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Plan of the talk

© Preference relations
© Preference queries

© Advanced topics
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Preference relations

o & = E DA
Jan Chomicki Preferences, Queries, Logics



Motivation

“And what is your preference in wine—single or double figures?”

© The New Yorker Collection 1988 Arnie Levin from cartoonbank.com. All Rights Reserved.
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Preference relations

Universe of objects
@ constants: uninterpreted, numbers, ...
e individuals (entities)
@ tuples

@ sets
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Preference relations

Universe of objects
@ constants: uninterpreted, numbers, ...
e individuals (entities)

@ tuples

@ sets

Preference relation >
@ binary relation between objects
@ X > y = x is_better_than y = x dominates y

@ an abstract, uniform way of talking about (relative) desirability,
worth, cost, timeliness,..., and their combinations

@ preference relations used in preference queries
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Buying a car
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Buying a car

Salesman: What kind of car do you prefer?
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Salesman: What kind of car do you prefer?

Customer: The newer the better, if it is the same make. And cheap, too.
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Buying a car

Salesman: What kind of car do you prefer?

Customer: The newer the better, if it is the same make. And cheap, too.
Salesman: Which is more important for you: the age or the price?
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Buying a car

Salesman: What kind of car do you prefer?

Customer: The newer the better, if it is the same make. And cheap, too.
Salesman: Which is more important for you: the age or the price?
Customer: The age, definitely.

Salesman: Those are the best cars, according to your preferences, that we
have in stock.
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Buying a car

Salesman: What kind of car do you prefer?

Customer: The newer the better, if it is the same make. And cheap, too.
Salesman: Which is more important for you: the age or the price?
Customer: The age, definitely.

Salesman: Those are the best cars, according to your preferences, that we
have in stock.

Customer: Wait...it better be a BMW.
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Preferences in perspective

Applications of preferences and preference queries
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Preferences in perspective

Applications of preferences and preference queries
@ decision making
@ e-commerce
© digital libraries

@ personalization
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Preferences in perspective

Applications of preferences and preference queries
@ decision making
@ e-commerce
© digital libraries

@ personalization

Preferences are multi-disciplinary
@ economic theory: von Neumann, Arrow, Sen

philosophy: Aristotle, von Wright

°
@ psychology: Slovic

o artificial intelligence: Boutilier, Brafman
°

databases: KieBling, Kossmann
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Properties of preference relations
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Properties of preference relations

Properties of >
o irreflexivity: Vx. x 3} x
@ asymmetry: Vx,y. x >y =y} x
@ transitivity: Vx,y,z. (x >y Ay >z) = x>z
@ negative transitivity: Vx,y,z. (x 3y Ay} z)=>x %}z

@ connectivity: VX, ¥y. X >y VvVy>XVvVXxX=y
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Properties of preference relations

Properties of >
o irreflexivity: Vx. x 3} x
@ asymmetry: Vx,y. x>y =y }* x
@ transitivity: Vx,y,z. (x >y Ay >z) = x>z
@ negative transitivity: Vx,y,z. (x 3y Ay} z)=>x %}z

@ connectivity: VX, ¥y. X >y VvVy>XVvVXxX=y

Orders
e strict partial order (SPO): irreflexive and transitive
e weak order (WO): negatively transitive SPO

o total order: connected SPO
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Weak and total orders

Weak order

oiyie

Total order




Order properties of preference relations
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Order properties of preference relations

[rreflexivity, asymmetry: uncontroversial.
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Order properties of preference relations

[rreflexivity, asymmetry: uncontroversial.

Transitivity:
@ captures rationality of preference
@ not always guaranteed: voting paradoxes

@ helps with preference querying
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Order properties of preference relations

[rreflexivity, asymmetry: uncontroversial.

Transitivity:
@ captures rationality of preference
@ not always guaranteed: voting paradoxes

@ helps with preference querying

Negative transitivity:

@ scoring functions represent weak orders
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Order properties of preference relations

[rreflexivity, asymmetry: uncontroversial.
Transitivity:
@ captures rationality of preference

@ not always guaranteed: voting paradoxes

@ helps with preference querying

Negative transitivity:

@ scoring functions represent weak orders

We assume that preference relations are SPOs.

