
Conflict Resolution in Policy
Management

Jan Chomicki

University at Buffalo

State University of New York

http://www.cse.buffalo.edu/~chomicki

Joint work with Jorge Lobo, Bell Labs, and Shamim Naqvi, Convexant.

1



Policies

Policies are collections of general principles specifying the desired

behavior of a system. Potential application areas:

• communications, network management and monitoring (IETF)

• electronic commerce (IBM CommonRules)

• security and access management.

Examples:

• If a fax from the Chicago office arrives at the main office fax

machine, redirect the fax to Joe’s office fax machine.

• As soon as an order is received, the ordered product should be mailed

and the customer’s credit card charged. Defective products shouldn’t

be mailed.

2



Policy management

Policy execution:

• evaluation

• conflict detection and resolution

Policy maintenance:

• specification

• modification

• analysis

• ...

3



PDL

PDL policies defined as sets of Event-Condition-Action rules.

The policy:

If a fax from the Chicago office arrives at the main office

fax machine, redirect the fax to Joe’s office fax machine.

is specified in PDL as:

arrivedFaxOff causes sendFaxJoeOff (arrivedFaxOff.content)

if arrivedFaxOff.from = “Chicago”.

4



Action conflicts

A policy manager may specify that several actions cannot be

simultaneously executed.

Example:

requestRes causes processRes(requestRes.user)

Two simultaneous reservation requests cannot both be satisfied:

never processRes(User1 ) ∧ processRes(User2 ) if User1 6= User2 .

Reserved resources: bandwidth, airport runway,...

5



Action constraints

Syntax:

never A1 ∧A2 ∧ · · · ∧An if C

Logical reading:

∀¬(A1 ∧A2 ∧ · · · ∧An ∧ C)

6



Conflict resolution

A monitor detects and resolves conflicts among the actions

generated by a policy.

Set of events

Set of actions Consistent set of actions

Policy

Monitor

7



Classes of monitors

Different resolution strategies.

Action-based monitors:

• blocking a conflicting action (action cancellation monitor)

• delaying a conflicting action (action delay monitor)

Event-based monitors:

• ignoring the events causing a conflicting action(event

cancellation monitor)

• postponing the events that cause a conflicting action (event

delay monitor)

8



Example

Policy:

defectiveProduct causes stop

orderReceived causes mailProduct

orderReceived causes chargeCreditCard

Constraint:

never stop ∧mailProduct

The customer does not want to be charged if an ordered defective

product is not mailed!

9



Adding the constraint

never stop ∧ chargeCreditCard

does not work for a slightly modified policy:

defectiveProduct causes stop

orderReceived causes mailProduct

orderReceived causes chargeCreditCard

callCompleted causes chargeCreditCard

10



Unobtrusiveness

An unobtrusive monitor mimicks the policy on some subset E ′ of

input events:

• input event e ∈ E′: every action caused by e succeeds

• input event e 6∈ E′: every action caused by e fails unless it is

also caused by an event in E′

Set of events Reduced set of events

Set of actions Consistent set of actions

Policy

Monitor

Policy

11



“Transactional” semantics for policies

transaction ≡ action:

• actions independently blocked or delayed

• the user can detect a conflict

• implemented by action-based monitors

transaction ≡ event + actions caused:

• actions connected through common events

• conflicts invisible to the user

• implemented by event-based monitors

12



Highlights of the talk

1. syntax and semantics of PDL

2. definition of monitors (event conjunction only):

• axiomatic

• algorithmic

3. extensions:

• negation, history-based policies

4. implementation

5. related work:

• policies, events, rules, agents

6. conclusions and further work

13



PDL: syntax

Policy: a set of Event-Condition-Action rules.

Events:

• application-defined

• atomic or composite

• atomic events can have attributes

• composite events: conjunction, negation, sequence,

relax-sequence.

Conditions: built-in predicates for comparing attribute values.

Actions are uninterpreted: they correspond to arbitrary procedure

calls.

14



PDL: semantics

Event conjunction and negation only.

Epoch: a finite set of simultaneous input events.

The semantics of a policy P is a mapping πP associating with

every possible epoch a set of actions.

This mapping is specified using a translation to (a variant of)

Datalog.

15



Translation to Datalog

A PDL rule

e1& · · ·&en causes a if C(t1, . . . , tk)

is translated to:

occ(e′1) ∧ · · · occ(e
′
n) ∧ C(t

′
1, . . . , t

′
k)→ exec(a(t

′
1, . . . , t

′
k))

Event and term translation(e′i and t′j):

• attribute notation → positional

• negation elimination: !e → not e

16



Example

The PDL rule

requestRes causes processRes(requestRes.user)

if requestRes.user 6= intruder

is translated to

occ(requestRes(U)) ∧ U 6= intruder → exec(processRes(U))

17



How to define monitors?

Axiomatically: disjunctive logic programs.

Algorithmically: nondeterministic imperative programs.

18



Axiomatic conflict resolution

Limitations:

• event conjunction only.

Cancellation monitors are defined by augmenting the Datalog

translation of a policy by:

• conflict rules

• blocking rules (not needed for action cancellation)

• accepting rules.

The accepted actions are output.

