Conflict Resolution in Policy
Management

Jan Chomicki

University at Buffalo
State University of New York
http://www.cse.buffalo.edu/"chomicki

Joint work with Jorge Lobo, Bell Labs, and Shamim Naqui, Convezxant.



Policies

Policies are collections of general principles specifying the desired
behavior of a system. Potential application areas:

e communications, network management and monitoring (IETF)
e clectronic commerce (IBM CommonRules)

e security and access management.

Examples:

e If a fax from the Chicago office arrives at the main office fax

machine, redirect the fax to Joe’s office faxr machine.

e As soon as an order is recewved, the ordered product should be mailed

and the customer’s credit card charged. Defective products shouldn’t

be maziled.



Policy management

Policy execution:
e cvaluation

e conflict detection and resolution

Policy maintenance:
e specification
e modification
e analysis



PDL

PDL policies defined as sets of Event-Condition-Action rules.

The policy:

If a fax from the Chicago office arrives at the main office

fax machine, redirect the fax to Joe’s office fax machine.

is specified in PDL as:

arrivedFaxOff  causes sendFazxJoeOff (arrivedFazOff.content)
if arrwedFazOff.from = “Chicago”.



Action conflicts

A policy manager may specify that several actions cannot be

simultaneously executed.

Example:

requestRes causes processRes(requestRes.user)

Two simultaneous reservation requests cannot both be satisfied:

never processRes(User;) N processRes(Userg) if User; # Users.

Reserved resources: bandwidth, airport runways,...



Action constraints
Syntax:

never A ANAx;AN---NA,If C

Logical reading;:

V(AL A Ag A A Ay AC)



Conflict resolution

A monitor detects and resolves conflicts among the actions
generated by a policy.

Set of events

|

|
Policy : -
|
v

Set of actions Consistent set of actions



Classes of monitors

Different resolution strategies.

A ction-based monitors:
e blocking a conflicting action (action cancellation monitor)

e delaying a conflicting action (action delay monitor)

Event-based monitors:

e ignoring the events causing a conflicting action(event

cancellation monitor)

e postponing the events that cause a conflicting action (event

delay monitor)



Example

Policy:

defectiveProduct causes stop
orderReceived causes mailProduct

orderReceived causes chargeCreditCard

Constraint:

never stop N\ mailProduct

The customer does not want to be charged if an ordered defective

product is not mailed!



Adding the constraint

never stop N chargeCreditCard
does not work for a slightly modified policy:

defectiveProduct causes stop

orderReceived causes mailProduct

orderReceived causes chargeCreditCard

callCompleted causes chargeCreditCard

10



Unobtrusiveness

An unobtrusive monitor mimicks the policy on some subset E’ of
input events:

e input event e € E’: every action caused by e succeeds

e input event e € E’: every action caused by e fails unless it is
also caused by an event in E’

Set of events —————=> Reduced set of events

~

|

|
Policy : -
|
V

Set of actions Consistent set of actions

11



“Transactional” semantics for policies

transaction = action:
e actions independently blocked or delayed
e the user can detect a conflict

e implemented by action-based monitors

transaction = event + actions caused:
e actions connected through common events
e conflicts invisible to the user

e implemented by event-based monitors

12



Highlights of the talk

. syntax and semantics of PDL

. definition of monitors (event conjunction only):
e axiomatic

e algorithmic

. extensions:

e negation, history-based policies

. Implementation

. related work:

e policies, events, rules, agents

. conclusions and further work

13



PDL: syntax

Policy: a set of Event-Condition-Action rules.

Events:
e application-defined
e atomic or composite
e atomic events can have attributes

e composite events: conjunction, negation, sequence,

relax-sequence.

Conditions: built-in predicates for comparing attribute values.

Actions are uninterpreted: they correspond to arbitrary procedure

calls.

14



PDL: semantics

FEvent conjunction and negation only.

Epoch: a finite set of simultaneous input events.

The semantics of a policy P is a mapping 7p associating with

every possible epoch a set of actions.

This mapping is specified using a translation to (a variant of)

Datalog.

15



Translation to Datalog

A PDL rule
e1& ---&e, causes a if C(t1,..., 1)

is translated to:

occ(ey) N---occ(el) NC(ty, ..., t,) — exec(a(t],...

Event and term translation(e; and t’,):
e attribute notation — positional

e negation elimination: !e — not_e

16

k

)



Example

The PDL rule

requestRes causes processRes(requestRes.user)

if requestRes.user = intruder

i1s translated to

occ(requestRes(U)) AU # intruder — exec(processRes(U))

17



How to define monitors?

Axiomatically: disjunctive logic programs.

Algorithmically: nondeterministic imperative programs.

18



Axiomatic conflict resolution

Limitations:

e cvent conjunction only.

Cancellation monitors are defined by augmenting the Datalog

translation of a policy by:
e conflict rules
e blocking rules (not needed for action cancellation)
e accepting rules.

The accepted actions are output.

