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Policies

Policies are collections of general principles specifying the desired

behavior of a system. Potential application areas:

• communications, network management and monitoring (IETF)

• electronic commerce (IBM CommonRules)

• security and access management.

Examples:

• If a fax from the Chicago office arrives at the main office fax

machine, redirect the fax to Joe’s office fax machine.

• As soon as an order is received, the ordered product should be mailed

and the customer’s credit card charged. Defective products shouldn’t

be mailed.
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Policy management

Policy execution:

• evaluation

• conflict detection and resolution

Policy maintenance:

• specification

• modification

• analysis

• ...
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PDL

PDL policies defined as sets of Event-Condition-Action rules.

The policy:

If a fax from the Chicago office arrives at the main office

fax machine, redirect the fax to Joe’s office fax machine.

is specified in PDL as:

arrivedFaxOff causes sendFaxJoeOff (arrivedFaxOff.content)

if arrivedFaxOff.from = “Chicago”.
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Action conflicts

A policy manager may specify that several actions cannot be

simultaneously executed.

Example:

requestRes causes processRes(requestRes.user)

Two simultaneous reservation requests cannot both be satisfied:

never processRes(User1 ) ∧ processRes(User2 ) if User1 6= User2 .

Reserved resources: bandwidth, airport runway,...
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Action constraints

Syntax:

never A1 ∧A2 ∧ · · · ∧An if C

Logical reading:

∀¬(A1 ∧A2 ∧ · · · ∧An ∧ C)
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Conflict resolution

A monitor detects and resolves conflicts among the actions

generated by a policy.

Set of events

Set of actions Consistent set of actions

Policy

Monitor
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Classes of monitors

Different resolution strategies.

Action-based monitors:

• blocking a conflicting action (action cancellation monitor)

• delaying a conflicting action (action delay monitor)

Event-based monitors:

• ignoring the events causing a conflicting action(event

cancellation monitor)

• postponing the events that cause a conflicting action (event

delay monitor)
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Example

Policy:

defectiveProduct causes stop

orderReceived causes mailProduct

orderReceived causes chargeCreditCard

Constraint:

never stop ∧mailProduct

The customer does not want to be charged if an ordered defective

product is not mailed!
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Adding the constraint

never stop ∧ chargeCreditCard

does not work for a slightly modified policy:

defectiveProduct causes stop

orderReceived causes mailProduct

orderReceived causes chargeCreditCard

callCompleted causes chargeCreditCard
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Unobtrusiveness

An unobtrusive monitor mimicks the policy on some subset E ′ of

input events:

• input event e ∈ E′: every action caused by e succeeds

• input event e 6∈ E′: every action caused by e fails unless it is

also caused by an event in E′

Set of events Reduced set of events

Set of actions Consistent set of actions

Policy

Monitor

Policy
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“Transactional” semantics for policies

transaction ≡ action:

• actions independently blocked or delayed

• the user can detect a conflict

• implemented by action-based monitors

transaction ≡ event + actions caused:

• actions connected through common events

• conflicts invisible to the user

• implemented by event-based monitors
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Highlights of the talk

1. syntax and semantics of PDL

2. definition of monitors (event conjunction only):

• axiomatic

• algorithmic

3. extensions:

• negation, history-based policies

4. implementation

5. related work:

• policies, events, rules, agents

6. conclusions and further work

13



PDL: syntax

Policy: a set of Event-Condition-Action rules.

Events:

• application-defined

• atomic or composite

• atomic events can have attributes

• composite events: conjunction, negation, sequence,

relax-sequence.

Conditions: built-in predicates for comparing attribute values.

Actions are uninterpreted: they correspond to arbitrary procedure

calls.

14



PDL: semantics

Event conjunction and negation only.

Epoch: a finite set of simultaneous input events.

The semantics of a policy P is a mapping πP associating with

every possible epoch a set of actions.

This mapping is specified using a translation to (a variant of)

Datalog.
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Translation to Datalog

A PDL rule

e1& · · ·&en causes a if C(t1, . . . , tk)

is translated to:

occ(e′1) ∧ · · · occ(e
′
n) ∧ C(t

′
1, . . . , t

′
k)→ exec(a(t

′
1, . . . , t

′
k))

Event and term translation(e′i and t′j):

• attribute notation → positional

• negation elimination: !e → not e
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Example

The PDL rule

requestRes causes processRes(requestRes.user)

if requestRes.user 6= intruder

is translated to

occ(requestRes(U)) ∧ U 6= intruder → exec(processRes(U))
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How to define monitors?

Axiomatically: disjunctive logic programs.

Algorithmically: nondeterministic imperative programs.
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Axiomatic conflict resolution

Limitations:

• event conjunction only.

Cancellation monitors are defined by augmenting the Datalog

translation of a policy by:

• conflict rules

• blocking rules (not needed for action cancellation)

• accepting rules.

