
Consistent Query Answering

Recent Developments and Future Directions

Jan Chomicki

Dept. CSE

University at Buffalo

State University of New York

http://www.cse.buffalo.edu/~chomicki

1

Integrity constraints

Integrity constraints describe valid database instances. Examples:

• functional dependencies: “every employee has a single salary.”

• denial constraints: “no employee can make more than her

manager.”

• referential integrity: “managers have to be employees.”

The constraints are formulated in first-order logic:

∀n, s, m, s′, m′.¬[Emp(n, s, m) ∧ Emp(m, s′, m′) ∧ s > s′].

An inconsistent database violates the constraints.

2

Traditional view

Integrity constraints are always enforced.

Emp

EmpName Address Salary

B. Gates Redmond, WA 20M

B. Gates Redmond, WA 30M

A. Grove Santa Clara, CA 10M

Functional dependency:

EmpName → Address Salary

This instance cannot arise but ... consider data integration.

3

Ignoring inconsistency

SELECT *

FROM Emp

WHERE Salary < 25M

⇒
B. Gates Redmond, WA 20M

A. Grove Santa Clara, CA 10M

The result is not fully reliable.

4

Quarantining inconsistency

The facts involved in an inconsistency are not used in the derivation of

query answers [Bry, IICIS’97].

SELECT *

FROM Emp

WHERE Salary < 25M

⇒ A. Grove Santa Clara, CA 10M

But what about

SELECT EmpName

FROM Emp

WHERE Salary > 1M

⇒ A. Grove

Partial information cannot be obtained.

5

A middle-ground solution

Consider all repairs: possible databases that result from fixing the

original database.

Return all the answers that belong to the result of query evaluation in

every repair (consistent answers).

6

SELECT *

FROM Emp

WHERE Salary < 25M

⇒ A. Grove Santa Clara, CA 10M

But

SELECT EmpName

FROM Emp

WHERE Salary > 1M

⇒
B. Gates

A. Grove

7

Inconsistent databases

There are many situations when users want/need to live with

inconsistent databases:

• integration of heterogeneous databases with overlapping

information

• the consistency of the database will be restored by executing

further transactions

• inconsistency wrt “soft” integrity constraints (those that we hope

to see satisfied but do not/cannot check) process

• not enough information to resolve inconsistencies.

8

Research goals

Formal definition of reliable (“consistent”) information in an

inconsistent database.

Computational mechanisms for obtaining consistent information.

Computational complexity analysis:

• tractable vs. intractable classes of queries and integrity constraints

• trade-off: complexity vs. expressiveness.

Implementation:

• preferably using DBMS technology.

9

Plan of the talk

1. repairs and consistent query answers

2. computing consistent query answers to relational algebra/calculus

queries

3. computational complexity

4. aggregation queries

5. alternative frameworks

6. related work

7. future directions.

10

Consistent query answers

Arenas, Bertossi, Chomicki [PODS’99]

Repair:

• a database that satisfies the integrity constraints

• difference from the given database is minimal (the set of

inserted/deleted facts is minimal under set inclusion).

A tuple (a1, . . . , an) is a consistent query answer to a query

Q(x1, . . . , xn) in a database r if it is an element of the result of Q in

every repair of r.

11

Emp

EmpName Address Salary

B. Gates Redmond, WA 20M

B. Gates Redmond, WA 30M

A. Grove Santa Clara, CA 10M

Functional dependency:

EmpName → Address Salary

Repairs:

B. Gates Redmond, WA 30M

A. Grove Santa Clara, CA 10M

B. Gates Redmond, WA 20M

A. Grove Santa Clara, CA 10M

12

A logical aside

Belief revision:

• semantically: repairing ≡ revising the database with integrity

constraints

• consistent query answers ≡ counterfactual inference.

Logical inconsistency:

• inconsistent database: database facts together with integrity

constraints form an inconsistent set of formulas

• trivialization of reasoning does not occur because constraints are

not used in relational query evaluation.

