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Integrity constraints

Integrity constraints describevalid database instances. Examples:

• functional dependencies (FDs):“every employee has a single

salary.”

• denial constraints:“no employee can make more than her manager.”

• inclusion dependencies (INDs):“managers have to be employees.”

The constraints are formulated infirst-order logic :

∀n, s, m, s′, m′.¬[Emp(n, s, m) ∧ Emp(m, s′, m′) ∧ s > s′].

An inconsistentdatabase violates the constraints.
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Traditional view

Integrity constraints are alwaysenforced.

Emp

EmpName Address Salary

B. Gates Redmond, WA 20M

B. Gates Redmond, WA 30M

A. Grove Santa Clara, CA 10M

Functional dependency:

EmpName→ Address Salary

This instancecannot arisebut ... considerdata integration.
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Ignoring inconsistency

SELECT *

FROM Emp

WHERE Salary < 25M

⇒
B. Gates Redmond, WA 20M

A. Grove Santa Clara, CA 10M

The result is notfully reliable .

8



Ignoring inconsistency

SELECT *

FROM Emp

WHERE Salary < 25M

⇒
B. Gates Redmond, WA 20M

A. Grove Santa Clara, CA 10M

The result is notfully reliable.

9



Quarantining inconsistency

The facts involved in an inconsistency are not used in the derivation of
query answers [Bry, IICIS’97].

SELECT *

FROM Emp

WHERE Salary < 25M

⇒ A. Grove Santa Clara, CA 10M

But what about

SELECT EmpName

FROM Emp

WHERE Salary > 10K

⇒ A. Grove

Partial information cannot be obtained.
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Constraints with exceptions

Weakenthe constraints [Borgida, TODS’85], without affectingquery

evaluation.

Emp

EmpName Address Salary

B. Gates Redmond, WA 20M

B. Gates Redmond, WA 30M

A. Grove Santa Clara, CA 10M

Constraint with exception:

(∀x, y, z, y′, z′)¬[Emp(x, y, z) ∧ Emp(x, y′, z′) ∧ y 6= y′ ∧ x 6= B.Gates]
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Data cleaning

Emp

EmpName Address Salary

B. Gates Redmond, WA 20M

B. Gates Redmond, WA 30M

A. Grove Santa Clara, CA 10M

Functional dependency:

EmpName → Address Salary

Repair:

EmpName Address Salary

B. Gates Redmond, WA 30M

A. Grove Santa Clara, CA 10M

Some information islost.
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CQA: a query-driven approach

Consider allrepairs: possible databases that result fromfixing the original

database in aminimal way.

Return all the answers that belong to the result of query evaluation in

every repair(consistentanswers).
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Emp

EmpName Address Salary

B. Gates Redmond, WA 20M

B. Gates Redmond, WA 30M

A. Grove Santa Clara, CA 10M

Functional dependency:

EmpName → Address Salary

Repairs:

B. Gates Redmond, WA 30M

A. Grove Santa Clara, CA 10M

B. Gates Redmond, WA 20M

A. Grove Santa Clara, CA 10M
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SELECT *

FROM Emp

WHERE Salary < 25M

⇒ A. Grove Santa Clara, CA 10M

But

SELECT EmpName

FROM Emp

WHERE Salary > 10K

⇒
B. Gates

A. Grove
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Inconsistent databases

There are many situations when users want/need to live withinconsistent

databases:

• integration of heterogeneous databases with overlapping information

• not enough information to resolve inconsistencies

• preservation of all data (even erroneous)

• the consistency of the database will be restored by executing further

transactions

• inconsistency wrt “soft” integrity constraints (those that we hope to

see satisfied but do not/cannot check) process
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Research goals

Formal definitionof reliable (“consistent”) information in an inconsistent
database.

Computationalmechanisms for obtaining consistent information.

Computational complexity analysis:

• tractable vs. intractable classes of queries and integrityconstraints

• trade-off: complexity vs. expressiveness.

Implementation:

• preferably using DBMS technology.
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Plan of the talk

1. repairs and consistent query answers

2. computing consistent query answers to relational

algebra/calculus/SQL queries

3. extensions and new directions:

• other notions of repair

• probabilistic databases

4. further active research directions

5. related work

6. lessons of CQA research

7. the CQA community
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Constraint classes

Universal:∀. ¬A1 ∨ · · · ∨ ¬An ∨B1 ∨ · · · ∨Bm.

Denial:∀. ¬A1 ∨ · · · ∨ ¬An.

Functional dependencies (FDs):X → Y .