19



Conflict rules

Constraint

never a1 ∧ . . . ∧ an if C

is translated into the conflict rule:

exec(a1) ∧ . . . ∧ exec(an) ∧ C → block(a1) ∨ . . . ∨ block(an)

Example:

never stop ∧mailProduct

translated to

exec(stop) ∧ exec(mailProduct)→ block(stop) ∨ block(mailProduct)

20



Action cancellation

For each action a occurring in a policy rule, there is an accepting

rule:

exec(a) ∧ ¬block(a)→ accept(a)

21



Event cancellation

Each policy rule of the form

e1& . . .&en causes a if C

is translated into a blocking rule

occ(e1) ∧ . . . ∧ occ(en) ∧ block(a) ∧ C → ignore(e1) ∨ . . . ∨ ignore(en)

and an accepting rule

occ(e1) ∧ . . . ∧ occ(en) ∧ C ∧ ¬ignore(e1) ∧ . . . ∧ ¬ignore(en)→ accept(a)

22



Policy translation:

occ(defectiveProduct) → exec(stop)

occ(orderReceived) → exec(mailProduct)

occ(orderReceived) → exec(chargeCreditCard)

Conflict rule:

exec(stop) ∧ exec(mailProduct) → block(stop) ∨ block(mailProduct)

Blocking rules:

occ(defectiveProduct) ∧ block(stop) → ignore(defectiveProduct)

occ(orderReceived) ∧ block(mailProduct) → ignore(orderReceived)

occ(orderReceived) ∧ block(chargeCreditCard) → ignore(orderReceived)

Accepting rules:

occ(defectiveProduct) ∧ ¬ignore(defectiveProduct) → accept(stop)

occ(orderReceived) ∧ ¬ignore(orderReceived) → accept(mailProduct)

occ(orderReceived) ∧ ¬ignore(orderReceived) → accept(chargeCreditCard)

23



Conjunction of events

The rule:

dial & charge causes connect

is translated to:

occ(dial) ∧ occ(charge) ∧ block(connect) → ignore(dial) ∨ ignore(charge)

occ(dial) ∧ occ(charge) ∧ ¬ignore(dial) ∧ ¬ignore(charge) → accept(connect)

24



Correspondence result

Theorem 1.

For both action and event cancellation, every minimal

model of the augmented Datalog translation specifies a

maximal monitor of the policy (and vice versa).

Maximal monitor: preserves as many actions (events) as possible

without violating constraints.

25



Algorithm for action cancellation

Algorithm 1 Action Cancellation Monitor

begin

A := ∅

U := πP (E)

while true do

select a ∈ U −A such that A ∪ {a} |= AC

if select successful then A := A ∪ {a}

else break

end

end

26



Algorithm for event cancellation

Algorithm 2 Event Cancellation Monitor

begin

E
′ := ∅

while true do

select e ∈ E − E
′ such that πP (E

′ ∪ {e}) |= AC

if select successful then E
′ := E

′ ∪ {e}

else break

end

A := πP (E
′)

end

27



Negation

Problems:

• a policy may fail to have a monitor at all

• ignoring events may trigger new actions

Solution:

• ignoring an event makes it undefined

28



History-based policies

Temporal dimensions:

• sequence events

• delay monitors

• temporal action constraints

Event history Reduced event history

Action history Consistent action history

Policy

Monitor

Policy

29



Monitors for history-based policies

Axiomatic approach: Datalog1S .

Algorithmic approach: easy extensions.

30





Related work

Event notification systems and languages:

• rich syntax (events), informal semantics

• explicit conflict resolution only recently addressed

• typically static, not dynamic, conflicts

Production rules:

• resolution of rule conflicts

• interpreted actions

• simple event model

• meta-language for controlling rule executions [Jagadish, Mendelzon,

Mumick, PODS’96].

31



Agent-based systems

Policies are simple reactive agents.

Commands can be viewed as events.

Action constraints determined by the physical or virtual

environment.

Unobtrusiveness: no partially executed commands.

[Eiter, Subrahmanian, Pick, AI Journal, 1999]:

• deontic specifications of agent systems

• action cancellation monitors (w/o logical framework)

• only atomic events

32



Unobtrusive agents

Waiter agent:

pour request causes hold cup

pour request causes tilt bottle

serve request causes hold plate

never hold cup ∧ hold plate

What happens if pour request and serve request arrive

simultaneously?

33



Conclusions

A general formal framework for defining policy monitors:

• broad classes of policies and monitors

• results optimal: maximal monitors

• extensible:

– negation

– history-based policies

34



Further work

Policy analysis:

• conflict-freeness

More general classes of policies:

• arbitrary event iteration

• temporal aggregation

• complex, long-duration actions

• preferences, deontic notions

• databases, XML documents

• agents: coordination, communication

35



Papers:

1. J. Lobo, R. Bhatia, S. Naqvi, “A Policy Description Language.”

AAAI’99.

2. J. Chomicki, J. Lobo, S. Naqvi, “A Logic Programming Approach to

Conflict Resolution in Policy Management.” KR’2000.

3. J. Chomicki, J. Lobo, “Monitors for History-Based Policies.”

POLICY’2001, January 2001, Bristol, UK.

36


