 6∈ M, we imme-
diately go to line 37 and return f alse. In elicit M is
set to {make,price} and push(T,{make,price},year,N ) is
called. There we go to line 16 (R is set to the ⊗-node in
Figure 15(c)), Ci is set to the &-node (Figure 15(c)), we
apply Rule1(T,Ci,year) (the resulting tree T is shown in
Figure 15(d)), and true is returned. When push(T,{make,
price},year,N ) is called the next time, we first go to line
16, R is set to the ⊗-node (Figure 15(d)), and Ci to the node
make. Then Rule3(T,Ci,year) is applied (line 30) resulting
in the tree T shown in Figure 15(e), and true is returned.
Now push(T,{make,price},year,N ) gets called once again
from elicit and returns f alse; and thus the tree in Fig-
ure 15(e) is the final one. According to the corresponding
p-skyline relation, t3 dominates all other tuples in O.

The final p-skyline relation constructed in Example 17
is a prioritized accumulation of all the attribute preference
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relations. This is because N effectively contained only one
constraint (all constraints are implied by τ2, as shown be-
low). When more constraints are involved, an elicited p-
skyline relation may also have occurrences of ⊗.

4.5 Reducing the size of systems of negative constraints

As we showed in Theorem 11, the running time of the func-
tion elicit linearly depends on the size of the system of
negative constraints N . If N = N (G,O), then N contains
(|O| − 1) · |G| constraints. A natural question which arises
here is whether we really need all the constraints in N to
elicit a maximal p-skyline relation satisfying N . In particu-
lar, can we replace N with an equivalent subset of N ?

We define equivalence of systems of negative constraints
in a natural way.

Definition 13 Given two systems of negative constraints N1
and N2, and two negative constraints τ1, τ2:

– N1 (resp. τ1) implies N2 (resp. τ2) iff every �∈ FH sat-
isfying N1 (resp. τ1) also satisfies N2 (resp. τ2);

– N1 (resp. τ1) strictly implies N2 (resp. τ2) iff every �∈
FH satisfying N1 (resp. τ1) also satisfies N2 (resp. τ2),
but N2 (resp. τ2) does not imply N1 (resp. τ1);

– N1 (resp. τ1) is equivalent to N2 (resp. τ2) iff N1 (resp.
τ1) implies N2 (resp. τ2) and vice versa.

In particular, a subset of N (G,O) from Example 17 that
is equivalent to N (G,O) is N ′ = {τ2}: first, N ′ clearly im-
plies N (G,O); second, {τ3} is trivially implied by {τ2},
{τ1} is implied by {τ2} (if price is not a child of either make
or year, it is not a child of make), and {τ4} is implied by {τ2}
(if price is a child of neither make nor year, then both price
and year cannot be children of make).

Below we propose a number of methods for computing
an equivalent subset of a system of negative constraints.

4.5.1 Using skyH (O) instead of O

The first method of reducing the size of a system of negative
constraints is based on the following observation. Recall that
each negative constraint is used to show that a tuple should
not be preferred to a superior example. We also know that
the relation skyH is the least p-skyline relation. By definition
of the winnow operator, for every o′ ∈ (O−ωskyH (O)) there
is a tuple o ∈ ωskyH (O) s.t. o is preferred to o′ according to
skyH . Since skyH is the least p-skyline relation, the same o is
preferred to o′ according to every p-skyline relation. Thus,
to guarantee favoring G in O, the system of negative con-
straints needs to contain only the constraints showing that
the tuples in ωskyH (O) are not preferred to the superior ex-
amples. Hence, the following proposition holds.

Proposition 10 Given G ⊆ ωskyH (O), N (G,O) is equiva-
lent to N (G,ωskyH (O)).

Notice that N (G,ωskyH (O)) contains (|ωskyH (O)|−1) ·
|G| negative constraints. Proposition 10 also imply an im-
portant result: if a user considers a tuple t superior based on
the comparison with ωskyH (O), comparing t with the tuples
in (O−ωskyH (O)) does not add any new information.

4.5.2 Removing redundant constraints

The second method of reducing the size of a negative con-
straint system is based on determining the implication of dis-
tinct negative constraints in a system. Let two τ1,τ2 ∈N be
such that Lτ2 ⊆ Lτ1 , Rτ1 ⊆ Rτ2 . It is easy to check that τ1
implies τ2. Thus, the constraint τ2 is redundant and may be
deleted from N . This idea can also be expressed as follows:

τ implies τ
′ iff Lτ′ ⊆ Lτ∧ (A−Rτ′)⊆ (A−Rτ).

Let us represent τ as a bitmap representing (A−Rτ) ap-
pended to a bitmap representing Lτ. We assume that a bit is
set to 1 iff the corresponding attribute is in the correspond-
ing set (Lτ and (A−Rτ), resp). Denote such a representation
as bitmap(τ).

Example 18 Let Lτ = {A1,A3,A5}, Rτ = {A2}, Lτ′ = {A1,

A5}, Rτ′ = {A2,A4}. Let A = {A1, . . . ,A5}. As a result, bit-
map(τ) = 10101 10111 and bitmap(τ′) = 10001 10101.

Consider bitmap(τ) as a vector with 2 · |A | dimensions.
From the negative constraint implication rule, it follows that
τ strictly implies τ′ iff bitmap(τ) and bitmap(τ′) satisfy the
Pareto improvement principle, i.e., the value of every di-
mension of bitmap(τ) is greater or equal to the correspond-
ing value in bitmap(τ), and there is at least one dimension
whose value in bitmap(τ) is greater than in bitmap(τ′). There-
fore, the set of all non-redundant constraints in N corre-
sponds to the skyline of the set of bitmap representations
of all constraints in N . Moreover, bitmap(τ) can have only
two values in every dimension: 0 or 1. Thus, algorithms
for computing skylines over low-cardinality domains (e.g.
[Morse et al(2007)]) can be used to compute the set of non-
redundant constraints.

4.5.3 Removing redundant sets of constraints

The method of determining redundant constraints in the pre-
vious section is based on distinct constraint implication. A
more powerful version of this method would compute and
discard redundant subsets of N rather then redundant dis-
tinct constraints. However, as we show in this section, that
problem appears to be significantly harder.

Problem SUBSET-EQUIV. Given systems of negative
constraints N1 and N2 s.t. N2 ⊆ N1, check if N2 is equiva-
lent to N1.
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To determine the complexity of SUBSET-EQUIV, we
use a helper problem.

Problem NEG-SYST-IMPL. Given two systems of neg-
ative constraints N1 and N2, check if N1 implies N2.

It turns out that the problems NEG-SYST-IMPL and
SUBSET-EQUIV are intractable in general.

Theorem 12 NEG-SYST-IMPL is co-NP complete

Theorem 13 SUBSET-EQUIV is co-NP complete

We notice that even though the problem of minimizing
the size of a system of negative constraints is intractable in
general, the methods of reducing its size we proposed in sec-
tions 4.5.2 and 4.5.1 result in a significant decrease in the
size of the system. This is illustrated in Section 5.

5 Experiments

We have performed extensive experimental study of the pro-
posed framework. The algorithms were implemented in Java.
The experiments were run on Intel Core 2 Duo CPU 2.1 GHz
with 2.0GB RAM under Windows XP. We used four data
sets: one real-life and three synthetic.

5.1 Experiments with real-life data

In this subsection, we focus on experimenting with the accu-
racy of the elicit algorithm and the reduction of winnow
result size, achieved by modeling user preferences using p-
skyline relations. We use a data set NHL which stores statis-
tics of NHL players [nhl(2008)], containing 9395 tuples. We
consider three sets of relevant attributes A containing 12, 9,
and 6 attributes. The size of the corresponding skylines is
568, 114, and 33, respectively.

5.1.1 Precision and recall

The aim of the first experiment is to demonstrate that the
elicit algorithm has high accuracy. We use the following
scenario. We assume that the real, hidden preferences of the
user are modeled as a p-skyline relation �hid . We also as-
sume that the user provides the set of relevant attributes A ,
the set of corresponding attribute preferences H , and a set
Ghid of tuples which she likes most in NHL (i.e., Ghid are
superior examples and Ghid ⊆ ω�hid (NHL)). We use Ghid
to construct a maximal p-skyline relation� favoring Ghid in
NHL. To measure the accuracy of elicit, we compare the
set of the best tuples ω�(NHL) with the set of the best tu-
ples ω�hid (NHL). The latter is supposed to correctly reflect
user preferences.

To model user preferences, we randomly generate 100 p-
skyline relations �hid . For each ω�hid (NHL), we randomly
pick 5 tuples from it, and use them as superior examples
Ghid to elicit three different maximal p-skyline relations �

favoring Ghid in NHL. Out of those three relations, we pick
the one resulting in ω�(NHL) of the smallest size. Then
we add 5 more tuples from ω�hid (NHL) to Ghid and repeat
the same procedure. We keep adding tuples to Ghid from
ω�hid (NHL) until Ghid reaches ω�hid (NHL).

To measure the accuracy of the elicit algorithm, we
compute the following three values:

1. precision of the p-skyline elicitation method:

precision =
|ω�(NHL)∩ω�hid (NHL)|

|ω�(NHL)|
,

2. recall of the p-skyline elicitation method:

recall =
|ω�(NHL)∩ω�hid (NHL)|

|ω�hid (NHL)|
,

3. F-measure which combines precision and recall:

F = 2 · precision · recall
precision+ recall

We plot the average values of those measures in Figures
16(a), 16(b), and 16(c). As can be observed, precision of the
elicit algorithm is high in all experiments: it is greater
than 0.9 in most cases. However, recall starts from a low
value when the number of superior examples is low. This is
due to the fact that elicit constructs a maximal relation
favoring Ghid in NHL, and small Ghid is not sufficient to
capture the preference relation �hid , and thus the ratio of
false negatives is rather high. When we increase the number
of superior examples, recall consistently grows.

In Figure 16(d), we plot the values of the F-measure
with respect to the share of the skyline used as superior
examples. The value of F starts from a comparatively low
value of 0.7 but quickly reaches 0.9 via a small increase
of the size of Ghid . The value of F is generally inversely
dependent on the number of relevant attributes (given the
same ratio of superior examples used). This is justified by
the following observation. To construct a p-skyline relation
favoring Ghid in NHL, the algorithm uses a set of negative
constraints N . Intuitively, the constructed p-skyline relation
� will match the original relation �hid better if the set N
captures �hid sufficiently well. The number of constraints
in N depends not only on the number of superior exam-
ples but also on the skyline size. Skyline sizes are generally
smaller for smaller sets of A , and more superior examples
are needed for smaller A to capture �hid .

5.1.2 Winnow result size

In Section 1, we discussed a well known deficiency of the
skyline framework: skylines are generally of large size for
large sets of relevant attributes A . The goal of the experi-
ments in this section is twofold. First, we demonstrate that
using p-skyline relations to model user preferences results in
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Fig. 16 Accuracy of p-skyline elicitation

smaller winnow query results in comparison to skyline rela-
tions. Second, we show that the reduction of query result
size is significant if the hidden user preference relation is a
p-skyline relation. In particular, we show that it is generally
hard to find a p-skyline relation favoring an arbitrary subset
of the skyline.

In this experiment, sets of superior examples are gener-
ated using two methods: 1) Ghid is drawn randomly from the
set of the best objects ω�hid (NHL) according to a hidden p-
skyline relation�hid , as in the previous experiment; 2) Grand
is drawn randomly from the skyline ωsky(NHL). Notice that
Grand may not be favored by any p-skyline relation (besides
skyH ). We use these sets to elicit p-skyline relations � that
favor them. In Figure 17, we plot

winnow-size-ratio =
|ω�(NHL)|
|ωskyH (NHL)|

,

which shows the difference in the size of the results of p-
skyline and skyline queries.

Consider the graphs for Ghid . As the figures suggest, us-
ing p-skyline relations to model user preferences results in
a significant reduction in the size of winnow query result,
in comparison to skyline relations. It can be observed that
using larger sets of relevant attributes A generally results
in smaller values of winnow-size-ratio. Moreover, for larger
relevant attribute sets, winnow-size-ratio grows slowly. That
is due to larger skyline size for such sets. Another impor-
tant observation is that winnow-size-ratio is always smaller
for superior examples from Ghid than for those from Grand .