The accepted actions are output.
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Conflict rules

Constraint

never a1 ∧ . . . ∧ an if C

is translated into the conflict rule:

exec(a1) ∧ . . . ∧ exec(an) ∧ C → block(a1) ∨ . . . ∨ block(an)

Example:

never stop ∧mailProduct

translated to

exec(stop) ∧ exec(mailProduct)→ block(stop) ∨ block(mailProduct)
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Action cancellation

For each action a occurring in a policy rule, there is an accepting

rule:

exec(a) ∧ ¬block(a)→ accept(a)
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Event cancellation

Each policy rule of the form

e1& . . .&en causes a if C

is translated into a blocking rule

occ(e1) ∧ . . . ∧ occ(en) ∧ block(a) ∧ C → ignore(e1) ∨ . . . ∨ ignore(en)

and an accepting rule

occ(e1) ∧ . . . ∧ occ(en) ∧ C ∧ ¬ignore(e1) ∧ . . . ∧ ¬ignore(en)→ accept(a)
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Policy translation:

occ(defectiveProduct) → exec(stop)

occ(orderReceived) → exec(mailProduct)

occ(orderReceived) → exec(chargeCreditCard)

Conflict rule:

exec(stop) ∧ exec(mailProduct) → block(stop) ∨ block(mailProduct)

Blocking rules:

occ(defectiveProduct) ∧ block(stop) → ignore(defectiveProduct)

occ(orderReceived) ∧ block(mailProduct) → ignore(orderReceived)

occ(orderReceived) ∧ block(chargeCreditCard) → ignore(orderReceived)

Accepting rules:

occ(defectiveProduct) ∧ ¬ignore(defectiveProduct) → accept(stop)

occ(orderReceived) ∧ ¬ignore(orderReceived) → accept(mailProduct)

occ(orderReceived) ∧ ¬ignore(orderReceived) → accept(chargeCreditCard)
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Conjunction of events

The rule:

dial & charge causes connect

is translated to:

occ(dial) ∧ occ(charge) ∧ block(connect) → ignore(dial) ∨ ignore(charge)

occ(dial) ∧ occ(charge) ∧ ¬ignore(dial) ∧ ¬ignore(charge) → accept(connect)
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Correspondence result

Theorem 1.

For both action and event cancellation, every minimal

model of the augmented Datalog translation specifies a

maximal monitor of the policy (and vice versa).

Maximal monitor: preserves as many actions (events) as possible

without violating constraints.
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Algorithm for action cancellation

Algorithm 1 Action Cancellation Monitor

begin

A := ∅

U := πP (E)

while true do

select a ∈ U −A such that A ∪ {a} |= AC

if select successful then A := A ∪ {a}

else break

end

end
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Algorithm for event cancellation

Algorithm 2 Event Cancellation Monitor

begin

E
′ := ∅

while true do

select e ∈ E − E
′ such that πP (E

′ ∪ {e}) |= AC

if select successful then E
′ := E

′ ∪ {e}

else break

end

A := πP (E
′)

end
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Negation

Problems:

• a policy may fail to have a monitor at all

• ignoring events may trigger new actions

Solution:

• ignoring an event makes it undefined

28



History-based policies

Temporal dimensions:

• sequence events

• delay monitors

• temporal action constraints

Event history Reduced event history

Action history Consistent action history

Policy

Monitor

Policy
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Monitors for history-based policies

Axiomatic approach: Datalog1S .

Algorithmic approach: easy extensions.
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Related work

Event notification systems and languages:

• rich syntax (events), informal semantics

• explicit conflict resolution only recently addressed

• typically static, not dynamic, conflicts

Production rules:

• resolution of rule conflicts

• interpreted actions

• simple event model

• meta-language for controlling rule executions [Jagadish, Mendelzon,

Mumick, PODS’96].
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Agent-based systems

Policies are simple reactive agents.

Commands can be viewed as events.

Action constraints determined by the physical or virtual

environment.

Unobtrusiveness: no partially executed commands.

[Eiter, Subrahmanian, Pick, AI Journal, 1999]:

• deontic specifications of agent systems

• action cancellation monitors (w/o logical framework)

• only atomic events
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Unobtrusive agents

Waiter agent:

pour request causes hold cup

pour request causes tilt bottle

serve request causes hold plate

never hold cup ∧ hold plate

What happens if pour request and serve request arrive

simultaneously?
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Conclusions

A general formal framework for defining policy monitors:

• broad classes of policies and monitors

• results optimal: maximal monitors

• extensible:

– negation

– history-based policies
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Further work

Policy analysis:

• conflict-freeness

More general classes of policies:

• arbitrary event iteration

• temporal aggregation

• complex, long-duration actions

• preferences, deontic notions

• databases, XML documents

• agents: coordination, communication
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