
Consistent Answers to Quantifier-Free Queries

Jan Chomicki

Dept. CSE

University at Buffalo

State University of New York

http://www.cse.buffalo.edu/~chomicki

Joint work with Jurek Marcinkowski and Slawek Staworko.

1

Integrity constraints

Integrity constraints describe valid database instances.

Here:

• functional dependencies: “every student has a single address.”

• denial constraints: “no employee can make more than her

manager.”

• referential integrity: “students can enroll only in the offered

courses.”

The constraints are formulated in first-order logic:

∀n, s,m, s′,m′.¬[Emp(n, s,m) ∧ Emp(m, s′,m′) ∧ s > s′].

2

Inconsistent databases

There are situations when we want/need to live with inconsistent data

in a database (data that violates given integrity constraints):

• integration of heterogeneous databases with overlapping

information

• the consistency of the database will be restored by executing

further transactions

• inconsistency wrt “soft” integrity constraints (those that we hope

to see satisfied but do not/cannot check) process

How to distinguish between reliable and unreliable information in an

inconsistent database?

3

Goals

A formal definition of reliable (“consistent”) information in an

inconsistent database.

Computational mechanisms for obtaining consistent information.

Computational complexity analysis.

Implementation:

• preferably using DBMS technology

4

Plan of the talk

1. repairs and consistent query answers

2. computing consistent query answers to quantifier-free queries

3. why quantification is difficult

4. related and further work

5

Consistent query answers

[Arenas, Bertossi, Chomicki, PODS’99]

Repair:

• a database that satisfies the integrity constraints

• difference from the given database is minimal (the set of

inserted/deleted facts is minimal under set inclusion)

A tuple (a1, . . . , an) is a consistent query answer to a query

Q(x1, . . . , xn) in a database r if it is an element of the result of Q in

every repair of r.

6

Geography Bee database

GeoBee

Continent Discoverer LandArea

N. America C. Columbus 24M

N. America L. Ericson 24M

Australia J. Cook 8M

Functional dependency:

Continent → Discoverer

Repairs:

N. America C. Columbus 24M

Australia J. Cook 8M

N. America L. Ericson 24M

Australia J. Cook 8M

7

Query languages and integrity constraints

Ultimately: SQL2.

Here:

• quantifier-free queries (equivalently: relational algebra without

projection)

• denial integrity constraints:

∀¬(P1(x̄1) ∧ · · · ∧ Pn(x̄n) ∧ φ)

8

Consistent query answers

GeoBee(C,D,A)
⇒ Australia J. Cook 8M

GeoBee(C, ′L.Ericson′, 24M) ∨GeoBee(C, ′C.Columbus′, 24M)

⇒ N. America

∃D. GeoBee(C,D,A)
⇒

N. America 24M

Australia 8M

9

There are too many repairs to evaluate the query in each of them.

A B

a1 b1

a1 b′1

a2 b2

a2 b′2

· · ·

an bn

an b′n

Under the functional dependency A→ B, this instance has 2n repairs.

10

Computing consistent query answers

Query transformation: given a query Q and a set of integrity

constraints, construct a query Q′ such that for every database instance

r

the set of answers to Q′ in r = the set of consistent answers

to Q in r.

Representing all repairs: given a set of integrity constraints and a

database instance r:

1. construct a space-efficient representation of all repairs of r

2. use this representation to answer (many) queries.

Specifying repairs as logic programs.

11

Conflict hypergraph

Vertices:

• facts in the original instance.

Edges:

• (minimal) sets of facts that violate some constraint.

Repair: a maximal independent set.

12

N. America C. Columbus 24M

Australia J. Cook 8M

N. America L. Ericson 24M

13

Ground queries

Observations:

• the query is in CNF ⇒ each conjunct can be processed separately

• all repairs satisfy Φ ⇔ no repair satisfies ¬Φ

Algorithm GROUND:

1. ¬Φ = P1(t1) ∧ · · · ∧ Pm(tm) ∧ ¬Pm+1(tm+1) ∧ · · · ∧ ¬Pn(tn)

2. find a repair including P1(t1), . . . , Pm(tm) and excluding

Pm+1(tm+1), . . . , Pn(tn) by enumerating the appropriate edges.

Excluding a fact A:

• A is not in the original instance, or

• A belongs to an edge {A,B1, . . . , Bk} in the conflict hypergraph

and B1, . . . , Bk belong to the repair.

14

Properties of GROUND

Algorithm GROUND works in PTIME (data complexity):

• n−m choices from a set of polynomial size

• if all choices successful, a repair can be completed.

Generalizing to open queries:

• how to generate bindings for free variables?

