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Integrity constraints

Integrity constraints describe valid database instances. Examples:

• functional dependencies: “every employee has a single salary.”

• denial constraints: “no employee can make more than her

manager.”

• referential integrity: “managers have to be employees.”

The constraints are formulated in first-order logic:

∀n, s, m, s′, m′.¬[Emp(n, s, m) ∧ Emp(m, s′, m′) ∧ s > s′].

An inconsistent database violates the constraints.
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Traditional view

Integrity constraints are always enforced.

Emp

EmpName Address Salary

B. Gates Redmond, WA 20M

B. Gates Redmond, WA 30M

A. Grove Santa Clara, CA 10M

Functional dependency:

EmpName → Address Salary

This instance cannot arise but ... consider data integration.
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Ignoring inconsistency

SELECT *

FROM Emp

WHERE Salary < 25M

⇒
B. Gates Redmond, WA 20M

A. Grove Santa Clara, CA 10M

The result is not fully reliable.
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Quarantining inconsistency

The facts involved in an inconsistency are not used in the derivation of

query answers [Bry, IICIS’97].

SELECT *

FROM Emp

WHERE Salary < 25M

⇒ A. Grove Santa Clara, CA 10M

But what about

SELECT EmpName

FROM Emp

WHERE Salary > 1M

⇒ A. Grove

Partial information cannot be obtained.
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A middle-ground solution

Consider all repairs: possible databases that result from fixing the

original database.

Return all the answers that belong to the result of query evaluation in

every repair (consistent answers).
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SELECT *

FROM Emp

WHERE Salary < 25M

⇒ A. Grove Santa Clara, CA 10M

But

SELECT EmpName

FROM Emp

WHERE Salary > 1M

⇒
B. Gates

A. Grove

7



Inconsistent databases

There are many situations when users want/need to live with

inconsistent databases:

• integration of heterogeneous databases with overlapping

information

• the consistency of the database will be restored by executing

further transactions

• inconsistency wrt “soft” integrity constraints (those that we hope

to see satisfied but do not/cannot check) process

• not enough information to resolve inconsistencies.
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Research goals

Formal definition of reliable (“consistent”) information in an

inconsistent database.

Computational mechanisms for obtaining consistent information.

Computational complexity analysis:

• tractable vs. intractable classes of queries and integrity constraints

• trade-off: complexity vs. expressiveness.

Implementation:

• preferably using DBMS technology.
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Plan of the talk

1. repairs and consistent query answers

2. computing consistent query answers to relational algebra/calculus

queries

3. computational complexity

4. aggregation queries

5. alternative frameworks

6. related work

7. future directions.
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Consistent query answers

Arenas, Bertossi, Chomicki [PODS’99]

Repair:

• a database that satisfies the integrity constraints

• difference from the given database is minimal (the set of

inserted/deleted facts is minimal under set inclusion).

A tuple (a1, . . . , an) is a consistent query answer to a query

Q(x1, . . . , xn) in a database r if it is an element of the result of Q in

every repair of r.
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Emp

EmpName Address Salary

B. Gates Redmond, WA 20M

B. Gates Redmond, WA 30M

A. Grove Santa Clara, CA 10M

Functional dependency:

EmpName → Address Salary

Repairs:

B. Gates Redmond, WA 30M

A. Grove Santa Clara, CA 10M

B. Gates Redmond, WA 20M

A. Grove Santa Clara, CA 10M
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A logical aside

Belief revision:

• semantically: repairing ≡ revising the database with integrity

constraints

• consistent query answers ≡ counterfactual inference.

Logical inconsistency:

• inconsistent database: database facts together with integrity

constraints form an inconsistent set of formulas

• trivialization of reasoning does not occur because constraints are

not used in relational query evaluation.
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Computational issues

There are too many repairs to evaluate the query in each of them.

A B

a1 b1

a1 b′1

a2 b2

a2 b′2

· · ·

an bn

an b′n

Under the functional dependency A → B, this instance has 2n repairs.
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Computing consistent query answers

Query transformation: given a query Q and a set of integrity

constraints, construct a query Q′ such that for every database instance

r

the set of answers to Q′ in r = the set of consistent answers

to Q in r.

Representing all repairs: given a set of integrity constraints and a

database instance r:

1. construct a space-efficient representation of all repairs of r

2. use this representation to answer (many) queries.

Specifying repairs as logic programs.
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Query transformation

First-order queries transformed using semantic query optimization

techniques: Arenas, Bertossi, Chomicki [PODS’99].

