
Consistent Query Answering

Opportunities and Limitations

Jan Chomicki
Dept. CSE

University at Buffalo
State University of New York

http://www.cse.buffalo.edu/˜chomicki

1



Integrity constraints

Integrity constraints describevalid database instances. Examples:

• functional dependencies (FDs):“every employee has a single

salary.”

• denial constraints:“no employee can make more than her manager.”

• inclusion dependencies (INDs):“managers have to be employees.”

The constraints are formulated infirst-order logic :

∀n, s, m, s′, m′.¬[Emp(n, s, m) ∧ Emp(m, s′, m′) ∧ s > s′].

An inconsistentdatabase violates the constraints.

2



Integrity constraints

Integrity constraints describevalid database instances. Examples:

• functional dependencies (FDs):“every employee has a single

salary.”

• denial constraints:“no employee can make more than her manager.”

• inclusion dependencies (INDs):“managers have to be employees.”

The constraints are formulated infirst-order logic:

∀n, s, m, s′, m′.¬[Emp(n, s, m) ∧ Emp(m, s′, m′) ∧ s > s′].

An inconsistentdatabase violates the constraints.

3



Integrity constraints

Integrity constraints describevalid database instances. Examples:

• functional dependencies (FDs):“every employee has a single

salary.”

• denial constraints:“no employee can make more than her manager.”

• inclusion dependencies (INDs):“managers have to be employees.”

The constraints are formulated infirst-order logic:

∀n, s, m, s′, m′.¬[Emp(n, s, m) ∧ Emp(m, s′, m′) ∧ s > s′].

An inconsistentdatabase violates the constraints.

4



Traditional view

Integrity constraints are alwaysenforced.

Emp

EmpName Address Salary

B. Gates Redmond, WA 20M

B. Gates Redmond, WA 30M

A. Grove Santa Clara, CA 10M

Functional dependency:

EmpName→ Address Salary

This instancecannot arisebut ... considerdata integration.

5



Traditional view

Integrity constraints are alwaysenforced.

Emp

EmpName Address Salary

B. Gates Redmond, WA 20M

B. Gates Redmond, WA 30M

A. Grove Santa Clara, CA 10M

Functional dependency:

EmpName→ Address Salary

This instancecannot arisebut ... considerdata integration.

6



Traditional view

Integrity constraints are alwaysenforced.

Emp

EmpName Address Salary

B. Gates Redmond, WA 20M

B. Gates Redmond, WA 30M

A. Grove Santa Clara, CA 10M

Functional dependency:

EmpName→ Address Salary

This instancecannot arisebut ... considerdata integration.

7



Ignoring inconsistency

SELECT *

FROM Emp

WHERE Salary < 25M

⇒
B. Gates Redmond, WA 20M

A. Grove Santa Clara, CA 10M

The result is notfully reliable .

8



Ignoring inconsistency

SELECT *

FROM Emp

WHERE Salary < 25M

⇒
B. Gates Redmond, WA 20M

A. Grove Santa Clara, CA 10M

The result is notfully reliable.

9



Quarantining inconsistency

The facts involved in an inconsistency are not used in the derivation of
query answers [Bry, IICIS’97].

SELECT *

FROM Emp

WHERE Salary < 25M

⇒ A. Grove Santa Clara, CA 10M

But what about

SELECT EmpName

FROM Emp

WHERE Salary > 10K

⇒ A. Grove

Partial information cannot be obtained.

10



Quarantining inconsistency

The facts involved in an inconsistency are not used in the derivation of
query answers [Bry, IICIS’97].

SELECT *

FROM Emp

WHERE Salary < 25M

⇒ A. Grove Santa Clara, CA 10M

But what about

SELECT EmpName

FROM Emp

WHERE Salary > 10K

⇒ A. Grove

Partial information cannot be obtained.

11



Quarantining inconsistency

The facts involved in an inconsistency are not used in the derivation of
query answers [Bry, IICIS’97].

SELECT *

FROM Emp

WHERE Salary < 25M

⇒ A. Grove Santa Clara, CA 10M

But what about

SELECT EmpName

FROM Emp

WHERE Salary > 10K

⇒ A. Grove

Partial information cannot be obtained.

12



Quarantining inconsistency

The facts involved in an inconsistency are not used in the derivation of
query answers [Bry, IICIS’97].

SELECT *

FROM Emp

WHERE Salary < 25M

⇒ A. Grove Santa Clara, CA 10M

But what about

SELECT EmpName

FROM Emp

WHERE Salary > 10K

⇒ A. Grove

Partial informationcannot be obtained.