Since superior examples correspond to a real p-skyline rela-
tion, they share some similarity expressed using the attribute
importance relationships. For Grand , such similarity exists
when it contains only a few tuples; and increasing its size
decreases the similarity of the tuples, resulting in a quick
growth of winnow-size-ratio.
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Fig. 17 p-skyline size reduction

5.2 Experiments with synthetic data

Here we present experiments with synthetic data. The main
goals of the experiments is to demonstrate that the proposed
p-skyline relation elicitation approach is scalable and allows
effective optimizations. We use three synthetic data sets here:
correlated S1 (based on linear dependence), anti-correlated
S2 (based on Zipf distribution), and uniform S3. Each of
them contains 50000 tuples. We use three different sets A of
10, 15, and 20 relevant attributes. For each of those sets, we
pick a different set of superior examples G. Sets G are con-
structed of similar tuples, similarity being measured as Eu-
clidean distance. As before, given a set G, we use elicit
to construct maximal p-skyline relations � favoring G. This
setup is supposed to model an automated process of identify-
ing superior objects G, in which a user is involved indirectly.

5.2.1 Scalability

In this section, we show that the elicit algorithm is scal-
able with respect to various parameters. In Figure 18, we
plot the dependence of the average running time of disco-
ver on the number of superior examples |G| used to elicit
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a p-skyline relation (Figure 18(a), |Si| = 50000, |A | = 20),
the size of Si for i = 1, . . . ,3 (Figure 18(b), |G|= 50, |A |=
20), and the number |A | of relevant attributes (Figure 18(c),
|Si|= 50000, |G|= 50). The measured time does not include
the time to construct the system of negative constraints and
find the non-redundant constraints in it. According to our
experiments, the preprocessing time predominantly depends
on the performance of the skyline computation algorithm.

According to Figure 18(a), the running time of the al-
gorithm increases until the size of G reaches 30, and does
not vary much after thatn. This is due to the fact that the
algorithm performance depends on the number of negative
constraints used. We use only non-redundant constraints for
elicitation. As we show further (Figure 19(a)), the depen-
dence of the size of a system of non-redundant constraints
on the number of superior examples has a pattern similar to
Figure 18(a).

The growth of the running time with the increase in the
data set size (Figure 18(b)) is due to the fact that the num-
ber of negative constraints depends on skyline size (Section
4.5). For the data sets used in the experiment, the skyline
size grows with the size of the data set. The running time of
the algorithm grows with the number of relevant attributes
(Figure 18(c)) for the same reasons.
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Fig. 18 Performance of p-skyline elicitation

We conclude that the elicit algorithm is efficient and
its running time scales well with respect to the number of

superior examples, the size of the data set, and the number
of relevant attributes used.

5.2.2 Reduction in the number of negative constraints

In this section, we demonstrate that the algorithm elicit
allows effective optimizations. Recall that the running time
of elicit depends linearly (Theorem 11) on the number
of negative constraints in the system N . Here we show that
the techniques proposed in Section 4.5 result in a significant
reduction in the size of N .

In Figure 19(a), we show how the number of negative
constraints depends on the number of superior examples used
to construct them. For every data set, we plot two values: the
number of unique negative constraints in N (G,ωskyH (Si))

for i = 1, . . . ,3, and the number of unique non-redundant
constraints in the corresponding system. We note that the
reduction in the number of constraints achieved using the
methods we proposed in Section 4.5 is significant. In par-
ticular, for the anti-correlated data set and G of size 150,
the total number of constraints in N (G,Si) is approximately
7.5 · 106. Among them, about 5.5 · 106 are unique in N (G,

ωskyH (Si)). However, less than 1% of them (about 12 · 103)
are non-redundant.

5.2.3 Winnow result size

In Section 5.1, we showed how the size of p-skyline query
result depends on the number of relevant attributes and the
size of the skyline. In this section, we show that another pa-
rameter which affects the size of winnow query result is data
distribution. In Figure 19(b), we demonstrate how the size
of the p-skyline query result varies with the number of supe-
rior examples. We compare this size with the size of the cor-
responding skyline and plot the value of winnow-size-ratio
defined in the previous section. Here we use anti-correlated,
uniform, and correlated data sets of 50000 tuples each. The
number of relevant attributes is 20. The size of the corre-
sponding skylines is: 41716 (anti-correlated), 37019 (uni-
form), and 33888 (correlated). For anti-correlated and uni-
form data sets, the values of winnow-size-ratio quickly reach
a certain bound and then grow slowly with the number of
superior examples. This bound is approximately 1% of the
skyline size (i.e., about 350 tuples) for both data sets. At the
same time, the growth of winnow-size-ratio for correlated
data set is faster. Note that the values of winnow-size- ratio
are generally lower for synthetic data sets, in comparison to
the real-life data set NHL, due to the larger set of relevant
attributes and larger skyline sizes in the current experiment.

We conclude that the experiments that we have carried
out show that incorporating relative attribute importance into
skyline relations in the form of p-skyline relations results in
a significant reduction in query result size. The proposed al-
gorithm elicit for eliciting a maximal p-skyline relation
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Fig. 19 Synthetic data experiments

favoring a given set of superior examples has good scalabil-
ity in terms of the data set size and the number of relevant
attributes. The algorithm has high accuracy even for small
sets of superior examples.

6 Related work

In this section, we discuss related work that has been done
in the areas covered in the paper: modeling preferences as
skyline relations and preference elicitation.

6.1 Modeling preferences as skyline relations

The p-skyline framework is based on the preference con-
structor approach proposed in [Kießling(2002)]. That ap-
proach was extended in [Kießling (2005)] by relaxing defini-
tions of the accumulation operators and by using SV-relati-
ons, instead of equality, as indifference relations. [Kießling
(2005)] showed that such an extension preserves the SPO
properties of the resulting preference relations. The result-
ing relations were shown to be larger (in the set theoretic
sense) than the relations composed using the equality-based
accumulational operators. However, relative importance of
attributes implicit in such relations was addressed neither
in [Kießling(2002)] nor [Kießling (2005)]. Containment of
preference relations and minimal extensions were also not
considered in these works.

[Börzsönyi et al(2001)] proposed the original skyline
framework. That paper introduced an extension of SQL in
which the skyline queries can be formulated. The paper also
proposed a number of skyline computation algorithms. Since
then, many algorithms for that task have been developed (
[Tan et al(2001),Kossmann et al(2002),Chomicki et al(2003),
Lee et al(2007), Godfrey et al(2007)] and others).

[Godfrey et al(2005)] showed that the number of sky-
line points in a dataset may be exponential in the number of
attributes. Since then, a number of approaches have been de-
veloped for reducing the size of skylines by computing only
the most representative skyline objects.

[Chan et al(2006)] proposed to compute the set of k-
dominant skyline points instead of the entire skyline. An-
other variant of the skyline operator was presented in [Lin
et al(2007)]. That operator computes k most representative
tuples of a skyline. [Lin et al(2007)] showed that when the
number of attributes involved is greater than two, the prob-
lem is NP-hard in general. For such cases, [Lin et al(2007)]
proposed a polynomial time approximation algorithm.

More recently, [Tao et al(2009)] proposed the distance-
based representative skyline operator. This approach is based
on the observation that if a skyline of a dataset consists of
clusters, then in many cases, a user is interested in seeing
only good representatives from each skyline cluster rather
than the entire skyline (which may be quite large). If inter-
ested, the user may drill down to each cluster further on. The
representativeness here is measured as the maximum of the
distance from the cluster center to each object of the cluster.
The authors studied the problem of computing k most repre-
sentative skyline objects and proposed an efficient approxi-
mation algorithm for datasets with arbitrary dimensionality.

Another recent work in the area of skyline-size reduc-
tion is [Zhao et al(2010)]. There, the authors proposed the
order-based representative skyline operator. The approach is
based on a well-known fact that an object is in a skyline iff
it maximizes some monotone utility function. As a measure
of skyline object similarity, the authors used the similarity
between (possibly infinite) sets of orders which favor the
corresponding objects. The authors developed an algorithm
for computing representatives of clusters of similar objects.
They also proposed a method of eliciting user preferences
which allows to drill down to clusters in an iterative manner.

Another direction of research using the skyline frame-
work concerns subspace skyline computation [Pei et al(2005),
Yuan et al(2005)]. An interesting problem in this frame-
work is how to identify the subspaces to whose skylines a
given tuple belongs. [Pei et al(2005)] showed an approach
to that problem, which uses the notion of decisive subspace.
A subspace skyline can be computed using every skyline
algorithm. However, to compute k subspace skylines (for k
different attribute sets), an algorithm for efficient comput-
ing of all subspace skylines at once [Pei et al(2005), Yuan
et al(2005)] may be more efficient. [Yuan et al(2005)] intro-
duced the related notion of skyline cube. The skyline cube
approach was used in [Lee et al(2009)] to find the most in-
teresting subspaces given an upper bound on the size of the
corresponding skyline and a total order of attributes, the lat-
ter representing the importance of the attributes to the user.

We notice that the framework based on subspace sky-
lines is, in a sense, orthogonal to the p-skyline framework
proposed here. Both of them extend the skyline framework.
In the subspace skyline framework, the relative importance
of attributes is fixed (i.e., all considered attributes are of
equal importance) while the sets of the relevant attributes
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may vary. In the p-skyline approach, the set of relevant at-
tributes is fixed while the relative importance of them may
vary. However, given a set of attribute preference relations,
all subspace skylines and the results of all full p-skyline re-
lations are subsets of the (full-space) skyline (assuming the
distinct value property for subspace skylines).

[Zhang et al(2010)] studied the properties of skyline
preference relations and showed that they are the only re-
lations satisfying the introduced properties of rationality,
transitivity, scaling robustness, and shifted robustness. The
authors analyzed these properties and the outcome of their
relaxation in skyline preference relations. They also showed
how to adapt existing skyline computation algorithms to re-
laxed skylines. This work is particular interesting in the con-
text of the current paper, since it gives some insights to pos-
sible approaches for computing p-skyline winnow queries.

6.2 Preference elicitation

An approach to elicit preferences aggregated using the accu-
mulation operators was proposed in [Holland et al(2003)].
Web server logs were used there to elicit preference rela-
tions. The approach was based on statistical properties of log
data – more preferable tuples appear more frequently. The
mining process was split into two parts: eliciting attribute
preferences and eliciting accumulation operators which ag-
gregate the attribute preferences. Attribute preferences to be
elicited were in the form of predefined preference construc-
tors such as LOWEST, HIGHEST, POS, NEG etc. [Holland
et al(2003)] used a heuristic approach to elicit the way at-
tribute preferences are aggregated (using Pareto and priori-
tized accumulation operators). The case when more than one
different combination of accumulation operators may be eli-
cited in the same data was not addressed. Moreover, no cri-
teria of optimality of elicited preference relations were de-
fined.

A framework for preference elicitation which is com-
plementary to the approach we have developed here was
presented in [Jiang et al(2008)]. In that work, preferences
are modeled as skyline relations. Given a set of relevant at-
tributes and a set of attribute preferences over some of them,
the objective is to determine attribute preferences over the
remaining attributes. The elicitation process is based on user
feedback in terms of a set of superior and a set of infe-
rior examples. The work is focused on eliciting minimal (in
terms of relation size) attribute preference relations. [Jiang
et al(2008)] showed that the problem of existence of such
relations is NP-complete, and the computation problem is
NP-hard. Two greedy heuristic algorithms were provided.
The algorithms are not sound, i.e., for some inputs, the com-
puted preferences may fail to be minimal. That approach and
the approach we presented here are different in the follow-
ing sense. First, [Jiang et al(2008)] dealt with skyline re-
lations, and thus all attribute preferences are considered to

be equally important. In contrast, the focus of our work is
to elicit differences in attribute importance. Second, [Jiang
et al(2008)] focused on eliciting minimal attribute prefer-
ences. In contrast, we are interested in constructing max-
imal tuple preference relations, since such relations guar-
antee a better fit to the provided set of superior examples.
At the same time, our work and [Jiang et al(2008)] com-
plement each other. Namely, when attribute preferences are
not provided explicitly by the user, the approach of [Jiang
et al(2008)] may be used to elicit them.

Another approach to preference relation elicitation in the
skyline framework was introduced in [Lee et al(2008)]. It
proposed to reduce skyline sizes by revising skyline pref-
erence relations by supplying additional tuple relationships:
preference and equivalence. Such relationships are obtained
from user answers to simple questions.