Residues:

• associated with single literals p(x̄) or ¬p(x̄) (only one of each for

every database relation p)

• for each literal p(x̄) and each constraint containing ¬p(x̄) in its

clausal form, obtain a local residue by removing ¬p(x̄) and the

quantifiers for x̄ from the constraint

• for each literal ¬p(x̄) and each constraint containing p(x̄) in its

clausal form, obtain a local residue by removing p(x̄) and the

quantifiers for x̄ from the constraint

• for each literal, global residue = conjunction of local residues.
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Functional dependencies:

(∀x)(∀y)(∀z)(∀y′)(∀z′)(¬Emp(x, y, z) ∨ ¬Emp(x, y′, z′) ∨ y = y′)

(∀x)(∀y)(∀z)(∀y′)(∀z′)(¬Emp(x, y, z) ∨ ¬Emp(x, y′, z′) ∨ z = z′)

Query:

Emp(x, y, z).

Local residues:

(∀y′)(∀z′)(¬Emp(x, y′, z′) ∨ y = y′).

(∀y′)(∀z′)(¬Emp(x, y′, z′) ∨ z = z′).
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Constructing the transformed query

Given a first-order query Q.

Literal expansion: for every literal, construct an expanded version as

the conjunction of this literal and its global residue.

Iteration: the expansion step is iterated by replacing the literals in the

residue by their expanded versions, until no changes occur.

Query expansion: replace the literals in the query by their final

expanded versions.
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Functional dependencies:

(∀x)(∀y)(∀z)(∀y′)(∀z′)(¬Emp(x, y, z) ∨ ¬Emp(x, y′, z′) ∨ y = y′)

(∀x)(∀y)(∀z)(∀y′)(∀z′)(¬Emp(x, y, z) ∨ ¬Emp(x, y′, z′) ∨ z = z′)

Query:

Emp(x, y, z).

Transformed query:

Emp(x, y, z) ∧ (∀y′)(∀z′)(¬Emp(x, y′, z′) ∨ y = y′)

∧ (∀y′)(∀z′)(¬Emp(x, y′, z′) ∨ z = z′).
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Integrity constraints:

(∀x)(¬p(x) ∨ r(x))

∀x)(¬r(x) ∨ s(x)))

Literal Residue First expansion Second (final) expansion

r(x) s(x) r(x) ∧ s(x) r(x) ∧ s(x)

p(x) r(x) p(x) ∧ r(x) p(x) ∧ r(x) ∧ s(x)

¬r(x) ¬p(x) ¬r(x) ∧ ¬p(x) ¬r(x) ∧ ¬p(x)

¬s(x) ¬r(x) ¬s(x) ∧ ¬r(x) ¬s(x) ∧ ¬r(x) ∧ ¬p(x)
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Scope of query transformation

Query transformation:

• possible for queries involving conjunctions of literals (relational

algebra: selection, join and difference) and binary integrity

constraints.

• can be expanded to allow queries with projection and cartesian

product (if at most one functional dependency per relation)
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SELECT Name

FROM Emp

WHERE Salary > 1M

7−→

SELECT Name

FROM Emp e1

WHERE Salary > 1M

AND NOT EXISTS

(SELECT *

FROM EMPLOYEE e2

WHERE e2.Name = e1.Name

AND e2.Salary <= 1M)
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Conflict hypergraph

Denial constraints only.

Vertices:

• facts in the original instance.

Edges:

• (minimal) sets of facts that violate some constraint.

Repair: a maximal independent set.

23



B. Gates Redmond, WA 20M

A. Grove Santa Clara, CA 10M

B. Gates Redmond, WA 30M
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Ground queries

Observations:

• the query is in CNF ⇒ each conjunct can be processed separately

• all repairs satisfy Φ ⇔ no repair satisfies ¬Φ

Algorithm HProver:

1. ¬Φ = P1(t1) ∧ · · · ∧ Pm(tm) ∧ ¬Pm+1(tm+1) ∧ · · · ∧ ¬Pn(tn)

2. find a repair including P1(t1), . . . , Pm(tm) and excluding

Pm+1(tm+1), . . . , Pn(tn) by enumerating the appropriate edges.

Excluding a fact A:

• A is not in the original instance, or

• A belongs to an edge {A, B1, . . . , Bk} in the conflict hypergraph

and B1, . . . , Bk belong to the repair.
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Properties of HProver

HProver works in PTIME (data complexity):

• n − m choices from a set of polynomial size

• if all choices successful, a repair can be completed.

Generalizing to open, quantifier-free queries:

• possible bindings for free variables come from evaluating an upper

envelope of the original query

26



Q : σ,∪,−,×

Upper Envelope

Q′
: σ,∪,×

Evaluation

Conflict Detection

DB

Translation

Qc : ∧,∨,¬

Candidates

Conflict Graph

Grounding

HProver

Consistent Answers
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Experimental results

Chomicki, Marcinkowski, Staworko [submitted].