Inclusion dependencies (INDs):P [X ] ⊆ R[Y ].
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Consistent query answers

Arenas, Bertossi, Ch. [PODS’99].

Repair:

• a database that satisfies the integrity constraints

• difference from the given database is minimal (the set of

inserted/deleted facts is minimal under set inclusion).

A tuple (a1, . . . , an) is aconsistent query answerto a query

Q(x1, . . . , xn) in a databaser if it is an element of the result ofQ in

every repairof r.
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A logical aside

Belief revision:

• semantically: repairing≡ revisingthe database with integrity

constraints

• consistent query answers≡ counterfactualinference.

Logical inconsistency:

• inconsistent database: database facts together with integrity

constraints form aninconsistent set of formulas

• trivialization of reasoning does not occur because constraints are not

used in relational query evaluation.
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Computational issues

There are too many repairs to evaluate the query in each of them.

A B

a1 b1

a1 b′
1

a2 b2

a2 b′
2

· · ·

an bn

an b′
n

Under the functional dependencyA→ B, this instance has2n repairs.
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Computing consistent query answers

Query rewriting: given a queryQ and a set of integrity constraints,

construct a queryQ′ such that for every database instancer

the set of answers toQ′ in r = the set of consistent answers toQ

in r.

Representing all repairs: given a set of integrity constraints and a database

instancer:

1. construct a space-efficient representation of all repairs of r

2. use this representation to answer (many) queries.

Specifying repairs as logic programs.
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Query rewriting

First-order queriestransformed using semantic query optimization
techniques: [Arenas, Bertossi, Ch., PODS’99].

Functional dependencies:

(∀x)(∀y)(∀z)(∀y′)(∀z′)(¬Emp(x, y, z) ∨ ¬Emp(x, y′, z′) ∨ y = y′)

(∀x)(∀y)(∀z)(∀y′)(∀z′)(¬Emp(x, y, z) ∨ ¬Emp(x, y′, z′) ∨ z = z′)

Query:Emp(x, y, z).

Transformed query:

Emp(x, y, z) ∧ (∀y′)(∀z′)(¬Emp(x, y′, z′) ∨ y = y′)

∧ (∀y′)(∀z′)(¬Emp(x, y′, z′) ∨ z = z′).

31



Query rewriting

First-order queriestransformed using semantic query optimization
techniques: [Arenas, Bertossi, Ch., PODS’99].

Functional dependencies:

(∀x)(∀y)(∀z)(∀y′)(∀z′)(¬Emp(x, y, z) ∨ ¬Emp(x, y′, z′) ∨ y = y′)

(∀x)(∀y)(∀z)(∀y′)(∀z′)(¬Emp(x, y, z) ∨ ¬Emp(x, y′, z′) ∨ z = z′)

Query:Emp(x, y, z).

Transformed query:

Emp(x, y, z) ∧ (∀y′)(∀z′)(¬Emp(x, y′, z′) ∨ y = y′)

∧ (∀y′)(∀z′)(¬Emp(x, y′, z′) ∨ z = z′).

32



Query rewriting

First-order queriestransformed using semantic query optimization
techniques: [Arenas, Bertossi, Ch., PODS’99].

Functional dependencies:

(∀x)(∀y)(∀z)(∀y′)(∀z′)(¬Emp(x, y, z) ∨ ¬Emp(x, y′, z′) ∨ y = y′)

(∀x)(∀y)(∀z)(∀y′)(∀z′)(¬Emp(x, y, z) ∨ ¬Emp(x, y′, z′) ∨ z = z′)

Query:Emp(x, y, z).

Transformed query:

Emp(x, y, z) ∧ (∀y′)(∀z′)(¬Emp(x, y′, z′) ∨ y = y′)

∧ (∀y′)(∀z′)(¬Emp(x, y′, z′) ∨ z = z′).

33



Scope of query rewriting

Query rewriting:

• queries involvingconjunctionsof literals (relational algebra:

σ,×,−) andbinary universalintegrity constraints [Arenas, Bertossi,

Ch., PODS’99].

• existentially-quantified conjunctions(π, σ, ⋊⋉) and single-key

dependencies [Fuxman, Miller, ICDT’05]:

– CTreequeries (≈ no non-key joins)

– extended toexclusion dependencies[Grieco et al., CIKM’05].
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SELECT Name

FROM Emp

WHERE Salary > 10K

7−→

SELECT Name

FROM Emp e1

WHERE Salary > 10K

AND NOT EXISTS

(SELECT *

FROM EMPLOYEE e2

WHERE e2.Name = e1.Name

AND e2.Salary <= 10K)
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Experimental results (ConQuer)

[Fuxman, Fazli, Miller, SIGMOD’05].