Jan Chomicki Preferences, Queries, Logics DBRank, August 29, 2011 10 / 46



Not every SPO is a WO
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Not every SPO is a WO

Indifference ~

xX~y=x}*yry}x
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Not every SPO is a WO

Indifference ~

X~y=x}+yAy}x

Canonical example

mazda > kia, mazda ~' vw, kia ~' vw
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Not every SPO is a WO

Indifference ~

X~y=x}+yAy}x

Canonical example

mazda > kia, mazda ~' vw, kia ~' vw

Violation of negative transitivity

mazda } vw, vw 3} kia, mazda > kia

o & E DA
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Preference specification

o & = E DA
Jan Chomicki Preferences, Queries, Logics



Preference specification

Explicit preference relations

Finite sets of pairs: bmw > mazda, mazda > kia,...
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Preference specification

Explicit preference relations

Finite sets of pairs: bmw > mazda, mazda > Kia,...

Implicit preference relations
@ can be infinite but finitely representable

o defined using logic formulas in some constraint theory:
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Preference specification

Explicit preference relations

Finite sets of pairs: bmw > mazda, mazda > Kia,...

Implicit preference relations
@ can be infinite but finitely representable

o defined using logic formulas in some constraint theory:

(m1,y1,p1) >1 (M2, y2,p2) =y1>y2 vV (y1 = y2 A p1 < p2)

for relation Car(Make, Year, Price).
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Preference specification

Explicit preference relations

Finite sets of pairs: bmw > mazda, mazda > Kia,...

Implicit preference relations
@ can be infinite but finitely representable

o defined using logic formulas in some constraint theory:

(m1,y1,p1) >1 (M2, y2,p2) =y1>y2 vV (y1 = y2 A p1 < p2)

for relation Car(Make, Year, Price).
@ defined using preference constructors (Preference SQL)

o defined using real-valued scoring functions: F(m,y,p)=a-y+5-p
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Preference specification

Explicit preference relations

Finite sets of pairs: bmw > mazda, mazda > Kia,...

Implicit preference relations
@ can be infinite but finitely representable

o defined using logic formulas in some constraint theory:

(m1,y1,p1) >1 (M2, y2,p2) =y1>y2 vV (y1 = y2 A p1 < p2)

for relation Car(Make, Year, Price).
@ defined using preference constructors (Preference SQL)

o defined using real-valued scoring functions: F(m,y,p)=a-y+5-p
(m1, y1,p1) >2 (M2, y2, p2) = F(m1, y1,p1) > F(my, y2, p2)

Jan Chomicki Preferences, Queries, Logics
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Logic formulas
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Logic formulas

The language of logic formulas
@ constants

@ object (tuple) attributes
@ comparison operators: =, %, <,>,...
arithmetic operators: +,-,...

°
@ Boolean connectives: —, A, v
@ quantifiers:

v, 3

usually can be eliminated (quantifier elimination)

@ no database relations
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Representability

o & = E DA
Jan Chomicki Preferences, Queries, Logics



Representability

Definition

A scoring function f represents a preference relation > if for all x, y
x>y ="f(x)>f(y).
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Representability

Definition

A scoring function f represents a preference relation > if for all x, y

x>y ="f(x)>f(y).

Necessary condition for representability

The preference relation > is a weak order.

Jan Chomicki Preferences, Queries, Logics DBRank, August 29, 2011 14 / 46



Representability

Definition

A scoring function f represents a preference relation > if for all x, y

x>y ="f(x)>f(y).

Necessary condition for representability
The preference relation > is a weak order.

Sufficient condition for representability
@ > is a weak order

@ the domain is countable or some continuity conditions are satisfied
(studied in decision theory)
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Preference constructors [KieBling, 2002]
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Preference constructors [KieBling, 2002]

Good values

Prefer v e S; over v ¢ 5. J
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Preference constructors [KieBling, 2002]

Good values

P0OS (Make, {mazda,vw})
Prefer v e S; over v ¢ 5.
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Preference constructors [KieBling, 2002]

Good values

P0OS (Make, {mazda,vw}) )
Prefer v e S; over v ¢ 5.
Bad values
Prefer v ¢ S; over v € 53.
o <5 =» = @©ac
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Preference constructors [KieBling, 2002]

Good values

P0OS (Make, {mazda,vw}) )
Prefer v e S; over v ¢ 5.
Bad values NEG (Make, {yugo}) J
Prefer v ¢ S; over v € 53.
o <5 =» = @©ac
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Preference constructors [KieBling, 2002]

Good values P0OS (Make, {mazda,vw}) ]
Prefer v € S; over v ¢ 5;.

Bad values NEG (Make, {yugo}) J
Prefer v ¢ S; over v € 53.