13



Constraints with exceptions

Weakenthe constraints [Borgida, TODS’85], without affectingquery

evaluation.

Emp

EmpName Address Salary

B. Gates Redmond, WA 20M

B. Gates Redmond, WA 30M

A. Grove Santa Clara, CA 10M

Constraint with exception:

(∀x, y, z, y′, z′)¬[Emp(x, y, z) ∧ Emp(x, y′, z′) ∧ y 6= y′ ∧ x 6= B.Gates]

14



Constraints with exceptions

Weakenthe constraints [Borgida, TODS’85], without affectingquery

evaluation.

Emp

EmpName Address Salary

B. Gates Redmond, WA 20M

B. Gates Redmond, WA 30M

A. Grove Santa Clara, CA 10M

Constraint with exception:

(∀x, y, z, y′, z′)¬[Emp(x, y, z) ∧ Emp(x, y′, z′) ∧ y 6= y′ ∧ x 6= B.Gates]

15



Data cleaning

Emp

EmpName Address Salary

B. Gates Redmond, WA 20M

B. Gates Redmond, WA 30M

A. Grove Santa Clara, CA 10M

Functional dependency:

EmpName → Address Salary

Repair:

EmpName Address Salary

B. Gates Redmond, WA 30M

A. Grove Santa Clara, CA 10M

Some information islost.

16



Data cleaning

Emp

EmpName Address Salary

B. Gates Redmond, WA 20M

B. Gates Redmond, WA 30M

A. Grove Santa Clara, CA 10M

Functional dependency:

EmpName → Address Salary

Repair:

EmpName Address Salary

B. Gates Redmond, WA 30M

A. Grove Santa Clara, CA 10M

Some information islost.

17



Data cleaning

Emp

EmpName Address Salary

B. Gates Redmond, WA 20M

B. Gates Redmond, WA 30M

A. Grove Santa Clara, CA 10M

Functional dependency:

EmpName → Address Salary

Repair:

EmpName Address Salary

B. Gates Redmond, WA 30M

A. Grove Santa Clara, CA 10M

Some information islost.

18



CQA: a query-driven approach

Consider allrepairs: possible databases that result fromfixing the original

database in aminimal way.

Return all the answers that belong to the result of query evaluation in

every repair(consistentanswers).

19



Emp

EmpName Address Salary

B. Gates Redmond, WA 20M

B. Gates Redmond, WA 30M

A. Grove Santa Clara, CA 10M

Functional dependency:

EmpName → Address Salary

Repairs:

B. Gates Redmond, WA 30M

A. Grove Santa Clara, CA 10M

B. Gates Redmond, WA 20M

A. Grove Santa Clara, CA 10M

20



SELECT *

FROM Emp

WHERE Salary < 25M

⇒ A. Grove Santa Clara, CA 10M

But

SELECT EmpName

FROM Emp

WHERE Salary > 10K

⇒
B. Gates

A. Grove

21



SELECT *

FROM Emp

WHERE Salary < 25M

⇒ A. Grove Santa Clara, CA 10M

But

SELECT EmpName

FROM Emp

WHERE Salary > 10K

⇒
B. Gates

A. Grove

22



Inconsistent databases

There are many situations when users want/need to live withinconsistent

databases:

• integration of heterogeneous databases with overlapping information

• not enough information to resolve inconsistencies

• preservation of all data (even erroneous)

• the consistency of the database will be restored by executing further

transactions

• inconsistency wrt “soft” integrity constraints (those that we hope to

see satisfied but do not/cannot check) process

23



Research goals

Formal definitionof reliable (“consistent”) information in an inconsistent
database.

Computationalmechanisms for obtaining consistent information.

Computational complexity analysis:

• tractable vs. intractable classes of queries and integrityconstraints

• trade-off: complexity vs. expressiveness.

Implementation:

• preferably using DBMS technology.

24



Plan of the talk

1. repairs and consistent query answers

2. computing consistent query answers to relational

algebra/calculus/SQL queries

3. extensions and new directions:

• other notions of repair

• probabilistic databases

4. further active research directions

5. related work

6. lessons of CQA research

7. the CQA community

25



Constraint classes

Universal:∀. ¬A1 ∨ · · · ∨ ¬An ∨B1 ∨ · · · ∨Bm.

Denial:∀. ¬A1 ∨ · · · ∨ ¬An.