13

Computational issues

There are too many repairs to evaluate the query in each of them.

A B

a1 b1

a1 b′1

a2 b2

a2 b′2

· · ·

an bn

an b′n

Under the functional dependency A → B, this instance has 2n repairs.

14

Computing consistent query answers

Query transformation: given a query Q and a set of integrity

constraints, construct a query Q′ such that for every database instance

r

the set of answers to Q′ in r = the set of consistent answers

to Q in r.

Representing all repairs: given a set of integrity constraints and a

database instance r:

1. construct a space-efficient representation of all repairs of r

2. use this representation to answer (many) queries.

Specifying repairs as logic programs.

15

Query transformation

First-order queries transformed using semantic query optimization

techniques: Arenas, Bertossi, Chomicki [PODS’99].

Residues:

• associated with single literals p(x̄) or ¬p(x̄) (only one of each for

every database relation p)

• for each literal p(x̄) and each constraint containing ¬p(x̄) in its

clausal form, obtain a local residue by removing ¬p(x̄) and the

quantifiers for x̄ from the constraint

• for each literal ¬p(x̄) and each constraint containing p(x̄) in its

clausal form, obtain a local residue by removing p(x̄) and the

quantifiers for x̄ from the constraint

• for each literal, global residue = conjunction of local residues.

16

Functional dependencies:

(∀x)(∀y)(∀z)(∀y′)(∀z′)(¬Emp(x, y, z) ∨ ¬Emp(x, y′, z′) ∨ y = y′)

(∀x)(∀y)(∀z)(∀y′)(∀z′)(¬Emp(x, y, z) ∨ ¬Emp(x, y′, z′) ∨ z = z′)

Query:

Emp(x, y, z).

Local residues:

(∀y′)(∀z′)(¬Emp(x, y′, z′) ∨ y = y′).

(∀y′)(∀z′)(¬Emp(x, y′, z′) ∨ z = z′).

17

Constructing the transformed query

Given a first-order query Q.

Literal expansion: for every literal, construct an expanded version as

the conjunction of this literal and its global residue.

Iteration: the expansion step is iterated by replacing the literals in the

residue by their expanded versions, until no changes occur.

Query expansion: replace the literals in the query by their final

expanded versions.

18

Functional dependencies:

(∀x)(∀y)(∀z)(∀y′)(∀z′)(¬Emp(x, y, z) ∨ ¬Emp(x, y′, z′) ∨ y = y′)

(∀x)(∀y)(∀z)(∀y′)(∀z′)(¬Emp(x, y, z) ∨ ¬Emp(x, y′, z′) ∨ z = z′)

Query:

Emp(x, y, z).

Transformed query:

Emp(x, y, z) ∧ (∀y′)(∀z′)(¬Emp(x, y′, z′) ∨ y = y′)

∧ (∀y′)(∀z′)(¬Emp(x, y′, z′) ∨ z = z′).

19

Integrity constraints:

(∀x)(¬p(x) ∨ r(x))

∀x)(¬r(x) ∨ s(x)))

Literal Residue First expansion Second (final) expansion

r(x) s(x) r(x) ∧ s(x) r(x) ∧ s(x)

p(x) r(x) p(x) ∧ r(x) p(x) ∧ r(x) ∧ s(x)

¬r(x) ¬p(x) ¬r(x) ∧ ¬p(x) ¬r(x) ∧ ¬p(x)

¬s(x) ¬r(x) ¬s(x) ∧ ¬r(x) ¬s(x) ∧ ¬r(x) ∧ ¬p(x)

20

Scope of query transformation

Query transformation:

• possible for queries involving conjunctions of literals (relational

algebra: selection, join and difference) and binary integrity

constraints.

• can be expanded to allow queries with projection and cartesian

product (if at most one functional dependency per relation)

21

SELECT Name

FROM Emp

WHERE Salary > 1M

7−→

SELECT Name

FROM Emp e1

WHERE Salary > 1M

AND NOT EXISTS

(SELECT *

FROM EMPLOYEE e2

WHERE e2.Name = e1.Name

AND e2.Salary <= 1M)

22

Conflict hypergraph

Denial constraints only.