Explicit preference

Preference encoded by a finite
directed graph.
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Preference constructors [KieBling, 2002]

Good values
Prefer v € S; over v ¢ 5;.

Bad values
Prefer v ¢ S; over v € 53.

Explicit preference

Preference encoded by a finite
directed graph.

POS (Make, {mazda,vw}) ]

NEG (Make, {yugo}) |

EXP (Make, { (bmw,ford), ...,
(mazda,kia)})
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Preference constructors [KieBling, 2002]

Good values
Prefer v € S; over v ¢ 5;.

Bad values
Prefer v ¢ S; over v € 53.

Explicit preference

Preference encoded by a finite
directed graph.

Value comparison

Prefer larger/smaller values.

POS (Make, {mazda,vw}) ]

NEG (Make, {yugo}) |

EXP (Make, { (bmw,ford), ...,
(mazda,kia)})
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Preference constructors [KieBling, 2002]

Good values POS (Make, {mazda,vw}) J
Prefer v € S; over v ¢ 5;.

Bad values NEG (Make, {yugo}) J
Prefer v ¢ S; over v € 53.

Explicit preference EXP (Make , { (bmw, ford) , . ..,
Preference encoded by a finite (mazda,kia)})

v

directed graph.

Value comparison HIGHEST (Year)
Prefer larger/smaller values. LOWEST (Price)
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Preference constructors [KieBling, 2002]

Good values POS (Make, {mazda,vw}) J
Prefer v € S; over v ¢ 5;.

Bad values NEG (Make, {yugo}) J
Prefer v ¢ S; over v € 53.

Explicit preference EXP (Make , { (bmw, ford) , . ..,
Preference encoded by a finite (mazda,kia)})

y

directed graph.

Value comparison HIGHEST (Year)
Prefer larger/smaller values. LOWEST (Price)
Distance

Prefer values closer to vp.
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Preference constructors [KieBling, 2002]

Good values POS (Make, {mazda,vw}) J
Prefer v € S; over v ¢ 5;.

Bad values NEG (Make, {yugo}) J
Prefer v ¢ S; over v € 53.

Explicit preference EXP (Make , { (bmw, ford) , . ..,
Preference encoded by a finite (mazda,kia)})

y

directed graph.

Value comparison HIGHEST (Year)
Prefer larger/smaller values. LOWEST (Price)
Distance ARQUND (Price, 12K) )

Prefer values closer to vp.
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Combining preferences

Preference composition
@ combining preferences about objects of the same kind
@ dimensionality is not increased

@ representing preference aggregation, revision, ...
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Combining preferences

Preference composition
@ combining preferences about objects of the same kind
@ dimensionality is not increased

@ representing preference aggregation, revision, ...

Preference accumulation

o defining preferences over objects in terms of preferences over simpler
objects

e dimensionality is increased (preferences over Cartesian product).
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Combining preferences: composition
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Combining preferences: composition

Boolean composition

X>YyY=x>1y v X>2¥

and similarly for n.
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Combining preferences: composition

Boolean composition

X>YyY=x>1y v X>2¥

and similarly for n.

Prioritized composition

x>y =x>1yv(ytixAx>ay).
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Combining preferences: composition

Boolean composition

X>YyY=x>1y v X>2¥

and similarly for n.

Prioritized composition

x>y =x>1yv(ytixAx>ay).

Pareto composition

x>Pry=(x>1yanytax)v(x >y Ayt x).
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Preference composition
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Preference composition

Preference relation >4

bmw
AN
ford mazda

NIV

kia
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Preference composition

Preference relation >4

Preference relation >,
bmw

ford
RN

kia
NS
ford mazda mazda
NS |
kia bmw
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Preference composition

Preference relation > Preference relation >,
bmw ford kia

ford mazda mazda

kia bmw

Prioritized composition

bmw

ford

mazda

|
kia
D ,,——,--ro
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Preference composition

Preference relation >

bmw

AN

ford mazda

NIV

kia

Preference relation >,
ford kia

NS

mazda

bmw

Prioritized composition

bmw

ford

mazda

kia

e ————
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Combining preferences: accumulation [Kiessling, 2002]
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Combining preferences: accumulation [Kiessling, 2002]

Prioritized accumulation: >P'= (>; & >»)

(x1,%) >P" (y1,00) =x1 >1y1 v (X1 = y1 A X0 >2 o).
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Combining preferences: accumulation [Kiessling, 2002]

Prioritized accumulation: >P'= (>; & >»)

(x1,%) >P" (y1,00) =x1 >1y1 v (X1 = y1 A X0 >2 o).