In quantitative preference frameworks [Fishburn(1970)],
preferences are represented as utility functions: a tuple t is
preferred to another tuple t ′ iff f (t) > f (t ′) for a utility
function f . Attribute priorities are often represented here as
weight coefficients in polynomial utility functions. A num-
ber of methods have been proposed to elicit utility functions
– some of them are [Chajewska et al(2000),Boutilier(2002)].
Utility functions were shown to be effective for reasoning
with preferences and querying databases with preferences
(Top-K queries) [Fagin et al(2001),Das et al(2006),Bacchus
and Grove(1996)]. Some work has been performed on elic-
iting utility functions for preferences represented in other
models [McGeachie and Doyle(2002)].

[Domshlak and Joachims(2007)] described another mod-
el of preference elicitation in the form of utility functions.
The authors proposed a framework for constructing a util-
ity function consistent with a set of comparative statements
about preferences (e.g., “A is better than B” or “A is as
good as B”). That approach does not rely on any structure of
preference relations. [Vu Ha(1999)] proposed an approach
to composing binary preference relations and multi-linear
utility functions. A quantitative framework for eliciting bi-
nary preference relations based on knowledge based artifi-
cial neural network (KBANN) was presented in [Haddawy
et al(2003)]. [Viappiani et al(2006)] studied the problems of
incremental elicitation of user preference based on user pro-
vided example critiques.

7 Conclusion and future work
In this work, we explored the p-skyline framework which
extends skylines with the notion of attribute importance cap-
tured by p-graphs. We studied the properties of p-skyline re-
lations – checking dominance, containment and equality of
such relations – and showed efficient methods for perform-
ing the checks using p-graphs. We proposed a complete set
of transformation rules for efficient computation of minimal
extensions of p-skyline relations.
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The main problem studied here was the elicitation of
p-skyline relations based on user-provided feedback in the
form of superior and inferior examples. We showed that
the problems of existence and construction of a maximal
p-skyline relation favoring and disfavoring given sets of su-
perior and inferior examples are intractable in general. For
restricted versions of these problems – when the provided
inferior example sets are empty – we designed polynomial
time algorithms. We also identified some bottlenecks of con-
structing maximal p-skyline relations: the system of nega-
tive constraints used may be quite large in general, which
directly affects the algorithm performance. To tackle that
problem, we proposed several optimization techniques for
reducing the size of such systems. We also showed that the
problem of minimization of such systems is unlikely to be
solvable in polynomial time in general. We conducted ex-
perimental studies of the proposed elicitation algorithm and
optimization techniques. The study shows that the algorithm
has good scalability in terms of the data set size and the num-
ber of relevant attributes, and high accuracy even for small
sets of superior examples.

At the same time, we note that our framework has a num-
ber of limitations that can be addressed in future work. First,
we focused on full p-skyline relations. An interesting direc-
tion of future work would be to study the properties of par-
tial p-skyline relations (i.e., defined on top of sets A and H
of variable size).

Second, attribute preference relations considered in this
work are limited to total orders. There are several reasons
for this limitation:

– the limitation is natural in many contexts;
– attribute preferences in skyline relations are also typi-

cally total orders (although there are several papers, e.g.,
[Chan et al(2005), Balke et al(2006)], in which this lim-
itation is lifted);

– some of our results require the assumption that attribute
preferences are total orders, e.g., Theorem 5.

It would be interesting to see how our results can be general-
ized if the restriction of attribute preferences to total orders
is relaxed. (To avoid any possible confusion, we emphasize
that tuple preference relation considered in our work are not
limited to total orders.)

Third, the DIFF attributes, discussed in the original sky-
line paper [Börzsönyi et al(2001)], were also not considered
in this paper. This is another possible generalization.

Fourth, we developed elicitaiton algorithms for a partic-
ular scenario in which we know which tuples the user likes
but do now know which ones he dislikes. Clearly, another
restriction of the problem is possible – it is known which tu-
ples the user dislikes (the set of inferior tupes is non-empty),
but unknown which ones he confidentely likes (the set of
superior tuples is empty). The latter scenario has not been
considered in this paper.

Fifth, the type of user feedback for p-skyline relation
elicitation – superior and inferior examples – may not fit
some real-life scenarios. So a potentially promising direc-
tion is to adapt the p-skyline elicitation approach to other
types of feedback. For that, one should study appropriate
classes of attribute set constraints.

Finally, the problem of computing winnow queries with
p-skyline relations is left for future work.

During the preparation of the final version of this paper,
we learned [Ciaccia(2011)] about some relevant results ob-
tained in [Valdes et al(1982)]. The notion of p-graph (Defi-
nition 10) corresponds to the notion of series-parallel graph
and the Envelope property, to the notion of N-free graphs.
[Valdes et al(1982)] established the connection between se-
ries-parallel and N-free graphs, captured by our Theorem 2.
Also, the latter paper proposes the notion of canonical de-
composition tree, which corresponds to our notion of nor-
malized syntax tree (Definition 9).
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Appendix: Proofs

Before going into the proofs, we introduce (W 0,A0)-struc-
tures. A (W 0,A0)-structure is based on the set of attributes
A0 and a function W 0 = {WA : A ∈ A0} mapping A0 to
subsets of A0.

Definition 14 ((W 0,A0)-structure) Let W 0 and A0 be as
discussed above and such that for every A ∈ A0, A 6∈WA.
Then the (W 0,A0)-structure is a tuple (W 0,A0), and the
relation generated by (W 0,A0) is

�(W 0,A0) ≡ TC

( ⋃
A∈A0

qA

)
,

where

qA ≡ {(o1,o2) | o1.A >A o2.A}∩ ≈A−(WA∪{A}),

and >A is the attribute preference relation for A in H .

Let a tuple o dominate a tuple o′ according to the re-
lation �(W 0,A0) generated by (W 0,A0). By Definition 14,
this is possible iff there exist a sequence of tuples Σo,o′ =

(o1,o2, . . . ,om,om+1) such that o1 = o,om+1 = o′, and a se-
quence of attributes Ψo,o′ = (Ai1 , . . . ,Aim), all in A0, such
that

qAi1
(o1,o2), . . . ,qAim

(om,om+1)

Then the pair (Σo,o′ ,Ψo,o′ ) is called a derivation sequence
for o �(W 0,A0) o′. Given a pair of tuples, the corresponding
derivation sequence is not unique in general.

We notice that the (W 0,A0)-structures are an efficient
tool used here to prove some theorems describing properties
of p-skyline relations. Now, Theorem 1 can be reformulated
as follows:

Theorem 1’ Every p-skyline relation � ∈ FH can be
represented as a relation �(W ,A ) generated by a (W ,A )-
structure such that for every A ∈ A , WA =ChΓ�(A).

Proof of Theorem 1’. We show here that for every�∈ FH ,

� ≡ �(W ,A) ≡ TC

 ⋃
A∈Var(�)

qA


qA ≡ {(o1,o2) | o1.A �A o2.A} ∩ ≈A−(WA∪{A})

where WA = ChΓ�(A) for A ∈ Var(�). We prove the theo-
rem by induction on the sizes of H (and A).

Base step. Let H = {>A} and A = {A}. Then FH con-
sists of a single atomic p-skyline relation � induced by >A.
Let WA =ChΓ�(A) = /0. Then

� = �(W ,A ) ≡ TC(qA)

qA ≡ {(o1,o2) | o1.A >A o2.A} ∩ ≈A−(WA∪{A}).

Inductive step. Now assume that the theorem holds for H
and A of size up to n. Prove that it holds for H and A of
size n+1. Let � = �1 ⊗ �2 (the case of � = �1 & �2
is similar). By the definition of induced p-skyline relations,

� ≡ (�1 ∩ ≈Var(�2)) ∪ (�2 ∩ ≈Var(�1)) ∪ (�1 ∩ �2).

Thus, for two p-skyline relations �1 and �2 the inductive
assumption implies that �1 and �2 can be represented by
the structures (W 1,A1) and (W 2,A2), for A1 = Var(�1)

and A2 =Var(�2). That is,

�1 ≡ �(W 1,A1) ≡ TC(
⋃

A∈Var(�1)

q1
A) (5)

�2 ≡ �(W 2,A2) ≡ TC(
⋃

A∈Var(�2)

q2
A) (6)

where

q1
A ≡ {(o1,o2) | o1.A >A o2.A} ∩ ≈Var(�1)−(W 1

A∪{A})
(7)

q2
A ≡ {(o1,o2) | o1.A >A o2.A} ∩ ≈Var(�2)−(W 2

A∪{A}).
(8)

Since � is a p-skyline relation,

Var(�1)∩Var(�2) = /0. (9)

(9), (5), and (6) imply

� ≡ TC

 ⋃
A∈Var(�1)

q1
A

∩ ≈Var(�2) ∪

TC

 ⋃
A∈Var(�2)

q2
A

∩ ≈Var(�1) ∪

TC

 ⋃
A∈Var(�1)

q1
A

∩TC

 ⋃
A∈Var(�2)

q2
A

 (10)

or equivalently

� ≡ TC

 ⋃
A∈Var(�1)

q1
A∩ ≈Var(�2)

 ∪
TC

 ⋃
A∈Var(�2)

q2
A∩ ≈Var(�1)

 ∪
TC

 ⋃
A∈Var(�1)

q1
A

∩TC

 ⋃
A∈Var(�2)

q2
A

 . (11)

Construct the function W as follows

WA =

{
W 1

A , if A ∈Var(�1)

W 2
A , if A ∈Var(�2).

Let A =Var(�1)∪Var(�2) =Var(�) and �(W ,A ) be gen-
erated by such (W ,A )

�(W ,A ) ≡ TC(
⋃

A∈A
q∗A) (12)
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for

q∗A ≡ {(o1,o2) | o1.A >A o2.A} ∩ ≈A−(WA∪{A}). (13)

We prove that �(W ,A ) is equal to �. Before going into
the proof, notice that (11) can be rewritten as

� ≡ TC

 ⋃
A∈Var(�1)

q∗A

∪TC

 ⋃
A∈Var(�2)

q∗A

∪
TC

 ⋃
A∈Var(�1)

q1
A

∩TC

 ⋃
A∈Var(�2)

q2
A

 . (14)

1. Let o �(W ,A ) o′. Let (Σo,o′ ,Ψo,o′) be some derivation
sequence for o �(W ,A )) o′. W.l.o.g. let Ψo,o′ = (A1, . . . ,

Am), Σo,o′ = (o = o1,o2, . . . ,om,om+1 = o′), and

q∗A1
(o1,o2),q∗A2

(o2,o3), . . . ,q∗Am(om,om+1). (15)

By construction, each attribute Ai ∈ Ψo,o′ is either in
Var(�1) or Var(�2). For every such Ai, q∗Ai

(oi,oi+1) im-
plies oi � oi+1 by (14). Therefore, (15) implies

o1 � o2,o2 � o3, ...,om � om+1. (16)

Transitivity of p-skyline relations implies o1 � om+1, i.e.
o� o′.

2. Let o� o′. Then (14) leads to three cases
(a) (o,o′) ∈ TC

(⋃
A∈Var(�1)

q∗A
)

. Then o �(W ,A ) o′ by
(12).

(b) (o,o′) ∈ TC
(⋃

A∈Var(�2)
q∗A
)

. Then o �(W ,A ) o′ by
the same reasoning.

(c) (o,o′) ∈ TC
(⋃

A∈Var(�1)
q1

A

)
∩TC

(⋃
A∈Var(�2)

q2
A

)
.

In this case, (9) implies that there is an object o′′

whose values of Var(�2) are equal to those of o, and
the values of Var(�1) are equal to those of o′. Then
we have

(o,o′′) ∈ TC

 ⋃
A∈Var(�1)

q1
A

∩ ≈Var(�2)

(o′′,o′) ∈ TC

 ⋃
A∈Var(�2)

q1
A

∩ ≈Var(�1)

or equivalently

(o,o′′) ∈ TC

 ⋃
A∈Var(�1)

q1
A∩ ≈Var(�2)


(o′′,o′) ∈ TC

 ⋃
A∈Var(�2)

q1
A∩ ≈Var(�1)


which implies by (13) and (12)

o�(W ,A ) o′′,o′′ �(W ,A ) o′.

The transitivity of �(W ,A ) implies o�(W ,A ) o′.

A B

C A B

C A

B A

B

Fig. 20 Forks of A and B

Recall that by Definition 10,

ChΓ�(A) =
{

ChΓ�1
, if A ∈Var(�1)

ChΓ�2
if A ∈Var(�2).

.