Functional dependencies (FDs):X → Y .

Inclusion dependencies (INDs):P [X ] ⊆ R[Y ].

26



Consistent query answers

Arenas, Bertossi, Ch. [PODS’99].

Repair:

• a database that satisfies the integrity constraints

• difference from the given database is minimal (the set of

inserted/deleted facts is minimal under set inclusion).

A tuple (a1, . . . , an) is aconsistent query answerto a query

Q(x1, . . . , xn) in a databaser if it is an element of the result ofQ in

every repairof r.

27



A logical aside

Belief revision:

• semantically: repairing≡ revisingthe database with integrity

constraints

• consistent query answers≡ counterfactualinference.

Logical inconsistency:

• inconsistent database: database facts together with integrity

constraints form aninconsistent set of formulas

• trivialization of reasoning does not occur because constraints are not

used in relational query evaluation.

28



Computational issues

There are too many repairs to evaluate the query in each of them.

A B

a1 b1

a1 b′
1

a2 b2

a2 b′
2

· · ·

an bn

an b′
n

Under the functional dependencyA→ B, this instance has2n repairs.

29



Computing consistent query answers

Query rewriting: given a queryQ and a set of integrity constraints,

construct a queryQ′ such that for every database instancer

the set of answers toQ′ in r = the set of consistent answers toQ

in r.

Representing all repairs: given a set of integrity constraints and a database

instancer:

1. construct a space-efficient representation of all repairs of r

2. use this representation to answer (many) queries.

Specifying repairs as logic programs.

30



Query rewriting

First-order queriestransformed using semantic query optimization
techniques: [Arenas, Bertossi, Ch., PODS’99].

Functional dependencies:

(∀x)(∀y)(∀z)(∀y′)(∀z′)(¬Emp(x, y, z) ∨ ¬Emp(x, y′, z′) ∨ y = y′)

(∀x)(∀y)(∀z)(∀y′)(∀z′)(¬Emp(x, y, z) ∨ ¬Emp(x, y′, z′) ∨ z = z′)

Query:Emp(x, y, z).

Transformed query:

Emp(x, y, z) ∧ (∀y′)(∀z′)(¬Emp(x, y′, z′) ∨ y = y′)

∧ (∀y′)(∀z′)(¬Emp(x, y′, z′) ∨ z = z′).

31



Query rewriting

First-order queriestransformed using semantic query optimization
techniques: [Arenas, Bertossi, Ch., PODS’99].

Functional dependencies:

(∀x)(∀y)(∀z)(∀y′)(∀z′)(¬Emp(x, y, z) ∨ ¬Emp(x, y′, z′) ∨ y = y′)

(∀x)(∀y)(∀z)(∀y′)(∀z′)(¬Emp(x, y, z) ∨ ¬Emp(x, y′, z′) ∨ z = z′)

Query:Emp(x, y, z).

Transformed query:

Emp(x, y, z) ∧ (∀y′)(∀z′)(¬Emp(x, y′, z′) ∨ y = y′)

∧ (∀y′)(∀z′)(¬Emp(x, y′, z′) ∨ z = z′).

32



Query rewriting

First-order queriestransformed using semantic query optimization
techniques: [Arenas, Bertossi, Ch., PODS’99].

Functional dependencies:

(∀x)(∀y)(∀z)(∀y′)(∀z′)(¬Emp(x, y, z) ∨ ¬Emp(x, y′, z′) ∨ y = y′)

(∀x)(∀y)(∀z)(∀y′)(∀z′)(¬Emp(x, y, z) ∨ ¬Emp(x, y′, z′) ∨ z = z′)

Query:Emp(x, y, z).

Transformed query:

Emp(x, y, z) ∧ (∀y′)(∀z′)(¬Emp(x, y′, z′) ∨ y = y′)

∧ (∀y′)(∀z′)(¬Emp(x, y′, z′) ∨ z = z′).

33



Scope of query rewriting

Query rewriting:

• queries involvingconjunctionsof literals (relational algebra:

σ,×,−) andbinary universalintegrity constraints [Arenas, Bertossi,

Ch., PODS’99].

• existentially-quantified conjunctions(π, σ, ⋊⋉) and single-key

dependencies [Fuxman, Miller, ICDT’05]:

– CTreequeries (≈ no non-key joins)

– extended toexclusion dependencies[Grieco et al., CIKM’05].