Pareto accumulation: >P?= (>; ® >»)

(x1,%0) >P? (y1,y2) = (X1 >1 y1 A X2 Z2 y2) vV (X1 =1 y1 A X2 >2 ¥o)

v
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Combining preferences: accumulation [Kiessling, 2002]

Prioritized accumulation: >P'= (>; & >»)

(x1,%) >P" (y1,00) =x1 >1y1 v (X1 = y1 A X0 >2 o).

Pareto accumulation: >P?= (>; ® >»)

(x1,%0) >P? (y1,y2) = (X1 >1 y1 A X2 Z2 y2) vV (X1 =1 y1 A X2 >2 ¥o)

v

Properties
@ closure

@ associativity

@ commutativity of Pareto accumulation
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Skylines

Skyline
Given single-attribute total preference relations >4,,...,>4, for a

relational schema R(Ay,...,A,), the skyline preference relation >¥ is
defined as

> = f @ >, @ ® > p, -
Unfolding the definition

(X155 Xn) > (y1,. .., yn) = /\x,- >A Vi A \/x,- > Yi-
i i
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Skyline in Euclidean space
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Skyline in Euclidean space

Two-dimensional Euclidean space

K _
(x1,%2) > (Y1, )2) EXIZYIAXR>YIVXL>YIAX2 2 Y

Skyline consists of >°%'-maximal vectors
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Skyline in Euclidean space
Two-dimensional Euclidean space

K _
(x1,%2) > (Y1, )2) EXIZYIAXR>YIVXL>YIAX2 2 Y

Skyline consists of >°%'-maximal vectors
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Skyline properties
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Skyline properties
Invariance

dimension.

A skyline preference relation is unaffacted by scaling or shifting in any
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Skyline properties

Invariance

A skyline preference relation is unaffacted by scaling or shifting in any
dimension.

Maxima

A skyline consists of the maxima of monotonic scoring functions.
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Skyline properties

Invariance

A skyline preference relation is unaffacted by scaling or shifting in any
dimension.

Maxima

A skyline consists of the maxima of monotonic scoring functions.

Skyline is not a weak order

(2,0) }sky (0,2),(0,2) }sky (1,0),(2,0) >4y (1,0)
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Skyline in SQL
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Skyline in SQL

Designating attributes not used in comparisons (DIFF).

Grouping J

Example

SELECT * FROM Car

SKYLINE Price MIN,
Year MAX,
Make DIFF
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Winnow [Ch., 2002]
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Winnow [Ch., 2002]

Winnow
@ new relational algebra operator w (other names: Best, BMO)
o retrieves the non-dominated (best) elements in a database relation

@ can be expressed in terms of other operators
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Winnow [Ch., 2002]

Winnow

@ new relational algebra operator w (other names: Best, BMO)
o retrieves the non-dominated (best) elements in a database relation

@ can be expressed in terms of other operators

Definition

Given a preference relation > and a database relation r:

we(r)={ter| -3t er. t' > t}.
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Winnow [Ch., 2002]

Winnow
@ new relational algebra operator w (other names: Best, BMO)
o retrieves the non-dominated (best) elements in a database relation

@ can be expressed in terms of other operators

Definition

Given a preference relation > and a database relation r:
we(r)={ter| -3t er. t' > t}.

Notation: If a preference relation >¢ is defined using a formula C, then
we write wc(r), instead of wsy (r).
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Winnow [Ch., 2002]

Winnow
@ new relational algebra operator w (other names: Best, BMO)
o retrieves the non-dominated (best) elements in a database relation

@ can be expressed in terms of other operators

Definition
Given a preference relation > and a database relation r:

we(r)={ter| -3t er. t' > t}.

Notation: If a preference relation >¢ is defined using a formula C, then
we write wc(r), instead of wsy (r).

Skyline query

W sky (r) computes the set of maximal vectors in r (the skyline set).

v
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Example of winnow
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Example of winnow

Relation Car(Make, Year, Price)
Preference relation:

(m,y,p)>1 (m,y,py=y>y

viy=y Ap<p).
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Example of winnow

Relation Car(Make, Year, Price)

Preference relation:

(myy,p)>1(m,y',py=y>y v(y=y Ap<p).

Make  Year Price
mazda 2009 20K
ford 2009 15K
ford 2007 12K
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Example of winnow

Relation Car(Make, Year, Price)

Preference relation:

(myy,p)>1(m,y',py=y>y v(y=y Ap<p).
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mazda 2009 20K
ford 2009 15K
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Generalizations of winnow
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Generalizations of winnow

Iterating winnow

0

wi(r)=4J

W (r) = wy (r — Upeicn !