Hence, given the inductive hypothesis, we proved that

WA =ChΓ�(A) =
{

W 1
A =ChΓ�1

, if A ∈Var(�1)

W 2
A =ChΓ�2

if A ∈Var(�2).
.

ut

Theorem 2. A directed graph Γ with the set of nodes A is a
p-graph of some p-skyline relation iff

1. Γ is an SPO, and
2. Γ satisfies the Envelope property:

∀A,B,C,D ∈ A ,all different

(A,B) ∈ Γ∧ (C,D) ∈ Γ∧ (C,B) ∈ Γ⇒
(C,A) ∈ Γ∨ (A,D) ∈ Γ∨ (D,B) ∈ Γ.

To prove the theorem, we introduce the notion of the
typed partition of a directed graph.

Definition 15 Let Γ be a directed graph, and Γ1, Γ2 be two
nonempty subgraphs of Γ such that N(Γ1)∩N(Γ2) = /0 and
N(Γ1)∪N(Γ2)=N(Γ). Then the pair 〈Γ1,Γ2〉 is a∼-partition
(respectively→-partition ) of Γ if Γ |= N(Γ1) ∼ N(Γ2), re-
spectively (N(Γ1),N(Γ2)) ∈ Γ.

The proof of Theorem 2 is based on Lemmas 1 and 2.
Lemma 1 establishes relationships between nodes in an SPO+
Envelope graph, while Lemma 2 establishes relationships
between typed partitions in such a graph.

Definition 16 Two nodes A and B of a directed graph Γ

form a fork if A is different from B, and they conform to
one of the patterns in Figure 20. The node C of Γ has to be
different from A and B.

Lemma 1 Let a directed graph Γ with at least two nodes
satisfy SPO+Envelope. Then Γ has a ∼-partition, or ev-
ery pair of nodes of Γ forms a fork.

Proof. For the sake of contradiction, assume Γ has no ∼-
partition, and some pair of different nodes A and B of Γ does
not form a fork, i.e.,

(A,B) 6∈ Γ∧ (B,A) 6∈ Γ ∧¬∃C ∈ N(Γ)

(A,C) ∈ Γ∧ (B,C) ∈ Γ∨ (C,A) ∈ Γ∧ (C,B) ∈ Γ.
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Let a subgraph Γ1 of Γ have the following set of nodes

N(Γ1) = {A}∪PaΓ({A}∪ChΓ(A))∪ChΓ({A}∪PaΓ(A)),

and the subgraph Γ2 of Γ have the nodes N(Γ2) = N(Γ)−
N(Γ1). Assuming that B ∈ N(Γ1) leads to contradiction by
case analysis. So B ∈ N(Γ2). We conclude that both Γ1 and
Γ2 are nonempty. Also, by case analysis we show that Γ |=
N(Γ1)∼ N(Γ2). ut

Lemma 2 A directed graph Γ satisfying SPO+Envelope
with at least two nodes has a →-partition or a ∼-partition
〈Γ�1 ,Γ�2〉 such that Γ�1 and Γ�2 satisfy SPO+Envelope.

Proof. We assume that no ∼-partition of Γ exists and show
that there exists a→-partition. Since Γ is a finite SPO, there
exists a nonempty set Top ⊆ N(Γ) of all the nodes which
have no incoming edges. If Top is a singleton, then Top
dominates every node in N(Γ)− Top, and we get the →-
partition 〈Top,N(Γ)−Top〉. Assume Top is not singleton.
Pick two nodes T1,T2 ∈ Top. T1 and T2 have no incoming
edges, and Lemma 1 implies that there exists a node Z1 such
that (T1,Z1)∈ Γ∧(T2,Z1)∈ Γ. If |Top|> 2, pick some node
Tk (Tk 6= T1,Tk 6= T2) from Top. Since Tk has no incoming
edges either, Lemma 1 implies that either Tk is a parent of
Z1 or they have a common child (which is also a child of T1
and T2 by the transitivity of Γ). Therefore, by picking every
node of Top, we can show that there exists at least one node
Z which is a child of all nodes in Top. Denote as M the set
of all the nodes dominated by every node in Top. Above we
showed that M contains at least one node.

Now let us show that if a node X is not in M then (X ,M)∈
Γ. Clearly, if X ∈ Top, then (X ,M) ∈ Γ. So let X 6∈ Top.
By definition of Top, there is a node T1 ∈ Top such that
(T1,X)∈Γ. Assume there is a node Z ∈M such that (X ,Z) 6∈
Γ. By definition of M, (T1,Z) ∈ Γ. Now pick some node T
(T 6= T1) of Top. By definition of M, (T,Z)∈ Γ. Let us apply
Envelope:

(T,Z) ∈ Γ ∧ (T1,Z) ∈ Γ ∧ (T1,X) ∈ Γ⇒
(T1,T ) ∈ Γ ∨ (T,X) ∈ Γ ∨ (X ,Z) ∈ Γ.

The first and the last disjuncts in the right-hand-side of the
expression contradict the assumptions (X ,Z) 6∈ Γ and T ∈
Top. Therefore, the only choice is (T,X) ∈ Γ. However, T
is an arbitrary node in Top. Therefore, (Top,X)∈Γ and thus
X ∈M by definition of M. We conclude that 〈N(Γ)−M,M〉
is a→-partition of Γ

Finally, it is easy to check that every subgraph of an
SPO+Envelope graph satisfies SPO+Envelope. ut

Proof of Theorem 2. By induction on the the structure of
the p-expression inducing a given p-skyline relation, it is
easy to show that SPO+Envelope is satisfied by p-graphs.
Now we show that every directed graph satisfying SPO+

Envelope is a p-graph of some p-skyline relation. Given
such a graph Γ, we construct the corresponding p-skyline
relation recursively. If Γ contains a single node, then the
corresponding p-skyline relation is the atomic preference
relation induced by the attribute preference relation of the
corresponding attribute. If Γ has more than one node, then
by Lemma 2, Γ has either a →-partition or a ∼-partition
〈Γ1,Γ2〉 into nonempty subgraphs satisfying SPO+Enve-
lope. If 〈Γ1,Γ2〉 is a →-partition (∼-partition), then the
corresponding p-skyline relation is a prioritized (Pareto, re-
spectively) accumulation of the p-skyline relations corre-
sponding to Γ1 and Γ2. This recursive construction exactly
corresponds to the construction of W shown in Theorem 1.

ut

Proposition 4. Let A and B be leaf nodes in a normalized
syntax tree T� of a p-skyline relation�∈ FH . Then (A,B)∈
Γ� iff the least common ancestor C of A and B in T� is la-
beled by & , and A precedes B in the left-to-right tree traver-
sal.

Proof of Proposition 4.
⇐ Let�C be a p-skyline relation represented by the syntax

tree with the root node C. Definition 10 implies (A,B)∈ Γ�C

and E(Γ�C)⊆ E(Γ�).
⇒ Let (A,B) ∈ Γ�. If C is of type & but B precedes

A in left-to-right tree traversal, then Definition 10 implies
(B,A)∈Γ�C and hence (B,A)∈Γ�, which is a contradiction
to SPO of Γ�. If C is of type ⊗ , then by Definition 10,
Γ�C |= A∼ B and hence Γ� |= A∼ B, which contradicts the
initial assumption. ut

Theorem 3. Two p-skyline relations �1, �2∈ FH are equal
iff their p-graphs are identical.

To prove the theorem, we use the next lemma.

Lemma 3 Assume that�1 (resp.�2) are p-skyline relations
in FH , generated by (W 1,A) and (W 2,A), respectively. If
for some A ∈A , W 1

A −W 2
A 6= /0, then there is a pair o,o′ ∈U

such that

o�1 o′ and o 6�2 o′.

Proof. We construct two tuples o and o′ such that o�(W 1,A)

o′ (and thus o�1 o′), and o 6�(W 2,A) o′ (and thus o 6�2 o′).
For every attribute Ai ∈A , pick two values vAi ,v

′
Ai
∈DAi

such that vAi >Ai v′Ai
. Construct the tuples o and o′ as fol-

lows:

o.Ai =


vAi , if Ai = A,
vAi , if Ai ∈ A− ({A}∪W 1

A ),

v′Ai
, otherwise (Ai ∈W 1

A )

o′.Ai =


v′Ai

, if Ai = A,
vAi , if Ai ∈ A− ({A}∪W 1

A ),

vAi , otherwise (Ai ∈W 1
A )
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By construction, it is clear that

(o,o′) ∈ {(o1,o2) | o1 �A o2}∩ ≈A−({A}∪W 1
A )

and thus o�(W 1,A) o′ and o�1 o′. Now assume o�(W 2,A) o′

(and thus o�2 o′), i.e.

(o,o′) ∈ TC

( ⋃
Ai∈A

qAi

)
(17)

where

qAi ≡ {(o1,o2) | o1�Aio2}∩ ≈A−({Ai}∪W 2
Ai
) . (18)

(17) implies that there should exist a derivation sequence
(Σo,o′ ,Ψo,o′ ) for o�(W 2,A) o′. That is, Σo,o′ =(o1 = o,o2, . . . ,

om,om+1 = o′) is a sequence of tuples, and Ψo,o′ = (Ai1 , . . . ,

Aim) is a sequence of attributes such that

qAi1
(o1,o2), . . . ,qAim

(om,om+1). (19)

Note that by (18), oik may be worse than oik+1 in the
values of WA2

ik
only.

First, we prove that Ψo,o′ ⊆W 2
A ∪{A}. For the sake of

contradiction, assume M = Ψo,o′−(W 2
A ∪{A}) is nonempty.

Pick an element Atop ∈M which has no ancestors from M in
Γ�2 (such an element exists due to acyclicity of Γ�2 ). Since
qAtop is in the chain (19), we get

o.Atop >Atop o′.Atop.

By construction of o, o′ that implies Atop = A, which is a
contradiction. Thus, Ψo,o′ ⊆W 2

A ∪{A}.
Second, we prove o 6�(W 2,A) o′. For that, pick B ∈W 1

A −
W 2

A . By construction of o and o′, o′.B >B o.B. That implies
that there is a pair of tuples ok,ok+1 in Σo,o′ in which the
value of B is changed from a less preferred to a more pre-
ferred one. That is possible only if B∈W 2

C for some attribute
C ∈ Ψo,o′ ⊆W 2

A ∪ {A}. By Theorem 1, B ∈ ChΓ�2
(C) and

C ∈ ChΓ�2
(A)∪ {A}. By transitivity of Γ�2 (Theorem 2),

B ∈ ChΓ�2
(A) (i.e., B ∈W 2

A ), which contradicts the defini-
tion of B. Hence, o 6�(W 2,A) o′. ut

Now we go back to the proof of Theorem 3. Proof of
Theorem 3.
⇒ Every two p-skyline relations which have the same p-

graph are represented by the same structure (W ,A ), by the
definition of p-graph. Therefore, the p-skyline relations are
equal.
⇐ Pick two equal p-skyline relations �1 and �2. Let the

structures (W 1,A), (W 2,A) and the p-graphs Γ�1 , Γ�2 rep-
resent �1 and �2, respectively. Clearly, the node sets of
Γ�1 and Γ�2 are equal to A . If their edge sets are differ-
ent, then the functions W 1 and W 2 are different. Pick A ∈ A
such that W 1

A 6= W 2
A . Without loss of generality, we can as-

sume W 1
A −W 2

A 6= /0. Lemma 3 implies that �1 and �2 are
not equal, which is a contradiction. ut

Theorem 4. For p-skyline relations �1,�2 ∈ FH , �1 ⊂ �2
⇔ E(Γ�1)⊂ E(Γ�2).

Proof.
⇐ Let the structures (W 1,A) and (W 2,A) generate re-

lations �(W 1,A) and �(W 2,A) equal to �1 and �2, corre-
spondingly. E(Γ�1) ⊂ E(Γ�2) implies that for all A ∈ A ,
W 1

A ⊆W 2
A . Hence, �(W 1,A) ⊆ �(W 2,A) and �1 ⊆ �2. The-

orem 3 implies �1 ⊂ �2.
⇒ Let E(Γ�1) 6⊂ E(Γ�2). If E(Γ�1) = E(Γ�2), then by

Theorem 3, �1 ≡ �2, which is a contradiction. Therefore,
E(Γ�1) 6= E(Γ�2), and for some A we have W 2

A −W 1
A 6= /0.