The system Hippo, version 0.5 (October 2003):

• back-end: PostgreSQL

• conflict hypergraph (edges) in main memory

• optimization can eliminate many (sometimes all) database

accesses in HProver

• synthetic databases with up to 200K tuples, 2% conflicts

• computing consistent query answers using the conflict hypergraph

much faster than evaluating transformed queries

• relatively little overhead compared to evaluating the original query

using the backend
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Specifying repairs as logic programs

Arenas, Bertossi, Chomicki [FQAS’00, TPLP’03], Greco and Zumpano

[LPAR’00, ICLP’01], Barcelo and Bertossi [NMR’02, PADL’03]:

• using logic programs with negation and disjunction

• repairs ≡ answer sets

• implemented using main-memory LP systems (dlv, smodels)

• Πp
2-complete problems

Scope:

• arbitrary universal constraints, some inclusion dependencies

• arbitrary first-order queries

• queries can be “modalized” and nested
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Facts:

Emp(′B.Gates′, ′Redmond WA′, 20K).

Emp(′B.Gates′, ′Redmond WA′, 30K).

Emp(′A.Grove′, ′Santa Clara CA′, 10K).

Rules:

¬Emp′(x, y, z) ∨ ¬Emp′(x, y′, z′) ← Emp(x, y, z), Emp(x, y′, z′), y 6= y′.

¬Emp′(x, y, z) ∨ ¬Emp′(x, y′, z′) ← Emp(x, y, z), Emp(x, y′, z′), z 6= z′.

Emp′(x, y, z) ← Emp(x, y, z), not ¬Emp′(x, y, z).

¬Emp′(x, y, z) ← not Emp(x, y, z), not Emp′(x, y, z).
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Summary

Query transformation Conflict hypergraph Logic programs

Integrity constraints Binary universal Denial Universal+INDs

Queries σ,×,− σ,×,−,∪ σ, π,×,−,∪

Data complexity PTIME PTIME Π
p

2

Large databases? Yes Yes No
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Data complexity of consistent query answers

Chomicki, Marcinkowski [submitted]:

Queries Functional dependencies Denial constraints

|F | = 1 |F | ≥ 2

σ,×,−,∪ PTIME PTIME PTIME

π, σ,× (no join) PTIME co-NP-complete co-NP-complete

π, σ,× (join) co-NP-complete co-NP-complete co-NP-complete
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Aggregation queries

SELECT SUM(Salary)

FROM Emp

⇒ [30,40]

A consistent answer to an aggregation query is no longer a single value:

• a set of values

• a range of values (polynomial size)
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SELECT SUM(Salary)

FROM Emp
7−→

SELECT SUM(P.MinS), SUM(P.MaxS)

FROM

(SELECT MIN(Salary) AS MinS,

MAX(Salary) AS MaxS

FROM Emp

GROUP BY Name) P

But that works only for a single functional dependency and some

aggregation operators!
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Consistent answers to aggregation queries

Arenas, Bertosi, Chomicki [ICDT’01]:

greatest lower bound least upper bound

|F | = 1 |F | ≥ 2 |F | = 1 |F | ≥ 2

MIN(A) PTIME PTIME PTIME NP-complete

MAX(A) PTIME NP-complete PTIME PTIME

COUNT(*) PTIME NP-complete PTIME NP-complete

COUNT(A) NP-complete NP-complete NP-complete NP-complete

SUM(A), AVG(A) PTIME NP-complete PTIME NP-complete

BCNF improves tractability!
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Alternative frameworks

Different assumptions about database completeness and correctness

(in the presence of inclusion dependencies):

• possibly incorrect but complete: repairs by deletion only

(Chomicki, Marcinkowski [submitted])

• possibly incorrect and incomplete: fix FDs by deletion, INDs by

insertion (Cali, Lembo, Rosati [PODS’03]).

Different notions of minimal repairs:

• minimal set of changes vs. minimal cardinality changes

• repairing attribute values (Wijsen [ICDT’03]).
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Related work

Belief revision:

• revising database with integrity constraints

• revised theory changes with each database update

• emphasis on semantics (AGM postulates), not computation

• complexity results (Eiter, Gottlob [AI’92]) do not quite transfer

Disjunctive information:

• repair ≡ possible world (sometimes)

• using disjunctions to represent resolved conflicts

• query languages: representation-specific, relational algebra or

calculus

• complexity results (Imielinski et al. [JCSS’95]) do not transfer
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Future work

Broadening scope:

• SQL:

– relational algebra and aggregation

– integrating different techniques

– keys and foreign keys

• preferences and priorities:

– source rankings

– timestamps
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New paradigms:

• data integration and exchange:

– Bertossi, Chomicki, Cortes, Gutierrez [FQAS’02]

– Bravo, Bertossi [IJCAI’03]

– Cali, Lembo, Rosati [PODS’03]

• data cleaning

• XML

• spatial/spatiotemporal databases
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