Vertices:

• facts in the original instance.

Edges:

• (minimal) sets of facts that violate some constraint.

Repair: a maximal independent set.

23

B. Gates Redmond, WA 20M

A. Grove Santa Clara, CA 10M

B. Gates Redmond, WA 30M

24

Ground queries

Observations:

• the query is in CNF ⇒ each conjunct can be processed separately

• all repairs satisfy Φ ⇔ no repair satisfies ¬Φ

Algorithm HProver:

1. ¬Φ = P1(t1) ∧ · · · ∧ Pm(tm) ∧ ¬Pm+1(tm+1) ∧ · · · ∧ ¬Pn(tn)

2. find a repair including P1(t1), . . . , Pm(tm) and excluding

Pm+1(tm+1), . . . , Pn(tn) by enumerating the appropriate edges.

Excluding a fact A:

• A is not in the original instance, or

• A belongs to an edge {A, B1, . . . , Bk} in the conflict hypergraph

and B1, . . . , Bk belong to the repair.

25

Properties of HProver

HProver works in PTIME (data complexity):

• n − m choices from a set of polynomial size

• if all choices successful, a repair can be completed.

Generalizing to open, quantifier-free queries:

• possible bindings for free variables come from evaluating an upper

envelope of the original query

26

Q : σ,∪,−,×

Upper Envelope

Q′
: σ,∪,×

Evaluation

Conflict Detection

DB

Translation

Qc : ∧,∨,¬

Candidates

Conflict Graph

Grounding

HProver

Consistent Answers
27

Experimental results

Chomicki, Marcinkowski, Staworko [submitted].

The system Hippo, version 0.5 (October 2003):

• back-end: PostgreSQL

• conflict hypergraph (edges) in main memory

• optimization can eliminate many (sometimes all) database

accesses in HProver

• synthetic databases with up to 200K tuples, 2% conflicts

• computing consistent query answers using the conflict hypergraph

much faster than evaluating transformed queries

• relatively little overhead compared to evaluating the original query

using the backend

28

Specifying repairs as logic programs

Arenas, Bertossi, Chomicki [FQAS’00, TPLP’03], Greco and Zumpano

[LPAR’00, ICLP’01], Barcelo and Bertossi [NMR’02, PADL’03]:

• using logic programs with negation and disjunction

• repairs ≡ answer sets

• implemented using main-memory LP systems (dlv, smodels)

• Πp
2-complete problems

Scope:

• arbitrary universal constraints, some inclusion dependencies

• arbitrary first-order queries

• queries can be “modalized” and nested

29

Facts:

Emp(′B.Gates′, ′Redmond WA′, 20K).

Emp(′B.Gates′, ′Redmond WA′, 30K).

Emp(′A.Grove′, ′Santa Clara CA′, 10K).

Rules:

¬Emp′(x, y, z) ∨ ¬Emp′(x, y′, z′) ← Emp(x, y, z), Emp(x, y′, z′), y 6= y′.

¬Emp′(x, y, z) ∨ ¬Emp′(x, y′, z′) ← Emp(x, y, z), Emp(x, y′, z′), z 6= z′.

Emp′(x, y, z) ← Emp(x, y, z), not ¬Emp′(x, y, z).

¬Emp′(x, y, z) ← not Emp(x, y, z), not Emp′(x, y, z).