Lemma 3 implies �1 6⊂ �2, which is a contradiction. ut

Theorem 5. Let o,o′ ∈U s.t. o 6= o′ and � ∈ FH . Then the
following conditions are equivalent:

1. o� o′;
2. BetIn(o,o′)⊇ Top�(o,o′);
3. ChΓ�(BetIn(o,o′))⊇ BetIn(o′,o).

Proof. Let the structure (W ,A ) generate a relation equal to
�, i.e.

� ≡ �(W ,A ) ≡ TC

(⋃
A∈A

qA

)
where

qA ≡ {(o1,o2) | o1.A >A o2.A} ∩ ≈A−(WA∪{A}) .

1⇔ 3 Let ChΓ�(BetIn(o,o′))⊇ BetIn(o′,o). W.l.o.g., take
BetIn(o,o′) = {A1, . . . ,Ak}. It is easy to check that the se-
quence (Σo,o′ ,Ψo,o′) constructed as follows is a derivation
sequence for o �(W ,A ) o′. Let Ψo,o′ = BetIn(o,o′) = {A1,

. . . ,Ak}. Let the values of all the attributes A−(BetIn(o,o′)∪
BetIn(o′,o)) in Σo,o′ be equal to those in o which are also
equal to those in o′. Set o1 to o. Now pick i from 2 to k con-
secutively and set the values of {Ai}∪ (WAi ∩BetIn(o′,o))
in oi to those in o′. Since WAi =ChΓ�)(Ai) (Theorem 1), the
value of every attribute in ok will be equal to the correspond-
ing value in o′.

Now assume ChΓ�(BetIn(o,o′)) 6⊇BetIn(o′,o). Thus, the
set BetIn(o′,o)−ChΓ�(BetIn(o,o′)) is nonempty. Similarly
to the proof of Lemma 3, it can be shown that no derivation
sequence exists for o�(W ,A ) o′.
2⇔ 3 2 implies 3 by definition of Top�(o,o′). Prove that

3 implies 2. Assume that 3 holds but ∃A ∈ Top�(o,o′)−
BetIn(o,o′). Since >A is a total order, A∈BetIn(o′,o). Then
3 implies that A 6∈ Top�(o,o′), which is a contradiction. ut
Theorem 6. Let � be a p-skyline relation with the p-graph
Γ�, and A,B,C,and D, disjoint node sets of Γ�. Let the
subgraphs of Γ� induced by those node sets be singletons
or unions of at least two disjoint subgraphs. Then

(A,B) ∈ Γ� ∧(C,D) ∈ Γ�∧ (C,B) ∈ Γ�⇒
(C,A) ∈ Γ�∨ (A,D) ∈ Γ�∨ (D,B) ∈ Γ�.
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Proof. We prove the theorem by contradiction. Let

(A,B) ∈ Γ� ∧ (C,D) ∈ Γ�∧ (C,B) ∈ Γ�∧
(C,A) 6∈ Γ�∧ (A,D) 6∈ Γ�∧ (D,B) 6∈ Γ�.

The second part is equivalent to the following:

∃C ∈ C,A1,A2 ∈ A,D1,D2 ∈ D,B ∈ B
((C,A2) 6∈ Γ�∧ (C-A2)

(A1,D1) 6∈ Γ�∧ (A1-D1)

(D2,B) 6∈ Γ�) (D2-B)

and from the first part

(A1,B) ∈ Γ� (A1-B)

(A2,B) ∈ Γ� (A2-B)

(C,D1) ∈ Γ� (C-D1)

(C,D2) ∈ Γ� (C-D2)

Note that the fact that the subgraphs of Γ� induced by
A, B, C, D are singletons or unions of at least two disjoint
subgraphs implies the following four cases for A1 and A2:

Γ� |= A1 ∼ A2
(Case A1)

(A1,A2) ∈ Γ�∧∃A3 ∈ A (Γ� |= A1 ∼ A3∧Γ� |= A2 ∼ A3)

(Case A2)

(A2,A1) ∈ Γ�∧∃A3 ∈ A (Γ� |= A1 ∼ A3∧Γ� |= A2 ∼ A3)

(Case A3)

A1 ≡ A2
(Case A4)

Similarly, we have four cases for D1,D2:

Γ� |= D1 ∼ D2
(Case D1)

(D1,D2) ∈ Γ�∧∃D3 ∈ D (Γ� |= D1 ∼ D3∧Γ� |= D2 ∼ D3)

(Case D2)

(D2,D1) ∈ Γ�∧∃D3 ∈ D (Γ� |= D1 ∼ D3∧Γ� |= D2 ∼ D3)

(Case D3)

D1 ≡ D2
(Case D4)

Notice that by our initial assumption, there exist two at-
tributes A1,A2 ∈ A and two attributes D1,D2 ∈ D. Case A4
and D4 are due to the fact that A1,A2 and D1,D2 may corre-
sponding to the same attributes in A and D, respectively.

Totally we have sixteen different cases, and we need
to show that all of them lead to contradictions. One can

show that all of them contradict the Envelope property.
We demonstrate it for the case (A3-D2), while the other
cases are handled similarly. In Figure 21, we show instances
of the Envelope property. Recall that the Envelope prop-
erty says that if a graph has certain three edges, it must
have at least one of the other three edges. The instances we
show below lead to only one possible edge while the other
two violate some conditions above. The violated condition
is shown below each corresponding edge. Finally, we show
that there is an unsatisfiable instance of the Envelope prop-
erty.

We have exhaustively tested the other fifteen cases and
showed that similar contradictions can be derived for them,
too. ut

Envelope first edge second edge third edge
condition
(A2,B), (C,D2), (D2,B) (A2,D2) (C,A2)
(C,B) (D2-B) (C-A2)
(A2,D2), (C,D3), (D3,D2) (C,A2) (A2,D3)
(C,D2) (D3 ∼ D2) (C-A2)
(A3,B), (A2,D2), (D2,B) (A2,A3) (A3,D2)
(A2,B) (D2-B) (A2 ∼ A3)
(A3,D2), (A2,D3), (A3,D3) (D3,D2) (A2,A3)
(A2,D2) (D3 ∼ D2) (A2-A3)
(A2,D3), (C,D1), (A2,D1) (C,A2) (D1,D3)
(C,D3) (C-A2) (D1 ∼ D3)
(D1,D2), (A3,D3), (D3,D2) (A3,D1) (D1,D3)
(A3,D2) (D3 ∼ D2) (D1 ∼ D3)
(A3,D1), (A2,A1), (A2,A3) (A1,D1) (A3,A1)
(A2,D1) (A2 ∼ A3) (A1-D1) (A3 ∼ A1)

Fig. 21 Case A3-D2

Theorem 7. Let � ∈ FH , and T� be a normalized syn-
tax tree of �. Then �ext is a minimal p-extension of � iff
the syntax tree T�ext of �ext is obtained from T� by a single
application of a rule from Rule1, . . . , Rule4, followed by a
single-child node elimination if necessary.

To prove Theorem 7 we introduce the notions of frontier
nodes, and top and bottom components in a syntax tree.

Definition 17 The top and bottom components of a p-skyline
relation � are defined as follows:

1. if � is the atomic preference relation induced by an at-
tribute preference relation, then top = bottom = �;

2. if � = �1 & . . . & �m, then top = �1 and bottom =
�m.

Note that the notions of top and bottom components are
undefined for p-skyline relations defined as Pareto accumu-
lations of p-skyline relations.

Definition 18 Let T� be a normalized syntax tree of a p-
skyline relation �. Let also C1 and C2 be two different chil-
dren nodes of a ⊗ -node C in T�. Let �ext be a p-extension
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of �. Moreover, let the subgraphs of Γ� and Γ�ext induced
by Var(C1) be equal, as well as those induced by Var(C2).
Let X ∈Var(C1), Y ∈Var(C2) be such that

(X ,Y ) ∈ Γ�ext .

Then (C1,C2) is a frontier pair of T� w.r.t. T�ext .

Given a frontier pair (C1,C2) of T� w.r.t. T�ext , note that
Γ� |=Var(X)∼Var(Y ) by Proposition 4. By definition, a p-
skyline relation is constructed in a recursive way: a higher-
level relation is defined in terms of lower-level relations.
Hence, the intuition behind the frontier pair is as follows.
When � and �ext are constructed, the lower-level relations
�C1 and �C2 are present in both � and �ext . However, the
next-level relations defined using �C1 and �C2 in � and
�ext are different since Γ�ext has an edge from a member
of Var(�C1) to a member of Var(�C2), which is not present
in Γ�. The next lemma shows some properties of frontier
pairs.

Lemma 4 Let �ext be a p-extension of � ∈ FH , and T� be
a normalized syntax tree of�. Let also (C1,C2) (or (C2,C1))
be a frontier pair of T� w.r.t. T�ext . Denote the top and the
bottom components of C1 as A1,B1, and the top and the bot-
tom components of C2 as A2,B2. Then

(Var(A1),Var(B2)) ∈ Γ�ext ∨ (Var(A2),Var(B1)) ∈ Γ�ext

Proof. We consider the case of (C1,C2) being a frontier
pair of T� w.r.t. T�ext . The case of (C2,C1) is symmetric.
Since (C1,C2) is a frontier pair of T� w.r.t. T�ext , there are
X ∈Var(C1) and Y ∈Var(C2) such that

(X ,Y ) ∈ Γ�ext

Note that we have the following cases for X ∈Var(C1)

φ1 Var(C1) = {X}, i.e. (C1 = A1 = B1)
φ2 C1 = (A1 & . . . & B1), X 6∈Var(A1)

φ3 C1 = (A1 & . . . & B1), Var(A1) = {X}
φ4 C1 = (A1 & . . . & B1),

A1 = A1
1 ⊗ A2

1 . . ., X ∈Var(A1
1)

and for Y ∈Var(C2)

λ1 Var(C2) = {Y}, i.e. (C2 = A2 = B2)
λ2 C2 = (A2 & . . . & B2), Y 6∈Var(B2)

λ3 C2 = (A2 & . . . & B2), Var(B2) = {Y}
λ4 C2 = (A2 & . . . & B2)

B2 = B1
2 ⊗ B2

2 . . ., Y ∈Var(B1
2).

The cases φ1,φ2, and φ3 imply either (Var(A1),X) ∈
Γ�ext or Var(A1) = {X} and as a result (Var(A1),Y ) ∈ Γ�ext

by transitivity of Γ�ext . Similarly, the cases λ1,λ2, and λ3
imply either Var(B2) = {Y} or (Y,Var(B2)) ∈ Γ�ext . Thus

every combination of these cases implies (Var(A1), Var(B2))
∈ Γ�ext . Now consider the other combinations of the cases.
All of them are handled similar to the case (φ4, λ4), so we
consider it in detail.

Take the case λ4. Take Y ′ ∈ Var(B2)−Var(B1
2) and ap-

ply GeneralEnvelope to Γ�ext :

(Var(A2),Y ′)∈ Γ�ext ∧(Var(A2),Y )∈ Γ�ext ∧(X ,Y )∈ Γ�ext

which implies

(Var(A2),X) ∈ Γ�ext ∨ (X ,Y ′) ∈ Γ�ext ∨ (Y ′,Y ) ∈ Γ�ext .

(Y ′,Y ) 6∈ Γ�ext follows from Proposition 4 and the fact
that the subgraphs of Γ�ext and Γ� that are induced by Var(C2)

are the same. (Var(A2), X) ∈ Γ�ext and (X , Var(B1)) ∈ Γ�ext

(following from φ4) imply (Var(A2), Var(B1))∈ Γ�ext , which
is what we need. Hence, (Var(A2), Var(B1)) ∈ Γ�ext or (X ,
Y ′)∈ Γ�ext for all Y ′ ∈Var(B2)−Var(B1

2). Consider (X ,Y ′)∈
Γ�ext and pick Y ′′ ∈Var(B1

2). For such Y ′′ we have (Y ′,Y ′′) 6∈
Γ�ext by Proposition 4. Therefore, we get a condition for
GeneralEnvelope similar to the one above:

(Var(A2),Y ′′)∈Γ�ext ∧(Var(A2),Y ′)∈Γ�ext ∧(X ,Y ′)∈Γ�ext

implying

(Var(A2),X) ∈ Γ�ext ∨ (X ,Y ′′) ∈ Γ�ext ∨ (Y ′′,Y ′) ∈ Γ�ext .