34



SELECT Name

FROM Emp

WHERE Salary > 10K

7−→

SELECT Name

FROM Emp e1

WHERE Salary > 10K

AND NOT EXISTS

(SELECT *

FROM EMPLOYEE e2

WHERE e2.Name = e1.Name

AND e2.Salary <= 10K)

35



Experimental results (ConQuer)

[Fuxman, Fazli, Miller, SIGMOD’05].

The systemConQuer:

• back-end: DB2 UDB.

• query rewriting into SQL, producing unnested queries

• queries from the TPC-H workload

• databases can be annotated with consistency indicators

• tested for synthetic databases with 400K–8M tuples, 0–50% conflicts

• relatively little overhead compared to evaluating the original query

using the backend

36



Conflict hypergraph

Denial constraints only.

Vertices: facts in the original instance.

Edges:(minimal) sets of facts that violate some constraint.

Repairs:maximal independent sets.

B. Gates Redmond, WA 20M

A. Grove Santa Clara, CA 10M

B. Gates Redmond, WA 30M

37



Computing CQAs using the conflict hypergraph

[Ch., Marcinkowski, I&C, 2005].

Algorithm HProver:

1. input: queryΦ a disjunction of ground atoms

2. ¬Φ = P1(t1) ∧ · · · ∧ Pm(tm) ∧ ¬Pm+1(tm+1) ∧ · · · ∧ ¬Pn(tn)

3. find a repairincludingP1(t1), . . . , Pm(tm) andexcluding

Pm+1(tm+1), . . . , Pn(tn) by enumerating the appropriate edges.

Excludinga factA:

• A is not in the original instance, or

• A belongs to an edge{A,B1, . . . , Bk} in the conflict hypergraph and

B1, . . . , Bk belong to the repair.

P (data complexity) forquantifier-free queriesanddenial constraints.

38



Hippo

Q : σ,∪,−,×

Upper Envelope

Q′
: σ,∪,×

Evaluation

Conflict Detection

DB

Translation

Qc : ∧,∨,¬

Candidates

Conflict Graph

Grounding

HProver

Consistent Answers

39



Experimental results (Hippo)

[Ch., Marcinkowski, Staworko, CIKM’04].

The systemHippo:

• back-end: PostgreSQL

• conflict hypergraph (edges) in main memory

• optimization can eliminate many (sometimes all) database accesses
in HProver

• tested for synthetic databases with up to 200K tuples, 2% conflicts

• computing consistent query answers using the conflict hypergraph
faster than evaluating transformed queries

• relatively little overhead compared to evaluating the original query
using the backend

40



Specifying repairs as logic programs

[Arenas, Bertossi, Ch., TPLP’03], [Greco, Greco and Zumpano,

TKDE’03], [Barcelo, Bertossi, PADL’03], [Eiter et al., ICLP’03]:

• using logic programs withnegationanddisjunction

• repairs≡ answer sets

• several different encodings

• implemented using main-memory LP systems (dlv , smodels )

• Πp

2
-complete problems

Scope:

• arbitrary universal constraints, some inclusion dependencies

• arbitrary first-order queries

41



The approach of [Arenas, Bertossi, Ch., TPLP’03].

Facts:

Emp(′B.Gates′, ′Redmond WA′, 20K).

Emp(′B.Gates′, ′Redmond WA′, 30K).

Emp(′A.Grove′, ′Santa Clara CA′, 10K).

Rules:

¬Emp′(x, y, z) ∨ ¬Emp′(x, y′, z′)← Emp(x, y, z), Emp(x, y′, z′), y 6= y′.

¬Emp′(x, y, z) ∨ ¬Emp′(x, y′, z′)← Emp(x, y, z), Emp(x, y′, z′), z 6= z′.

Emp′(x, y, z)← Emp(x, y, z), not ¬Emp′(x, y, z).

¬Emp′(x, y, z)← not Emp(x, y, z), not Emp′(x, y, z).

42



Experimental data (INFOMIX)

[Eiter at al., ICLP’03].

The systemINFOMIX:

• combines CQA with data integration (GAV)

• relational backend: PostgreSQL

• uses the disjunctive LP systemdlv for repair computations

• optimization techniques: localization, factorization

• tested on legacy databases of up to 50K tuples.

43



Data complexity of consistent query answers

Keys / primary keys) Denial Universal

σ,×,− P P P(binary)

σ,×,−,∪ P P ?

σ, π co-NPC /P co-NPC co-NP-hard

σ,×, π co-NPC /P(Ctree) co-NPC co-NP-hard

Tractable approaches:

• query rewriting

• conflict graphs

Sources: [Ch., Marcinkowski, I&C’05], [Fuxman, Miller, ICDT’05], [Cali,

Lembo, Rosati, PODS’03].

