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Integrity constraints

Integrity constraints describe valid database instances.

Here:

• functional dependencies: “every student has a single address.”

• denial constraints: “no employee can make more than her

manager.”

• referential integrity: “students can enroll only in the offered

courses.”

The constraints are formulated in first-order logic:

∀n, s,m, s′,m′.¬[Emp(n, s,m) ∧ Emp(m, s′,m′) ∧ s > s′].
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Inconsistent databases

There are situations when we want/need to live with inconsistent data

in a database (data that violates given integrity constraints):

• integration of heterogeneous databases with overlapping

information

• the consistency of the database will be restored by executing

further transactions

• inconsistency wrt “soft” integrity constraints (those that we hope

to see satisfied but do not/cannot check) process

How to distinguish between reliable and unreliable information in an

inconsistent database?
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Goals

A formal definition of reliable (“consistent”) information in an

inconsistent database.

Computational mechanisms for obtaining consistent information.

Computational complexity analysis.

Implementation:

• preferably using DBMS technology
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Plan of the talk

1. repairs and consistent query answers

2. computing consistent query answers to quantifier-free queries

3. why quantification is difficult

4. related and further work
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Consistent query answers

[Arenas, Bertossi, Chomicki, PODS’99]

Repair:

• a database that satisfies the integrity constraints

• difference from the given database is minimal (the set of

inserted/deleted facts is minimal under set inclusion)

A tuple (a1, . . . , an) is a consistent query answer to a query

Q(x1, . . . , xn) in a database r if it is an element of the result of Q in

every repair of r.
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Geography Bee database

GeoBee

Continent Discoverer LandArea

N. America C. Columbus 24M

N. America L. Ericson 24M

Australia J. Cook 8M

Functional dependency:

Continent → Discoverer

Repairs:

N. America C. Columbus 24M

Australia J. Cook 8M

N. America L. Ericson 24M

Australia J. Cook 8M
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Query languages and integrity constraints

Ultimately: SQL2.

Here:

• quantifier-free queries (equivalently: relational algebra without

projection)

• denial integrity constraints:

∀¬(P1(x̄1) ∧ · · · ∧ Pn(x̄n) ∧ φ)
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Consistent query answers

GeoBee(C,D,A)
⇒ Australia J. Cook 8M

GeoBee(C, ′L.Ericson′, 24M) ∨GeoBee(C, ′C.Columbus′, 24M)

⇒ N. America

∃D. GeoBee(C,D,A)
⇒

N. America 24M

Australia 8M
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There are too many repairs to evaluate the query in each of them.

A B

a1 b1

a1 b′1

a2 b2

a2 b′2

· · ·

an bn

an b′n

Under the functional dependency A→ B, this instance has 2n repairs.
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Computing consistent query answers

Query transformation: given a query Q and a set of integrity

constraints, construct a query Q′ such that for every database instance

r

the set of answers to Q′ in r = the set of consistent answers

to Q in r.

Representing all repairs: given a set of integrity constraints and a

database instance r:

1. construct a space-efficient representation of all repairs of r

2. use this representation to answer (many) queries.

Specifying repairs as logic programs.

11



Conflict hypergraph

Vertices:

• facts in the original instance.

Edges:

• (minimal) sets of facts that violate some constraint.

Repair: a maximal independent set.
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N. America C. Columbus 24M

Australia J. Cook 8M

N. America L. Ericson 24M
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Ground queries

Observations:

• the query is in CNF ⇒ each conjunct can be processed separately

• all repairs satisfy Φ ⇔ no repair satisfies ¬Φ

Algorithm HProof:

1. ¬Φ = P1(t1) ∧ · · · ∧ Pm(tm) ∧ ¬Pm+1(tm+1) ∧ · · · ∧ ¬Pn(tn)

2. find a repair including P1(t1), . . . , Pm(tm) and excluding

Pm+1(tm+1), . . . , Pn(tn) by enumerating the appropriate edges.