(Y ′′,Y ′) 6∈ Γ�ext by the same argument as above. Simi-
larly to the above, (Var(A2),X) ∈ Γ�ext and (X , Var(B1)) ∈
Γ�ext imply (Var(A2), Var(B1)) ∈ Γ�ext , which is what we
need. As a result, we have (Var(A2), Var(B1)) ∈ Γ�ext or
(X , Y ′) ∈ Γ�ext ∧ (X , Y ′′) ∈ Γ�ext for all Y ′ ∈ Var(B2)−
Var(B1

2),Y
′′ ∈Var(B1

2), that is equivalent to

(Var(A2),Var(B1)) ∈ Γ�ext ∨ (X ,Var(B2)) ∈ Γ�ext .

Elaborating the case φ4 as above gives that

(Var(A2),Var(B1)) ∈ Γ�ext ∨ (Var(A1),Y ) ∈ Γ�ext .

After combining these two results and applying General-
Envelope to members of A1 and B2, we get

(Var(A1),Var(B2)) ∈ Γ�ext ∨ (Var(A2),Var(B1)) ∈ Γ�ext .

ut
Now we go back to the proof of Theorem 7.

Proof of Theorem 7
⇒ Let �ext be a minimal p-extension of �. We show here

that there is �′∈ FH obtained using a transformation rule
Rule1, . . . ,Rule4 such that

� ⊂ �′ ⊆ �ext . (20)

By the minimal p-extension property of �ext that implies
�′ = �ext .
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Theorem 4 implies that there are X and Y such that (X ,

Y ) ∈ E(Γ�ext )−E(Γ�). Let (C1,C2) be a frontier pair of T�
w.r.t. T�ext such that X ∈Var(C1) and Y ∈Var(C2). Lemma
4 implies that

(Var(A1),Var(B2)) ∈ Γ�ext ∨ (Var(A2),Var(B1)) ∈ Γ�ext

(21)

for the top A1,A2 and the bottom B1,B2 components of C1
and C2, correspondingly. Consider all possible types of C1
and C2. (i) Let C1,C2 be leaf nodes. Then �′ for which
(20) holds may be obtained by applying Rule3(T�,C1,C2)

(if the first disjunct of (21) holds) or Rule3(T�,C2,C1) (if
the second disjunct of (21) holds). (ii) Let C1 be a & -node
and C2 be a leaf node. Then �′ may be obtained by ap-
plying Rule1(T�,C1,C2) (if the first disjunct of (21) holds)
or Rule2(T�,C1,C2) (if the second disjunct of (21) holds).
Case (iii) when C1 is a leaf node and C2 is a & -node is
similar to the previous case. Consider case (iv) when C1
and C2 are & -nodes. Let the first disjunct of (21) hold.
The case of the second disjunct is analogous. We note that
(Var(A1),Var(B1)) ∈ Γ�ext and (Var(A2),Var(B2)) ∈ Γ�ext .
This with (21) is a condition for GeneralEnvelope:

(Var(A1),Var(A2)) ∈ Γ�ext ∨ (Var(A2),Var(B1)) ∈ Γ�ext ∨
(Var(B1),Var(B2)) ∈ Γ�ext

(22)

If the first disjunct of (22) holds, then �′ can be obtained by
applying Rule1(T�,C1,C2). If the last disjunct of (22) holds,
then �′ can be obtained by applying Rule2(T�,C2,C1). Let
the second disjunct of (22) hold, i.e. (Var(A2),Var(B1)) ∈
Γ�ext . Let the child nodes of C1 and C2 be the sequences
(A1 = N1, . . . ,Nm = B1) and (A2 = M1, . . . ,Mn = B2) corre-
spondingly. The fact that C1 and C2 are & -nodes implies
(Var(Ni),Var(N j)) ∈ Γ� and (Var(Mi),Var(M j)) ∈ Γ� for
all i< j. Since�⊆�ext , the same edges are present in Γ�ext .
Note that (M1,Nm) ∈ Γ�ext . Pick every child of C2 in its list
of children from right to left and find the first index t such
that (Var(N1),Var(Mt)) 6∈Γ�ext but (Var(N1),Var(Mt+1))∈
Γ�ext . If no such t exists, then (Var(N1),Var(M1)) ∈ Γ�ext

and �′ may be obtained by applying Rule1(T�,C1,C2). As-
sume t ∈ [1,n]. Similarly, let s be the first index such that
(Var(M1),Var(Ns)) 6∈Γ�ext but (Var(M1),Var(Ns+1))∈Γ�ext .
If s does not exist, then �′ may be obtained by applying
Rule2(T�,C2,C1). So assume s ∈ [1,m]. If both s and t are
equal to 1, then�′ may be obtained using Rule4(T�,C1,C2,s,
t). In all other cases, GeneralEnvelope can be used to
show that for all i∈ [1,s], j ∈ [t+1,n] (Var(Ni),Var(M j))∈
Γ�ext and for all i∈ [1, t], j ∈ [s+1,m] (Var(Mi),Var(N j))∈
Γ�ext . Hence Rule4(T�,C1,C2,s, t) may be used to construct
�′ext .
⇐ Show that every valid application of Rule1, . . . ,Rule4

results in a minimal extension. We do it by case analysis.

Take Rule3, which results in adding the edge from Ci to Ci+1
to the p-graph. This is clearly a minimal extension of the p-
graph and hence the resulting p-skyline relation is a mini-
mal extension of �. The analysis pattern for the remaining
rules is as follows. We assume that some p-extension �ext
obtained by an application of Rule1, Rule2, or Rule4 to � is
not minimal, i.e., there is �′ s.t. �⊂�′⊂�ext . After that, we
derive a contradiction that Γ�′ = Γ�ext . Take Rule1. Since�′
is an extension of� contained in�ext , there must be an edge
from some A ∈Var(N1) to some B in the bottom component
of Ci+1. Clearly, if Var(N1) = {A} and Var(Ci+1) = {B},
then Γ�′ = Γ�ext and we get the contradiction we want. So
assume Var(Ci+1) 6= {B}. Then applying GeneralEnve-
lope to

(A,Var(N2)) ∈ Γ�′ ∧ (A,Var(B)) ∈ Γ�′∧
(Var(Ti+1),B) ∈ Γ�′

(where Ti+1 is the top component of Ci+1) results in (A,
Var(Ti+1)) ∈ Γ�′ (and hence (A,Var(Ci+1)) ∈ Γ�′ by tran-
sitivity of Γ�′ ). The other alternatives are impossible: the
corresponding edges are missing in Γ�ext (and hence in Γ�′ ,
too). Clearly, if Var(N1) = {A}, then we get the contradic-
tion we need: Γ�′ = Γ�ext . So assume Var(N1) 6= {A}. De-
note S = Var(N1)−{A}. Then applying GeneralEnve-
lope to

(S,Var(N2)) ∈ Γ�′ ∧ (A,Var(N2)) ∈ Γ�′∧
(A,Var(Ci+1)) ∈ Γ�′

results in (S,Var(Ci+1)) ∈ Γ�′ . The other alternatives are
prohibited because the corresponding p-graph edges are not
in Γ�ext (and hence not in Γ�′ ). That results in (Var(N1),
Var(Ci+1))∈ Γ�′ and the contradiction that Γ�ext =Γ�′ . The
case analysis for Rule2 is similar.

Now let �ext be obtained from � by applying Rule4,
and consider a p-extension �′ of � s.t. �′⊂�ext . Because
of this assumption, Γ�′ has an edge from some A ∈Var(N1)

to some B ∈ Var(Mn) or from some C ∈ Var(M1) to some
D ∈ Var(Nm). Since these cases are completely symmetric,
take (A,B) ∈ Γ�′ . Applying GeneralEnvelope to

(A,Var(Ns+1)) ∈ Γ�′ ∧ (A,B) ∈ Γ�′∧
(Var(Mt),Var(Mn)) ∈ Γ�′

results in

(Var(Mt),Var(Ns+1)) ∈ Γ�′ (23)

since all the other alternatives are impossible – the corre-
sponding p-graph edges are not in Γ�ext – and hence not in
Γ�′ . Now apply GeneralEnvelope to

(Var(Mt),Var(Mt+1)) ∈ Γ�′ ∧ (Var(Mt),Var(Ns+1)) ∈ Γ�′∧
(Var(Ns),Var(Ns+1)) ∈ Γ�′ ,
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which results in

(Var(Ns),Var(Mt+1)) ∈ Γ�′ (24)

since all the other alternatives are impossible – the corre-
sponding p-graph edges are not in Γ�ext and hence not in
Γ�′ . (23), (24), and the transitivity of Γ�′ implies that Γ�′ =
Γ�ext , which is a contradiction. ut

Theorem 8. DF-PSKYLINE is NP-complete.

Proof. The favoring/disfavoring p-skyline existence prob-
lem is in NP since checking if a p-skyline relation � favors
G and disfavors W in O can be done in polynomial time by
evaluating ω�(O), checking G ⊆ ω�(O), and checking if
for every member of W there is a member of W dominating
it.

To show the hardness result, we do a polynomial-time
reduction from SAT. This is a two-step reduction. First, we
show that for every instance φ of SAT there are correspond-
ing instances of positive P and negative N constraints, and φ

has a solution iff P and N are satisfiable. Second, we show
that for every such P and N there are corresponding in-
stances of G, W , and O.

Consider instances of SAT in the following form

φ(x1, . . . ,xn) = ψ1(x1, . . . ,xn)∧ . . .∧ψm(x1, . . . ,xn)

where

ψt(x1, . . . ,xn) = x̂it ∨ . . .∨ x̂ jt

For every instance of φ, construct A = {c,y1,y1,y′1, . . . ,
yn,yn,y′n}. The sets of positive and negative constraints are
constructed as follows. Let Γ be a graph. For every variable
xi,

1. Create positive constraints

χi :(yi,c) ∈ Γ∨ (yi,c) ∈ Γ

πi :(yi,y′i) ∈ Γ

2. Create negative constraints

λ
1
i :(yi,yi) 6∈ Γ

λ
2
i :(yi,y′i) 6∈ Γ

λ
3
i :(y′i,c) 6∈ Γ

Now, for every ψt(x1, . . . ,xn) = x̂it ∨ . . .∨ x̂ jt of φ construct
the following positive constraint

µt : (ŷit ,c) ∈ Γ∨ . . .∨ (ŷit ,c) ∈ Γ

where ŷi =

{
yi if x̂i = xi
yi if x̂i = xi

.

We claim that there is a satisfying assignment (v1, . . . ,vn)

for φ iff there is a p-graph satisfying all the constraints above.

First, assume there is a p-graph Γ satisfying all the con-
straints above. Construct the assignment v = (v1, . . . ,vn) as
follows:

vi =

{
0 if (yi,c) ∈ Γ

1 if (yi,c) ∈ Γ
.

Since Γ satisfies all χi, for every i we have (yi,c) ∈ Γ

or (yi,c) ∈ Γ. Thus, every vi will be assigned to some value
according to the rule above. Now prove that vi is assigned
to only one value, i.e., we cannot have both (yi,c) ∈ Γ and
(yi,c) ∈ Γ. Since Γ satisfies πi, we have (yi,y′i) ∈ Γ. Thus
having both (yi,c) ∈ Γ and (yi,c) ∈ Γ and Envelope im-
plies

(yi,yi) ∈ Γ∨ (yi,y′i) ∈ Γ∨ (y′i,c) ∈ Γ.

However, the expression above violates the constraints λ1
i ,

λ2
i , λ3

i . Therefore, exactly one of (yi,c)∈Γ, (yi,c)∈Γ holds.
Take every µt . Since it is satisfied by Γ, the correspond-

ing ψi must be also satisfied by the construction of µt . There-
fore, φ is also satisfied.

Now assume that there is an assignment (v1, . . . ,vn) sat-
isfying φ. Show that there is a p-graph Γ� satisfying all the
constraints above. Here we construct such a graph.

For every i ∈ [1,n], draw the edge

(yi,c) ∈ Γ� if vi = 1, and (P1)

(yi,c) ∈ Γ�, otherwise (P2)

This satisfies the constraint χi. Moreover, all the constraints
µt are satisfied by the construction. Now, for every i ∈ [1,n],
draw the edge

(yi,y′i) ∈ Γ� (P3)

which satisfies the constraint πi. As a result, all positive con-
straints are satisfied. Moreover, none of the edges above vio-
lates any negative constraints. Thus, all the constraints above
are satisfied.

In addition to the edges above, let us draw the following
edges

1. for every i, j (i 6= j) such that vi = 0,v j = 0, draw the
edge

(yi,y′j) ∈ Γ� (P4)

It is clear that these edges do not violate any negative
constraints above.