£(r)
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Generalizations of winnow

Iterating winnow

wd(r) = &

wItH(r) = ws(r — Uo<i<n @i (r))

Ranking

Rank tuples by their minimum distance from a winnow tuple:

n-(r) = {(t,1) | t € w(n)}.
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Generalizations of winnow

Iterating winnow

wd(r) = &

wItH(r) = ws(r — Uo<i<n @i (r))

Ranking

Rank tuples by their minimum distance from a winnow tuple:

n-(r) = {(t,1) | t € w(n)}.

k-band
Return the tuples dominated by at most k tuples:

we(r)y={ter|#{t'er|t >t} <k}
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Preference SQL
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Preference SQL

The language
@ basic preference constructors
@ Pareto/prioritized accumulation
@ new SQL clause PREFERRING
@ groupwise preferences
°

native implementation
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Preference SQL

The language

@ basic preference constructors

@ Pareto/prioritized accumulation
@ new SQL clause PREFERRING
°
°

groupwise preferences

native implementation

Winnow in Preference SQL

SELECT * FROM Car

PREFERRING HIGHEST(Year)
CASCADE LOWEST(Price)
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Algebraic laws [Ch., 2002; KieBling, 2002]
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Algebraic laws [Ch., 2002; KieBling, 2002]

Commutativity of winnow with selection

If the formula
Vi, ta.[a(t2) A (1, t2)] = at)
is valid, then for every r

Ta(wy(r)) = wy(0a(r)).
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Algebraic laws [Ch., 2002; KieBling, 2002]

Commutativity of winnow with selection

If the formula

Vi1, t.Ja(t) A y(t1, t2)] = a(tr)

is valid, then for every r

Ta(wy(r)) = wy(0a(r)).

Under the preference relation

(my,p) >c, (m,y',p)=y>y rp<spvyzy rp<yp

the selection oprice<20x cOommutes with w¢, but opyice=20k does not.

Jan Chomicki Preferences, Queries, Logics DBRank, August 29, 2011 31/ 46



Semantic query optimization [Ch., 2004]
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Semantic query optimization [Ch., 2004]

Using information about integrity constraints to:
@ eliminate redundant occurrences of winnow.

@ make more efficient computation of winnow possible.

Eliminating redundancy

Given a set of integrity constraints F, wc¢ is redundant w.r.t. F iff F
implies the formula

Vt1,t2. R(t1) A R(t2) = t1 ~¢ t2.

Jan Chomicki Preferences, Queries, Logics DBRank, August 29, 2011 32/ 46



Integrity constraints
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Integrity constraints

Constraint-generating dependencies (CGD) [Baudinet et al., 1995]
Vti....Vtn. [R(t1) A

A R(ty) Ay(ta, .

tn)] = +'(ta,

o th).
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Integrity constraints

Constraint-generating dependencies (CGD) [Baudinet et al., 1995]

Vtr. ... Vtg. [R(t1) Ao AR(t) Ay(te, .. tn)] = ' (t1, .- tn).

CGD entailment

Decidable by reduction to the validity of V-formulas in the constraint
theory (assuming the theory is decidable).
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Preference modification
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Preference modification

Goal

Given a preference relation > and additional preference or indifference

information Z, construct a new preference relation >’ whose contents
depend on > and Z.
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Preference modification

Goal

Given a preference relation > and additional preference or indifference

information Z, construct a new preference relation >’ whose contents
depend on > and Z.

General postulates
o fulfillment: the new information Z should be completely incorporated
into >
@ minimal change: >’ should be as close to > as possible
@ closure:

order-theoretic (SPO, WO) properties of > should be preserved in >’
finiteness or finite representability of > should also be preserved in >’
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Preference revision [Ch., 2007]
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Preference revision [Ch., 2007]

Setting
@ new information: revising preference relation >q
composition operator #: union, prioritized or Pareto composition
composition eliminates (some) preference conflicts
additional assumptions: interval orders

°
°
°
e >'= TC(>¢ 6 >) to guarantee SPO
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Preference revision [Ch., 2007]

Setting
@ new information: revising preference relation >q
composition operator #: union, prioritized or Pareto composition
composition eliminates (some) preference conflicts
additional assumptions: interval orders
>'= TC(>g 0 >) to guarantee SPO