Excluding a fact A:

• A is not in the original instance, or

• A belongs to an edge {A,B1, . . . , Bk} in the conflict hypergraph

and B1, . . . , Bk belong to the repair.

14



Properties of HProof

Algorithm HProof works in PTIME (data complexity):

• n−m choices from a set of polynomial size

• if all choices successful, a repair can be completed.

Generalizing to open queries:

• how to generate bindings for free variables?
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In the presence of negation (set difference), there may be consistent

query answers which are not query answers in the original instance.

Database schema: R(AB), , S(ABC).

Integrity constraint over R: A→ B.

Query: S − (R(A,B1) ./
B1 6=B2

R(A,B2)).

Instance: {R(a, b), R(a, c), S(a, b, c)}.

Query answers: ∅

Consistent query answers: {(a, b, c)}
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Upper envelope

Construct an upper envelope query U(Q) such that the set of answers

to U(Q) in r is

• a superset of the set of consistent answers to Q in r

• a superset of the set of answers to Q in r.

U(R) = R

U(E1 ∪ E2) = U(E1) ∪ U(E2)

U(E1 × E2) = U(E1)× U(E2)

U(σχ(E)) = σχ(U(E))

U(E1 − E2) = U(E1).
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Q : σ,∪,−,×

Upper Envelope

Q′
: σ,∪,×

Evaluation

Conflict Detection

DB

Translation

Qc : ∧,∨,¬

Candidates

Conflict Graph

Grounding

Alg. HProof

Consistent Answers18



Comparison with query transformation

Query transformation (QT) Conflict hypergraph (CH)

Integrity constraints Binary universal Denial

Queries σ,×,− σ,×,−,∪

Preliminary experimental results:

• optimized query QT (outerjoins) generally faster than optimized

CH

• time required by CH grows slower with the instance size than the

time required by QT

19



Further extensions

Beyond denial constraints:

• how to compactly represent all repairs?

• the same approach works if non-denial constraints can be repaired

first:

– key and foreign constraints, with one key per relation

Quantifiers in queries:

• co-NP-hardness
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Data complexity of consistent query answers

Chomicki, Marcinkowski [submitted]:

Queries Functional dependencies Denial constraints

|F | = 1 |F | ≥ 2

σ,×,−,∪ PTIME PTIME PTIME

π, σ,× (no join) PTIME co-NP-complete co-NP-complete

π, σ,× (join) co-NP-complete co-NP-complete co-NP-complete
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Specifying repairs as logic programs

Arenas, Bertossi, Chomicki [FQAS’00]:

• using logic programs negation and disjunction

• implemented using main-memory LP systems (dlv, Smodels)

• Πp
2-complete problems

Scope:

• arbitrary universal constraints, inclusion dependencies

• arbitrary first-order queries

• queries can be “modalized” and nested

Also Greco and Zumpano [LPAR’00, ICLP’01] and Barcelo and

Bertossi [NMR’02, PADL’03].
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Related work

Belief revision:

• revising database with integrity constraints

• revised theory changes with each database update

• emphasis on semantics (AGM postulates), not computation

• complexity results [Eiter, Gottlob, AI’92] do not quite transfer

Disjunctive information:

• repair ≡ possible world (sometimes)

• using disjunctions to represent resolved conflicts

• query languages: representation-specific, relational algebra or

calculus

• complexity results [Imielinski et al., JCSS’95] do not quite transfer
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Future work

Broadening scope:

• SQL:

– relational algebra and aggregation

– integrating different techniques

– keys and foreign keys

• preferences:

– source rankings

– timestamps

• alternative semantics:

– repairing attribute values [Wijsen, ICDT’03]

– minimum-cardinality changes
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New paradigms:

• data integration and exchange:

– Bertossi, Chomicki, Cortes, Gutierrez [FQAS’02]

– Bravo, Bertossi [IJCAI’03]

– Cali, Lembo, Rosati [PODS’03]

• data cleaning

• evidence databases

• XML

• spatial/spatiotemporal databases
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