2. for every i, j such that vi = 0,v j = 1, draw the edge

(yi,y j) ∈ Γ� (P5)

Since i 6= j, this edge does not violate any negative con-
straints above.
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Fig. 22 Example 19

It is easy to verify that the constructed graph Γ� satis-
fies SPO+Envelope and all the negative and positive con-
straints above.

Now let us show that there exist sets of objects O, G and
W which can be used to obtain the constraints χi, πi, λ1

i ,

λ2
i , λ3

i , µt . Assume that for every attribute in A ∈ A , its do-
main contains at least three numbers {−1,0,1}, and greater
values are to be preferred in the attribute preference relation
>A. Here we construct the sets G, W , M, and O =G∪W ∪M
that generate the positive and negative constraints above.

1. Let G consist of a single object g with all attributes val-
ues equal to 0.

2. Let W = {b1, . . . ,bn,u1, . . . ,un,w1, . . . ,wm} be construc-
ted as follows:

– for every i ∈ [1, . . . ,n], let all the attributes of bi be
equal to 0, except for the value of yi, which is −1,
and the value of y′i, which is 1.

– for every i ∈ [1, . . . ,n], let all the attributes of ui be
equal to 0, except for the value of yi,yi, which is −1,
and the value of c, which is 1.

– for every t ∈ [1, . . . ,m], let µt : (ŷit ,c) ∈ Γ ∨ . . . ∨
(ŷ jt ,c) ∈ Γ, where ŷi ∈ {yi,yi}. Let all attributes of
wt be equal to 0, except for the value of c, which is
1, and the values of ŷit , . . . , ŷ jt (whatever they are),
which are −1.

3. Let M = {m1
1,m

2
1,m

3
1, . . . ,m

1
n,m

2
n,m

3
n} be constructed as

follows. For all i ∈ [1, . . . ,n],
– Let all attributes of m1

i be 0, except for the value yi,
which is −1, and the value of yi which is 1.

– Let all attributes of m2
i be 0, except for the value of

yi, which is 1, and the value of y′i, which is −1.
– Let all attributes of m3

i are 0, except for the value of
y′i, which is 1, and the value of c, which is −1.

It can be easily shown that these sets of objects induce
the set of constructed constraints (see Example 19). ut

Example 19 Take n = 3 and

φ(x1,x2,x3) = (x1∨ x2∨ x3)∧ (x1∨ x2∨ x3).

Then A = {c,y1,y1,y′1,y2,y2,y′2,y3,y3,y′3}. The constraints
µ1,µ2 are

µ1 : (y1,c) ∈ Γ∨ (y2,c) ∈ Γ∨ (y3,c) ∈ Γ

µ2 : (y1,c) ∈ Γ∨ (y2,c) ∈ Γ∨ (y3,c) ∈ Γ

Take the assignment v = (1,0,1) satisfying φ. By construc-
tion above, we get the graph Γ as in Figure 22.Now let us
construct the sets G, W and M as above.

y1 y1 y′1 y2 y2 y′2 y3 y3 y′3 c
g 0 0 0 0 0 0 0 0 0 0
b1 0 -1 1 0 0 0 0 0 0 0
b2 0 0 0 0 -1 1 0 0 0 0
b3 0 0 0 0 0 0 0 -1 1 0
u1 -1 -1 0 0 0 0 0 0 0 1
u2 0 0 0 -1 -1 0 0 0 0 1
u3 0 0 0 0 0 0 -1 1 0 1
w1 -1 0 0 -1 0 0 0 -1 0 1
w2 0 -1 0 -1 0 0 -1 0 0 1
m1

1 -1 1 0 0 0 0 0 0 0 0
m2

1 1 0 -1 0 0 0 0 0 0 0
m3

1 0 0 1 0 0 0 0 0 0 1
m1

2 0 0 0 -1 1 0 0 0 0 0
m2

2 0 0 0 1 0 -1 0 0 0 0
m3

2 0 0 0 0 0 1 0 0 0 1
m1

3 0 0 0 0 0 0 -1 1 0 0
m2

3 0 0 0 0 0 0 1 0 -1 0
m3

3 0 0 0 0 0 0 0 0 1 1

Then G = {g}, W = {b1,b2,b3,u1,u2,u3,w1,w2}, M =

{m1
1, . . . ,m

3
3}. For W to be a set of inferior examples, g must

be preferred to each member of W . Take for instance, g� b1.
By Theorem 5, that is equivalent to (y1,y′1)∈ Γ�, which cor-
responds to π1. Similarly, g � u1 results in (y1,c) ∈ Γ� ∨
(y1,c) ∈ Γ�, which corresponds to χ1. g � w1 results in
(y1,c)∈ Γ�∨(y2,c)∈ Γ�∨(y3,c)∈ Γ�, which corresponds
to µ1. The other members of W are handled similarly (result-
ing in the remaining positive constraints).

For G to be superior, no member of M∪W must be pre-
ferred to g according to�. Clearly, for a p-skyline relation�
(which is an SPO), this is equivalent to saying that no mem-
ber of only M must be preferred to g: above we already have
constraints that g is preferred to every member of W , and
� is irreflexive. m1

1 6� g results in (yi,y1) 6∈ Γ�, which corre-
sponds to λ1

1. The other members of M are handled similarly,
resulting in the remaining negative constraints.

Proposition 5. Let � be a p-skyline relation, O a finite set
of tuples, and G and W, disjoint subsets of O. Then the next
two operations can be done in polynomial time:

1. verifying if � is maximal favoring G and disfavoring W
in O;

2. constructing a maximal p-skyline relation �ext that fa-
vors G, disfavors W in O and is a p-extension of � (un-
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der the assumption that � favors G and disfavors W in
O).

Proof. To check if � favors G and disfavors W in O, we
need to compute ω�(O), check G⊆ ω�(O), and verify that
for every o ∈W , there is o′ ∈ G such that o′ � o. All those
tasks can clearly be performed in polynomial time. If some
of these conditions fails, � is obviously not maximal. Oth-
erwise, we need to check if each of its minimal p-extensions
favors G and disfavors W . Note that since � disfavors W in
O, each of its p-extensions also disfavors W in O. Hence, �
is not maximal if at least one minimal p-extension favors G
in O, and it is maximal otherwise. Corollaries 2 and 3 im-
ply that all minimal p-extensions of � can be constructed in
polynomial time.

To construct a maximal p-extension �′ of �, we take
�, construct all of its minimal p-extensions and verify if at
least one of them favors G in O. If some of them does, we
select it and repeat for it the same procedure. We do it until
for some�′ none of its minimal p-extensions favors G in O.
This implies that�′ is a maximal p-skyline relation favoring
G and disfavoring W in O. Moreover, �′ is a superset of �
by construction. Corollaries 2, 3, and 4 imply that such a
computation can be done in polynomial time. ut

Theorem 9. FDF-PSKYLINE is FNP-complete

Proof. Given two disjoint subsets G and W of O and�∈FH ,
checking if � favors G and disfavors W in O can be done in
polynomial time (Lemma 5). Hence, FDF-PSKYLINE is in
FNP.

Now show that FDF-PSKYLINE is FNP-hard. To do
that, we use a reduction from FSAT. In particular, we find
functions R and S, both computable in logarithmic space,
such that 1) for each instance x of FSAT, R(x) is an in-
stance of FDF-PSKYLINE, and 2) for each correct output z
of R(x), S(z) is a correct output of x. For such a reduction,
we use the construction from the proof of Theorem 8. There
we showed how a relation (denote it as �) satisfying all the
constraints (and thus favoring/disfavoring the constructed G
and W ) may be obtained. In the current reduction, if there is
a p-skyline relation favoring G and disfavoring W in O, then
the relation� itself is returned. Otherwise, “no” is returned.

The function R mentioned above has to convert an in-
stance of FSAT to an instance of FDF-PSKYLINE (i.e., G,
W , and O). In the reduction shown in the proof of Theo-
rem 8, such a transformation is done via a set of constraints.
However, it is easy to observe that such a construction can
be performed using the corresponding instance of FSAT. By
the construction, the sets G, M, and the subset {b1, . . . ,bn,u1,

. . . ,un} of W are common for every instance of FSAT with
n variables. To construct the subset {w1, . . . ,wm} of W , one
can use the expression ψt instead of the corresponding con-
straint µt . It is clear that the function R performing such a
transformation can be evaluated in logarithmic space.

We construct the function S as follows. If the instance of
FDF-PSKYLINE returns “no”, S returns “no”. Otherwise,
it constructs the satisfying assignment (v1, . . . ,vn) in the fol-
lowing way: for every i, vi is set to 1 if the p-graph contains
the edge (yi,c) ∈ Γ�, and 0 otherwise. It is clear that such a
computation may be done in logarithmic space. ut

Theorem 10. OPT-FDF-PSKYLINE is FNP-complete
Proof. Given �∈ FH , checking if it is maximal favoring G
and disfavoring W can be done in polynomial time (Propo-
sition 5). Hence, OPT-FDF-PSKYLINE is in FNP.

We reduce from FDF-PSKYLINE to show that it is FNP-
hard. Here we construct the function F that takes a p-skyline
relation or “no” and returns a p-skyline relation or “no”. F
returns “no” if its input is “no”. If its input is a p-skyline re-
lation �, it returns a maximal p-extension of � as shown in
Proposition 5. As a result, F returns a maximal favoring/dis-
favoring p-skyline relation iff the corresponding favoring/dis-
favoring p-skyline relation exists. The functions R and S
transforming inputs of FDF-PSKYLINE to inputs of OPT-
FDF-PSKYLINE and outputs of OPT-FDF-PSKYLINE to
outputs of FDF-PSKYLINE correspondingly are trivial and
hence are computable in logspace. Therefore, the problem
OPT-FDF-PSKYLINE is FNP-complete. ut

Proposition 7. Let a relation � ∈ FH be a maximal M-
favoring relation, and a p-extension�ext of� be (M∪{A})-
favoring. Then every edge in E(Γ�ext )− E(Γ�) starts or
ends in A.
Proof. Take Γ�ext and construct Γ′ from it by removing all
edges going from or to A. Clearly, Γ′ is an SPO. Now con-
sider the Envelope property. Pick four nodes of Γ� differ-
ent from A. Since Γ�ext is a p-graph, the Envelope prop-
erty holds for the graph induced by these four nodes in Γ�ext .
Envelope also holds for the corresponding subgraph of
Γ′. Thus, Γ′ satisfies the Envelope property as well, i.e.,
it’s a p-graph of a p-skyline relation�′. Moreover, E(Γ�)⊆
E(Γ�′) since Γ� has no edges from/to A and E(Γ�)⊆E(Γ�ext ).
Since� is maximal M-favoring, E(Γ�) = E(Γ′). Therefore,
all edges in E(Γ�ext )−E(Γ�) go from or to A. ut
Proposition 8. Let a relation � ∈ FH satisfy a system of
negative constraints N . Construct the system of negative
constraints N ′ from N in which every constraint τ′ ∈ N ′

is created from a constraint τ of N in the following way:

– Lτ′ = Lτ

– Rτ′ = Rτ−{B ∈ Rτ | ∃A ∈ Lτ ((A,B) ∈ Γ�}).
Then every p-extension �′ of � satisfies N iff �′ satisfies
N ′.
Proof.
⇐ Take τ′ from N ′ with the corresponding τ ∈ N . By

construction, Lτ = Lτ,Rτ′ ⊆Rτ. Now assume�′ satisfies τ′.
This means that

∃B ∈ Rτ′ ∀A ∈ Lτ′ ((A,B) 6∈ Γ�′) (25)
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Now recall that Rτ′ ⊆ Rτ. Thus B ∈ Rτ. This together with
Lτ = Lτ′ and (25) gives

∃B ∈ Rτ ∀A ∈ Lτ ((A,B) 6∈ Γ�′),

i.e., Γ�′ satisfies τ.
⇒ Now let �′ satisfy τ. This means

∃B ∈ Rτ ∀A ∈ Lτ ((A,B) 6∈ Γ�′) (26)

Since � ⊆ �′, E(Γ�) ⊆ E(Γ�′). Thus, if there is no edge
from Lτ to B in Γ�′ , then there is no such edge in its subset
Γ�. Recall that τ′ is a minimized version of τ w.r.t. �. Thus,
the lack of edge from Lτ to B in Γ� implies B ∈ Rτ′ . This
together with Lτ = Lτ′ and (26) gives

∃B ∈ Rτ′ ∀A ∈ Lτ′ ((A,B) 6∈ Γ�′),

i.e., Γ�′ satisfies τ′. ut

Proposition 9. Let a relation � ∈ FH satisfy a system of
negative constraints N , and N be minimal w.r.t. �. Let
�′ be a p-extension of � such that every edge in E(Γ�′)−
E(Γ�) starts or ends in A. Denote the new parents and chil-
dren of A in Γ�′ as PA and CA correspondingly. Then �′
violates N iff there is a constraint τ ∈N such that

1. Rτ = {A}∧PA∩Lτ 6= /0, or
2. A ∈ Lτ∧Rτ ⊆CA

Proof.
⇐ Trivial since the two conditions above imply violation

of N ′ by �.
⇒ Assume that there is no constraint τ for which the two

conditions hold, but some τ′ ∈N is violated, i.e.,

ChΓ�(Lτ′)⊇ Rτ′ .