44



Tractable/intractable queries

Tractable(P):

• under any denial constraints:

SELECT * FROM P

UNION (SELECT * FROM Q

EXCEPT SELECT * FROM R)

45



Schema:

CREATE TABLE P(A PRIMARY KEY, B);

CREATE TABLE Q(C PRIMARY KEY, D)

Tractable (P):

SELECT Q.D

FROM P, Q

WHERE P.B = Q.C

Intractable (co-NP-complete):

SELECT Q.D

FROM P, Q

WHERE P.B = Q.D

46



Schema:

CREATE TABLE P(A PRIMARY KEY, B);

CREATE TABLE Q(C PRIMARY KEY, D)

Tractable(P):

SELECT Q.D

FROM P, Q

WHERE P.B = Q.C

Intractable (co-NP-complete):

SELECT Q.D

FROM P, Q

WHERE P.B = Q.D

47



Schema:

CREATE TABLE P(A PRIMARY KEY, B);

CREATE TABLE Q(C PRIMARY KEY, D)

Tractable(P):

SELECT Q.D

FROM P, Q

WHERE P.B = Q.C

Intractable(co-NP-complete):

SELECT Q.D

FROM P, Q

WHERE P.B = Q.D

48



Alternative frameworks

Different assumptions about databasecompletenessandcorrectness(in

the presence ofinclusion dependencies):

• possibly incorrect but complete: repairs by deletion only [Ch.,

Marcinkowski, I&C’05]

• possibly incorrect and incomplete: fix FDs by deletion, INDsby

insertion [Cali, Lembo, Rosati, PODS’03].

49



Different notions ofminimal repairs:

• minimal cardinality changes [Lopatenko, Bertossi, ’06]:

– tractability ofincremental CQA:

given a consistent databaseD and a fixed sequence of

updatesU , what is the complexity of computing CQA over

U(DB)?

• repairing attribute values.

50



Attribute-based repairs

Several different approaches:

(A) groundandnon-groundrepairs [Wijsen, TODS’05]

(B) project-joinrepairs [Wijsen, FQAS’06]

(C) repairs minimizingEuclidean distance[Bertossi et al., DBPL’05]

(D) repairs of minimumcost[Bohannon et al., SIGMOD’05].

Computational complexity:

• (A) and(B): similar to tuple based repairs

• (C) and(D): checking existence of a repair of cost< K

NP-complete.

51



Attribute-based repairs

Several different approaches:

(A) groundandnon-groundrepairs [Wijsen, TODS’05]

(B) project-joinrepairs [Wijsen, FQAS’06]

(C) repairs minimizingEuclidean distance[Bertossi et al., DBPL’05]

(D) repairs of minimumcost[Bohannon et al., SIGMOD’05].

Computational complexity:

• (A) and(B): similar to tuple based repairs

• (C) and(D): checking existence of a repair of cost< K

NP-complete.

52



Project-join repairs

PJ-repairs: repairs of alossless join decomposition.

EmpDept

Name Dept Location

John Sales Buffalo

Mary Sales Toronto

Functional dependencies:

Name → Dept

Dept → Location

Repairs:

John Sales Buffalo Mary Sales Toronto

53



Project-join repairs

PJ-repairs: repairs of alossless join decomposition.

EmpDept

Name Dept Location

John Sales Buffalo

Mary Sales Toronto

Functional dependencies:

Name → Dept

Dept → Location

Repairs:

John Sales Buffalo Mary Sales Toronto

54



Project-join repairs

PJ-repairs: repairs of alossless join decomposition.

EmpDept

Name Dept Location

John Sales Buffalo

Mary Sales Toronto

Functional dependencies:

Name → Dept

Dept → Location

Repairs:

John Sales Buffalo Mary Sales Toronto

55



Decomposition

πName,Dept(EmpDept) ⋊⋉ πDept,Location(EmpDept)

Name Dept Location

John Sales Buffalo

John Sales Toronto

Mary Sales Buffalo

Mary Sales Toronto

PJ-repairs:

John Sales Buffalo

Mary Sales Buffalo

John Sales Toronto

Mary Sales Toronto

56



Decomposition

πName,Dept(EmpDept) ⋊⋉ πDept,Location(EmpDept)

Name Dept Location

John Sales Buffalo

John Sales Toronto

Mary Sales Buffalo

Mary Sales Toronto

PJ-repairs:

John Sales Buffalo

Mary Sales Buffalo

John Sales Toronto

Mary Sales Toronto

57



Decomposition

πName,Dept(EmpDept) ⋊⋉ πDept,Location(EmpDept)

Name Dept Location

John Sales Buffalo

John Sales Toronto

Mary Sales Buffalo

Mary Sales Toronto

PJ-repairs:

John Sales Buffalo

Mary Sales Buffalo

John Sales Toronto

Mary Sales Toronto

58



Probabilistic framework for “dirty” databases

[Andritsos, Fuxman, Miller, ICDE’06].