15

In the presence of negation (set difference), there may be consistent

query answers which are not query answers in the original instance.

Database schema: R(AB), , S(ABC).

Integrity constraint over R: A→ B.

Query: S − (R(A,B1) ./
B1 6=B2

R(A,B2)).

Instance: {R(a, b), R(a, c), S(a, b, c)}.

Query answers: ∅

Consistent query answers: {(a, b, c)}

16

Upper envelope

Construct an upper envelope query U(Q) such that the set of answers

to U(Q) in r is

• a superset of the set of consistent answers to Q in r

• a superset of the set of answers to Q in r.

U(R) = R

U(E1 ∪ E2) = U(E1) ∪ U(E2)

U(E1 × E2) = U(E1)× U(E2)

U(σχ(E)) = σχ(U(E))

U(E1 − E2) = U(E1).

17

Q : σ,∪,−,×

Upper Envelope

Q′
: σ,∪,×

Evaluation

Conflict Detection

DB

Translation

Qc : ∧,∨,¬

Candidates

Conflict Graph

Grounding

Alg. GROUND

Consistent Answers18

Comparison with query transformation

Query transformation (QT) Conflict hypergraph (CH)

Integrity constraints Binary universal Denial

Queries σ,×,− σ,×,−,∪

Preliminary experimental results (∼ 10000 tuples):

• selection: QT and CH are comparable

• difference: QT is faster

• equijoin: CH is much faster.

19

Further extensions

Beyond denial constraints:

• how to compactly represent all repairs?

• the same approach works if non-denial constraints can be repaired

first:

– key and foreign constraints, with one key per relation

Quantifiers in queries:

• co-NP-hardness

20

Data complexity of consistent query answers

Chomicki, Marcinkowski [submitted]:

Queries Functional dependencies Denial constraints

|F | = 1 |F | ≥ 2

σ,×,−,∪ PTIME PTIME PTIME

π, σ,× (no join) PTIME co-NP-complete co-NP-complete

π, σ,× (join) co-NP-complete co-NP-complete co-NP-complete

21

Specifying repairs as logic programs

Arenas, Bertossi, Chomicki [FQAS’00]:

• using logic programs negation and disjunction

• implemented using main-memory LP systems (dlv, Smodels)

• Πp
2-complete problems

Scope:

• arbitrary universal constraints, inclusion dependencies

• arbitrary first-order queries

• queries can be “modalized” and nested

Also Greco and Zumpano [LPAR’00, ICLP’01] and Barcelo and

Bertossi [NMR’02, PADL’03].

22

Related work

Belief revision:

• revising database with integrity constraints

• revised theory changes with each database update

• emphasis on semantics (AGM postulates), not computation

• complexity results from [Eiter, Gottlob, AI’92] do not transfer

Disjunctive information:

• repair ≡ possible world (sometimes)

• using disjunctions to represent resolved conflicts

• constructing a single disjunctive instance

• query languages: representation-specific, relational algebra or

calculus

23

Future work

Broadening scope:

• SQL:

– relational algebra and aggregation

– integrating different techniques

– keys and foreign keys

• preferences:

– source rankings

– timestamps

• conflict resolution

24

New paradigms:

• query reformulation in information integration:

– Bertossi, Chomicki, Cortes, Gutierrez [FQAS’02]

– Bravo, Bertossi [IJCAI’03]

• data integration and exchange

• data cleaning

• XML

• spatial/spatiotemporal databases

25

Selected papers:

1. M. Arenas, L. Bertossi, J. Chomicki, “Consistent Query Answers in

Inconsistent Databases,” ACM Symposium on Principles of Database Systems

(PODS), Philadelphia, May 1999.

2. M. Arenas, L. Bertossi, J. Chomicki, “Specifying and Querying Database

Repairs using Logic Programs with Exceptions,” International Symposium on

Flexible Query Answering Systems (FQAS), Warsaw, Poland, October 2000.

Full version: Theory and Practice of Logic Programming, to appear.

3. M. Arenas, L. Bertossi, J. Chomicki, “Scalar Aggregation in FD-Inconsistent

Databases,” International Conference on Database Thory (ICDT), London,

UK, January 2001. Full version: Theoretical Computer Science, 2003.

4. J. Chomicki, J. Marcinkowski, “Minimal-Change Integrity Maintenance Using

Tuple Deletions,” submitted.

5. L. Bertossi, J. Chomicki, “Query Answering in Inconsistent Databases,” in

Logics for Emerging Applications of Databases, J. Chomicki, R. van der

Meyden, G. Saake [eds.], Springer-Verlag, 2003, to appear.

26