By Theorem 4, E(Γ�)⊂ E(Γ�′). We also know that all the
new edges in Γ�′ start or end in A. Since Γ� satisfies τ′ but
Γ�′ does not, we get that either A ∈ Lτ′ or A ∈ Rτ′ . If A is in
Rτ′ then the fact that τ′ is violated by Γ�′ implies that Rτ′ =

{A}. Moreover, the fact that τ′ is minimal w.r.t. � implies
PA ∩Lτ′ 6= /0. If A ∈ Lτ′ , then the minimality of τ′ implies
that τ′ is violated because of Rτ′ ⊆CA. ut

Theorem 11. The function elicit returns a syntax tree of
a maximal p-skyline relation favoring G in O. Its running
time is O(|N | · |A |3).
Proof. First, we prove that elicit always returns a max-
imal p-skyline relation satisfying N . By construction, the
p-skyline relation returned by elicit satisfies the con-
structed system of negative constraints N . Now prove that
� returned by elicit is a maximal p-skyline relation sat-
isfying N . A simple case analysis shows that push picks
every p-skyline relation

S⊗start

S3

Rule3 S&

Rule1,Rule2 Rule1,Rule2

Fig. 23 Using push for computation of a maximal (M ∪ {A})-
favoring p-skyline relation

1. which is a minimal p-extension of � represented by the
parameter T , and

2. whose p-graph has only edges going between the nodes
M∪{A},

until it finds one not violating N (of course, given the fact
that the p-skyline relation, whose p-graph is obtained from
Γ� by removing edges going to/from A, is maximal M-fa-
voring). Recall that T constructed in line 2 of elicit rep-
resents a maximal M-favoring p-skyline relation satisfying
N , for a singleton M. Now assume that T� at the end of
some iteration of the for-loop of elicit represents a non-
maximal M1-favoring p-skyline relation �. Take the first
such an iteration of the for-loop. It implies that there is an
M1-favoring p-skyline relation �∗ which strictly contains �
and satisfies N . By Theorem 4, E(Γ�∗) also strictly contains
E(Γ�). Take an edge (X ,Y ) ∈ Γ�∗ which is not in E(Γ�).
Let�′ be the relation constructed in the for-loop in elicit
when A was equal to X or Y , whatever was the last one. Take
the corresponding set of attributes M2. According to the ar-
gument above, �′ is maximal M2-favoring. Since �′ ⊆ �,
Γ�′ does not contain the edge (X ,Y ). At the same time, if
we take Γ�∗ and leave in it only the edges going to and from
the elements of M2, it will strictly contain Γ�′ and not vio-
late N . Hence, �′ is not maximal M2-favoring, which is a
contradiction. That implies that elicit returns a maximal
A-favoring (or simply favoring) p-skyline relation satisfying
N .

Now let us show that the running time of the algorithm
is O(|N | · |A |3). First, let us consider the running time of
the sub-procedures. The running time of minimize and
checkConstr is O(|N | · |A |). The time needed to modify
the syntax tree using a transformation rule is O(|A |): ev-
ery rule creates, deletes, and modifies a constant number of
nodes of a syntax tree, but updating their Var-variables is
done in O(|A |). Similarly, syntax tree normalization runs in
time TnormalizeTree = O(|A |) for such modified syntax trees.
As a result, the time needed to execute the bodies of the
loops (lines 5-8, 11-14, 18-36) of push is Trule = O(|N | ·
|A |).

Now let T be a syntax tree of a maximal M-favoring p-
skyline relation. Consider the way push is used in elicit
to construct a maximal (M ∪{A})-favoring p-skyline rela-
tion. The state diagram of this process is shown in Figure
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23. It has three states: S⊗ and S& which correspond to T in
which A is a child of a ⊗- and &-node, respectively; and S3
which corresponds to the case when no transformation rule
can be applied to T , or every rule application violates N .

The starting state is S⊗, because in the starting T , A is a
child of the topmost⊗-node. After applying the transforma-
tion rules Rule1 and Rule2 in lines 21 and 25 respectively, A
becomes a child node of another ⊗-node of the modified T .
After applying Rule3 (lines 30 and 34), A becomes a child
of a &-node in the modified T , and we go to the state S&.
When in S&, we can only apply Rule1 or Rule2 from lines 6
and 12 respectively. Note that after applying these rules, A is
still a child of the same &-node in the modified T . When no
rule can be applied to T at some state, we go to the accepting
state S3 and return f alse.

Consider the total number of nodes of T enumerated in
the loops (lines 4-8, 10-14, and 17-36) of push to construct
a maximal (M∪{A})-favoring p-skyline relation. Note that
when we go from S⊗ to S⊗ by applying Rule1 or Rule2, A be-
comes a descendent of the ⊗-node whose child it was origi-
nally. Hence, when in S⊗ we enumerate the nodes Ci to apply
Rule1 or Rule2 to, we never pick any Ci which we picked in
the previous calls of push. In the process of going from S&
to itself via an application of Rule1 or Rule2, we may enu-
merate the same node Ci+1 more than once because A does
not change its parent &-node as a result of these applica-
tions. To avoid checking these rules against the same nodes
Ci+1 more than once, one can keep track of the nodes which
have already been picked and tested.

The total number of nodes in a syntax tree is O(|A |),
hence the tests Var(Ci+1)⊆M (lines 4, 10) and Var(Ci)⊆M
(line 17) are performed O(|A |) times and the rules are ap-
plied to the tree O(|A |) times. Each of the containment tests
above requires time O(|A |), given the bitmap representa-
tion of sets. Hence, to compute the syntax tree of a maxi-
mal (M∪{A})-favoring from the syntax tree of a maximal
M-favoring p-skyline relation, we need time O(|N | · |A |2).
Finally, the running time of elicit is O(|N | · |A |3). ut

Theorem 12. NEG-SYST-IMPL is co-NP complete

Proof. We show that checking the existence of �∈ FH sat-
isfying N1 but not satisfying N2 is NP-complete. Clearly,
this problem is in NP: we can guess �∈ FH and in polyno-
mial time check if it satisfies every τ ∈N1 (i.e., if there is a
member of Rτ which has no parent in Lτ) but violates some
τ′ ∈N2. Now prove that checking if there’s � satisfying N1
but violating N2 is NP-hard.

Here we show the reduction from SAT. Consider instan-
ces of SAT in the following form

ϕ(x1, . . . ,xn) = φ1(x1, . . . ,xn)∧ . . .∧φm(x1, . . . ,xn)

where

φt(x1, . . . ,xn) = x̃it ∨ . . .∨ x̃ jt

and x̃i ∈ {xi,xi}. For every instance ϕ, we construct

A = {x1,x1, . . . ,xn,xn,T,F}.

Construct N1 as follows:

1. for every φt(x1, . . . ,xn)= x̃it ∨. . .∨ x̃ jt , create a constraint
τ1

t as follows:

L
τ1

t
= {F}

R
τ1

t
= {x̃it , . . . , x̃ jt}

2. for every variable xi of ϕ, create two constraints τ2
i and

τ3
i :

L
τ2

i
= {T}

R
τ2

i
= {xi,xi}

and

L
τ3

i
= {F}

R
τ3

i
= {xi,xi}

Now we construct N2 consisting of a single constraint κ

as follows.

Lκ = {T,F}
Rκ = {xi,xi, . . . ,xn,xn}

We prove that there is a satisfying assignment to ϕ iff
there is a p-graph Γ satisfying N1 and not satisfying N2.
First, assume that there is a satisfying assignment y = (y1,

. . . , yn) to ϕ. We construct the graph Γ as follows. For every
i ∈ [1,n],

1. if yi = 1, then (T,xi) ∈ Γ and (F,xi) ∈ Γ;
2. if yi = 0, then (F,xi) ∈ Γ and (T,xi) ∈ Γ;
3. Γ has no other edges.

Clearly, Γ satisfies SPO (every node has either an incom-
ing or outgoing edge, but not both) and Envelope (every
node has at most one incoming edge) and hence is a p-graph.
We show that Γ satisfies N1.

1. Consider every constraint τ1
t for every φt(x1, . . . ,xn) =

x̃it ∨ . . .∨ x̃ jt . Since y satisfies φt , at least one of the con-
juncts of φt (say, x̃it ) is 1. If x̃it = xit , then yit = 1, and
(F,xit ) 6∈ Γ by construction. If x̃it = xit , then yit = 0 and
(F,xit ) 6∈ Γ. Hence, τ1

t is satisfied.
2. Consider τ2

i and τ3
i for every xi. By construction of Γ,

they are satisfied because it cannot be the case that (T ,
xi) ∈ Γ and (T,xi) ∈ Γ or (F,xi) ∈ Γ and (F,xi) ∈ Γ.
Hence, τ2

i and τ3
i are satisfied.
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Now consider N2 and the constraint κ. By construction, for
every i ∈ [1,n], the component yi of y is set to 0 or 1. Hence,
(T,xi) ∈ Γ and (F,xi) ∈ Γ or (T,xi) ∈ Γ and (F,xi) ∈ Γ.
Therefore, κ is violated by Γ.

Now we show that if N1 is satisfied by a p-graph Γ and
N2 is not, then there is a satisfying assignment y to ϕ. Take
such a p-graph Γ. We construct y as follows:

yi =

{
1 if (T,xi) ∈ Γ

0 if (F,xi) ∈ Γ,

First, we show that yi is well defined, i.e., exactly one
of the following holds for every i ∈ [1,n]: (T,xi) ∈ Γ and
(F,xi) ∈ Γ. Since κ ∈N2 is violated by Γ, for every i ∈ [1,n]

∀i ∈ [1,n] ((T,xi) ∈ Γ∨ (F,xi) ∈ Γ)∧
((T,xi) ∈ Γ∨ (F,xi) ∈ Γ) (27)

Since N1 is satisfied,

∀i ∈ [1,n] ((T,xi) 6∈ Γ∨ (T,xi) 6∈ Γ), (28)

which follows from the satisfaction of τ2
i , and

∀i ∈ [1,n] ((F,xi) 6∈ Γ∨ (F,xi) 6∈ Γ), (29)

which follows from the satisfaction of τ3
i . Therefore, (27),

(28), and (29) imply

∀i ∈ [1,n] ((T,xi) ∈ Γ∧ (F,xi) 6∈ Γ∧ (F,xi) ∈ Γ∧
(T,xi) 6∈ Γ∨ (F,xi) ∈ Γ∧ (T,xi) 6∈ Γ∧
(T,xi) ∈ Γ∧ (F,xi) 6∈ Γ) (30)

Now we show that y satisfies ϕ. Since every τ1
t is satis-

fied, at least one of conjuncts of φt (say, x̃it ) does not have an
incoming edge from F . If x̃it = xit (i.e., (F,xit ) 6∈ Γ) then by
(30) (T,xit ) ∈ Γ and hence yit = 1. Thus φt is satisfied. Sim-
ilarly, if x̃it = xit then (F,xi) ∈ Γ and hence yit = 0. Thus φt
is satisfied. Finally, ϕ is satisfied. Hence, we proved coNP-
completeness of NEG-SYST-IMPL. ut

Theorem 13. SUBSET-EQUIV is co-NP complete

Proof. The co-NP-completeness of SUBSET-EQUIV fol-
lows from the co-NP-completeness of NEG-SYST-IMPL.
Namely, the membership test is the same as in NEG-SYST-
IMPL. To show co-NP-hardness of SUBSET-EQUIV, we
reduce from NEG-SYST-IMPL. We use the observation that
N1 implies N2 iff N1∪N2 is equivalent to N1. ut