Framework:

• potentialduplicatesidentified and grouped intoclusters

• worlds≈ repairs: one tuple from each cluster

• world probability: product of tuple probabilities

• clean answers: in the query result in some (supporting) world

• clean answer probability: sum of the probabilities of supporting

worlds

59



EmpSal

EmpName Salary prob

B. Gates 20M 0.7

B. Gates 30M 0.3

A. Grove 10M 0.5

A. Grove 20M 0.5

Functional dependency:

EmpName→ Salary

60



Query rewriting:

SELECT Name

FROM Emp

WHERE Salary > 15M

7−→

SELECT Name, SUM(e.prob)

FROM Emp e

WHERE Salary > 15M

GROUP BY Name

Evaluation of the rewritten query:

B. Gates 20M 0.7

B. Gates 30M 0.3

A. Grove 10M 0.5

A. Grove 20M 0.5

⇒
B. Gates 1

A. Grove 0.5

61



Query rewriting:

SELECT Name

FROM Emp

WHERE Salary > 15M

7−→

SELECT Name, SUM(e.prob)

FROM Emp e

WHERE Salary > 15M

GROUP BY Name

Evaluationof the rewritten query:

B. Gates 20M 0.7

B. Gates 30M 0.3

A. Grove 10M 0.5

A. Grove 20M 0.5

⇒
B. Gates 1

A. Grove 0.5

62



Further active topics

SQL queries:

• aggregation:glb/lubanswers

• grouping

Data integration:

• GAV, LAV, GLAV,...

• tension betweenrepairingand satisfyingsource-to-target
dependencies

P2P:

• how to isolate aninconsistent peer

63



Nulls:

• repairs with nulls?

• clean semantics vs. SQL conformance

Priorities:

• preferred repairs

• conflict resolution

XML:

• what is anintegrity constraint?

• what is arepair?

• minimumedit distance

64



Related work

Belief revision:

• revising database with integrity constraints

• revised theory changes with each database update

• emphasis on semantics (AGM postulates), not computation

• complexity results [Eiter, Gottlob, AI’92] do not quite transfer

• beyond revision: merging, arbitration

Disjunctive information:

• repair≡ possible world (sometimes)

• consistent answer≡ certain answer (sometimes)

• using disjunctions to represent resolved conflicts

• complexity results [Imielinski et al., JCSS’95] do not quite transfer

65



Lessons of CQA research

Need to tame thesemantic explosion:

• different repair semantics overwhelm the potential user

More focus onapplications:

• 99%technology,1%applications

• often onlyrepairingis needed

• heuristics

Integratewith other tools:

• schema matching/mapping

• data cleaning

66



The CQA community

Some data:

• over 30 active researchers

• 80–100 publications (since 1999)

• papers in major conferences (PODS, SIGMOD, ICDT, ICDE, CIKM,

DBPL) and journals (TODS, TKDE, TCS, I&C, AMAI, JAL, TPLP)

• outreach to the AI community (qualified success)

• yearly workshop: IIDB (+LAAIC?)

67



Selected papers

1. M. Arenas, L. Bertossi, J. Chomicki,“Consistent Query Answers in

Inconsistent Databases.”PODS’99.

2. L. Bertossi, J. Chomicki,“Query Answering in Inconsistent

Databases.”In Logics for Emerging Applications of Databases,J.

Chomicki, R. van der Meyden, G. Saake [eds.], Springer-Verlag,

2003.

3. J. Chomicki and J. Marcinkowski,“On the Computational

Complexity of Minimal-Change Integrity Maintenance in Relational

Databases.”In Inconsistency Tolerance,L. Bertossi, A. Hunter, T.

Schaub, editors, Springer-Verlag, 2004.

4. L. Bertossi,“Consistent Query Answering in Databases.”SIGMOD

Record, June 2006.

68