19



Conflict rules

Constraint

never ai; A...Na, if C

is translated into the conflict rule:

exec(ai) N ... A exec(an) N C — block(ai) V ...V block(ay)

Example:

never stop N\ mailProduct

translated to

exec(stop) N exec(mailProduct) — block(stop) V block(mail Product)

20



Action cancellation

For each action a occurring in a policy rule, there is an accepting

rule:

exec(a) N\ —block(a) — accept(a)

21



Event cancellation

Each policy rule of the form
e1& ...&e,, causes a if C

is translated into a blocking rule

occ(er) N\ ... N occ(en) A block(a) N C — ignore(er) V ...V ignore(ey)

and an accepting rule

occ(er) A ... N occ(e,) NC A —ignore(er) A ... A —ignore(ey,) — accept(a

22



Policy translation:

occ(defective Product) — exec(stop)
occ(orderReceived) — exec(mailProduct)

occ(orderReceived) — exec(chargeCreditCard)

Conflict rule:

exec(stop) N exec(mailProduct) — block(stop) V block(mailProduct)
Blocking rules:
occ(defectiveProduct) N block(stop) — ignore(defectiveProduct)

occ(orderReceived) N\ block(mailProduct) — ignore(orderReceived)

occ(orderReceived) A block(chargeCreditCard) — ignore(orderReceived)

Accepting rules:

occ(defective Product) A —ignore(defectiveProduct) — accept(stop)
occ(orderReceived) N\ —ignore(orderReceived) — accept(mailProduct)

occ(orderReceived) N —ignore(orderReceived) — accept(chargeCreditCard)

23



Conjunction of events

The rule:

dial & charge causes connect
is translated to:

occ(dial) N\ occ(charge) N block(connect) — ignore(dial) \V ignore(charge)

occ(dial) N\ occ(charge) N\ —ignore(dial) N —ignore(charge) — accept(connect)

24



Correspondence result

Theorem 1.

For both action and event cancellation, every minimal
model of the augmented Datalog translation specifies a

maximal monitor of the policy (and vice versa).

Maximal monitor: preserves as many actions (events) as possible

without violating constraints.

25



Algorithm for action cancellation

Algorithm 1 Action Cancellation Monitor

begin
A:=10
U = WP(E)

while true do

select a € U — A such that AU{a} = AC
if select successful then A := AU {a}
else break

end

end

26



Algorithm for event cancellation

Algorithm 2 Event Cancellation Monitor

begin
E =10

while true do
select e € E — E' such that mp(E' U {e}) & AC
if select successful then E' := E’' U {e}
else break

end
A = Tp (E/)

end

27



Negation

Problems:
e a policy may fail to have a monitor at all

e ignoring events may trigger new actions

Solution:

e ignoring an event makes it undefined

28



History-based policies

Temporal dimensions:
e sequence events
e delay monitors

e temporal action constraints

Event history —————= Reduced event history
| ~ o \
| S o |
Policy : S~ “ Policy
' Monitor =~ _ ‘
\ = \
Action history Consistent action history

29



Monitors for history-based policies

Axiomatic approach: Datalogs.

Algorithmic approach: easy extensions.

30



Event Reg. Policy Execution Event Reg.

Emw. Mapper Enr. {
- — _- x iy iy .

Metwork Eleme nt



Related work

Event notification systems and languages:
e rich syntax (events), informal semantics
e explicit conflict resolution only recently addressed

e typically static, not dynamic, conflicts

Production rules:
e resolution of rule conflicts
e interpreted actions
e simple event model

e meta-language for controlling rule executions [Jagadish, Mendelzon,
Mumick, PODS’96].

31



Agent-based systems

Policies are simple reactive agents.
Commands can be viewed as events.

Action constraints determined by the physical or virtual

environment.

Unobtrusiveness: no partially executed commands.

[Eiter, Subrahmanian, Pick, AT Journal, 1999]:
e deontic specifications of agent systems
e action cancellation monitors (w/o logical framework)

e only atomic events

32



Unobtrusive agents

Waiter agent:

pour_request causes hold_cup
pour_request causes tilt_bottle

serve_request causes hold_plate

never hold_cup N hold_plate

What happens if pour_request and serve_request arrive
simultaneously?

33



Conclusions

A general formal framework for defining policy monitors:
e broad classes of policies and monitors
e results optimal: maximal monitors

e cxtensible:
— negation

— history-based policies

34



Further work

Policy analysis:

e conflict-freeness

More general classes of policies:
e arbitrary event iteration
e temporal aggregation
e complex, long-duration actions
e preferences, deontic notions
e databases, XML documents

e agents: coordination, communication

35



Papers:

1. J. Lobo, R. Bhatia, S. Naqvi, “A Policy Description Language.”
AAAT99.

2. J. Chomicki, J. Lobo, S. Naqvi, “A Logic Programmaing Approach to
Conflict Resolution in Policy Management.” KR’2000.

3. J. Chomicki, J. Lobo, “Monitors for History-Based Policies.”
POLICY’2001, January 2001, Bristol, UK.

36