30

Summary

Query transformation Conflict hypergraph Logic programs

Integrity constraints Binary universal Denial Universal+INDs

Queries σ,×,− σ,×,−,∪ σ, π,×,−,∪

Data complexity PTIME PTIME Π
p

2

Large databases? Yes Yes No

31

Data complexity of consistent query answers

Chomicki, Marcinkowski [submitted]:

Queries Functional dependencies Denial constraints

|F | = 1 |F | ≥ 2

σ,×,−,∪ PTIME PTIME PTIME

π, σ,× (no join) PTIME co-NP-complete co-NP-complete

π, σ,× (join) co-NP-complete co-NP-complete co-NP-complete

32

Aggregation queries

SELECT SUM(Salary)

FROM Emp

⇒ [30,40]

A consistent answer to an aggregation query is no longer a single value:

• a set of values

• a range of values (polynomial size)

33

SELECT SUM(Salary)

FROM Emp
7−→

SELECT SUM(P.MinS), SUM(P.MaxS)

FROM

(SELECT MIN(Salary) AS MinS,

MAX(Salary) AS MaxS

FROM Emp

GROUP BY Name) P

But that works only for a single functional dependency and some

aggregation operators!

34

Consistent answers to aggregation queries

Arenas, Bertosi, Chomicki [ICDT’01]:

greatest lower bound least upper bound

|F | = 1 |F | ≥ 2 |F | = 1 |F | ≥ 2

MIN(A) PTIME PTIME PTIME NP-complete

MAX(A) PTIME NP-complete PTIME PTIME

COUNT(*) PTIME NP-complete PTIME NP-complete

COUNT(A) NP-complete NP-complete NP-complete NP-complete

SUM(A), AVG(A) PTIME NP-complete PTIME NP-complete

BCNF improves tractability!

35

Alternative frameworks

Different assumptions about database completeness and correctness

(in the presence of inclusion dependencies):

• possibly incorrect but complete: repairs by deletion only

(Chomicki, Marcinkowski [submitted])

• possibly incorrect and incomplete: fix FDs by deletion, INDs by

insertion (Cali, Lembo, Rosati [PODS’03]).

Different notions of minimal repairs:

• minimal set of changes vs. minimal cardinality changes

• repairing attribute values (Wijsen [ICDT’03]).

36

Related work

Belief revision:

• revising database with integrity constraints

• revised theory changes with each database update

• emphasis on semantics (AGM postulates), not computation

• complexity results (Eiter, Gottlob [AI’92]) do not quite transfer

Disjunctive information:

• repair ≡ possible world (sometimes)

• using disjunctions to represent resolved conflicts

• query languages: representation-specific, relational algebra or

calculus

• complexity results (Imielinski et al. [JCSS’95]) do not transfer

37

Future work

Broadening scope:

• SQL:

– relational algebra and aggregation

– integrating different techniques

– keys and foreign keys

• preferences and priorities:

– source rankings

– timestamps

38

New paradigms:

• data integration and exchange:

– Bertossi, Chomicki, Cortes, Gutierrez [FQAS’02]

– Bravo, Bertossi [IJCAI’03]

– Cali, Lembo, Rosati [PODS’03]

• data cleaning

• XML

• spatial/spatiotemporal databases

39

Selected papers:

1. M. Arenas, L. Bertossi, J. Chomicki, “Consistent Query Answers in

Inconsistent Databases,” ACM Symposium on Principles of Database Systems

(PODS), Philadelphia, May 1999.

2. M. Arenas, L. Bertossi, J. Chomicki, “Specifying and Querying Database

Repairs using Logic Programs with Exceptions,” International Symposium on

Flexible Query Answering Systems (FQAS), Warsaw, Poland, October 2000.

Full version: Theory and Practice of Logic Programming, 2003.

3. M. Arenas, L. Bertossi, J. Chomicki, “Scalar Aggregation in FD-Inconsistent

Databases,” International Conference on Database Thory (ICDT), London,

UK, January 2001. Full version: Theoretical Computer Science, 2003.

4. J. Chomicki, J. Marcinkowski, “Minimal-Change Integrity Maintenance Using

Tuple Deletions,” submitted.

5. L. Bertossi, J. Chomicki, “Query Answering in Inconsistent Databases,” in

Logics for Emerging Applications of Databases, J. Chomicki, R. van der

Meyden, G. Saake [eds.], Springer-Verlag, 2003.

40