Kia, 2009

00
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Preference contraction [Mindolin, Ch., 2011]

o & = E DA
Jan Chomicki Preferences, Queries, Logics



Preference contraction [Mindolin, Ch., 2011]

Setting
@ new information: contractor relation CON
@ >'": maximal subset of > disjoint with CON
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Setting
@ new information: contractor relation CON
@ >'": maximal subset of > disjoint with CON
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Substitutability [Balke et al., 2006]
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Substitutability [Balke et al., 2006]

Setting
@ new information: set of indifference pairs

@ additional preferences are added to achieve object substitutability
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Substitutability [Balke et al., 2006]

Setting
@ new information: set of indifference pairs

@ additional preferences are added to achieve object substitutability
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Preferences over finite sets
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Preferences over finite sets

Set preferences
Induced:

X>Y=VxeX. dyeY. x>y
Aggregate:

X > Y = suma(X) > suma(Y)
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Preferences over finite sets

Set preferences

Induced:
X>Y=VxeX. dyeY. x>y
Aggregate:

X > Y = suma(X) > suma(Y)

Set preference queries
o find the best subsets of a given set

@ restrictions on cardinality
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Preferences over set profiles [Zhang, Ch., 2011]
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Preferences over set profiles [Zhang, Ch., 2011]

Name Area Rating

Newton Physics 9
Einstein Physics 10

Gargamel Alchemy O
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Preferences over set profiles [Zhang, Ch., 2011]

Name Area Rating

Newton Physics 9
Einstein Physics 10

Gargamel Alchemy O

Preferences
@ 2-element subsets
@ Pji: at most one physicist
@ Py: higher total rating

@ P; more important than P>
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Set profile (Fy, F,)

F1(S) = SELECT COUNT(Name) FROM S WHERE Area=’Physics’
F»(S) = SELECT SUM(Rating) FROM S

Jan Chomicki Preferences, Queries, Logics DBRank, August 29, 2011 41 / 46



Set profile (Fy, F,)

F1(S) = SELECT COUNT(Name) FROM S WHERE Area=’Physics’
F»(S) = SELECT SUM(Rating) FROM S

Set preference relations

X$1Y=F(X)<1AF(Y)>1
XY= FQ(X) > FQ(Y)
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Set profile (Fy, F,)

F1(S) = SELECT COUNT(Name) FROM S WHERE Area=’Physics’
F»(S) = SELECT SUM(Rating) FROM S

Set preference relations

X$1Y=F(X)<1AF(Y)>1
XY= FQ(X) > FQ(Y)

Prioritized composition

X>Y=X31 YV (Y $F1 XAX 32 Y)
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Prospective research topics
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Prospective research topics

Definability
@ of scoring functions representing preference relations

@ of CP-nets and other graphical models of preferences
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Prospective research topics

Definability
@ of scoring functions representing preference relations

@ of CP-nets and other graphical models of preferences

Extrinsic preference relations

Preference relations that are not fully defined by tuple contents:

x > y = 3ny, ny. Dissatisfied(x, n1) A Dissatisfied(y, n2) A n; < na.
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Prospective research topics

Definability
@ of scoring functions representing preference relations

@ of CP-nets and other graphical models of preferences

Extrinsic preference relations

Preference relations that are not fully defined by tuple contents:

x > y = 3ny, ny. Dissatisfied(x, n1) A Dissatisfied(y, n2) A n; < na.

Incomplete preferences

@ tuple scores and probabilities [Soliman et al., 2007]
@ uncertain tuple scores

@ disjunctive preferences: a > b v a > ¢
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Prospective applications
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Prospective applications

Databases

@ preference queries as decision components: workflows, event systems
@ personalization of query results
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Prospective applications

Databases
@ preference queries as decision components: workflows, event systems

@ personalization of query results

Multi-agent systems
@ conflict resolution
@ negotiating joint preferences and decisions

@ negotiation preferences
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Prospective applications

Databases
@ preference queries as decision components: workflows, event systems

@ personalization of query results

Multi-agent systems
@ conflict resolution
@ negotiating joint preferences and decisions
@ negotiation preferences

Social media
@ preference similarity and stability

o preference aggregation
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Preference queries vs. Top-K queries
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Preference queries vs. Top-K queries

Preference queries

Top-K queries

Binary preference relations

Scoring functions

Clear declarative reading

“Mysterious” formulation

Nondeterminism

No relational data model extension

Rank-relations [Li et al., 2005]

Structured data

Structured and unstructured data

Manual construction

Automatic construction

Preference SQL

Mainstream DBMS
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