The systemConQuer:

• back-end: DB2 UDB.

• query rewriting into SQL, producing unnested queries

• queries from the TPC-H workload

• databases can be annotated with consistency indicators

• tested for synthetic databases with 400K–8M tuples, 0–50% conflicts

• relatively little overhead compared to evaluating the original query

using the backend
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Conflict hypergraph

Denial constraints only.

Vertices: facts in the original instance.

Edges:(minimal) sets of facts that violate some constraint.

Repairs:maximal independent sets.

B. Gates Redmond, WA 20M

A. Grove Santa Clara, CA 10M

B. Gates Redmond, WA 30M
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Computing CQAs using the conflict hypergraph

[Ch., Marcinkowski, I&C, 2005].

Algorithm HProver:

1. input: queryΦ a disjunction of ground atoms

2. ¬Φ = P1(t1) ∧ · · · ∧ Pm(tm) ∧ ¬Pm+1(tm+1) ∧ · · · ∧ ¬Pn(tn)

3. find a repairincludingP1(t1), . . . , Pm(tm) andexcluding

Pm+1(tm+1), . . . , Pn(tn) by enumerating the appropriate edges.

Excludinga factA:

• A is not in the original instance, or

• A belongs to an edge{A,B1, . . . , Bk} in the conflict hypergraph and

B1, . . . , Bk belong to the repair.

P (data complexity) forquantifier-free queriesanddenial constraints.
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Hippo

Q : σ,∪,−,×

Upper Envelope

Q′
: σ,∪,×

Evaluation

Conflict Detection

DB

Translation

Qc : ∧,∨,¬

Candidates

Conflict Graph

Grounding

HProver

Consistent Answers
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Experimental results (Hippo)

[Ch., Marcinkowski, Staworko, CIKM’04].

The systemHippo:

• back-end: PostgreSQL

• conflict hypergraph (edges) in main memory

• optimization can eliminate many (sometimes all) database accesses
in HProver

• tested for synthetic databases with up to 200K tuples, 2% conflicts

• computing consistent query answers using the conflict hypergraph
faster than evaluating transformed queries

• relatively little overhead compared to evaluating the original query
using the backend
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Specifying repairs as logic programs

[Arenas, Bertossi, Ch., TPLP’03], [Greco, Greco and Zumpano,

TKDE’03], [Barcelo, Bertossi, PADL’03], [Eiter et al., ICLP’03]:

• using logic programs withnegationanddisjunction

• repairs≡ answer sets

• several different encodings

• implemented using main-memory LP systems (dlv , smodels )

• Πp

2
-complete problems

Scope:

• arbitrary universal constraints, some inclusion dependencies

• arbitrary first-order queries
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The approach of [Arenas, Bertossi, Ch., TPLP’03].

Facts:

Emp(′B.Gates′, ′Redmond WA′, 20K).

Emp(′B.Gates′, ′Redmond WA′, 30K).

Emp(′A.Grove′, ′Santa Clara CA′, 10K).

Rules:

¬Emp′(x, y, z) ∨ ¬Emp′(x, y′, z′)← Emp(x, y, z), Emp(x, y′, z′), y 6= y′.

¬Emp′(x, y, z) ∨ ¬Emp′(x, y′, z′)← Emp(x, y, z), Emp(x, y′, z′), z 6= z′.

Emp′(x, y, z)← Emp(x, y, z), not ¬Emp′(x, y, z).

¬Emp′(x, y, z)← not Emp(x, y, z), not Emp′(x, y, z).
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Experimental data (INFOMIX)

[Eiter at al., ICLP’03].

The systemINFOMIX:

• combines CQA with data integration (GAV)

• relational backend: PostgreSQL

• uses the disjunctive LP systemdlv for repair computations

• optimization techniques: localization, factorization

• tested on legacy databases of up to 50K tuples.
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Data complexity of consistent query answers

Keys / primary keys) Denial Universal

σ,×,− P P P(binary)

σ,×,−,∪ P P ?

σ, π co-NPC /P co-NPC co-NP-hard

σ,×, π co-NPC /P(Ctree) co-NPC co-NP-hard

Tractable approaches:

• query rewriting

• conflict graphs

Sources: [Ch., Marcinkowski, I&C’05], [Fuxman, Miller, ICDT’05], [Cali,

Lembo, Rosati, PODS’03].
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Tractable/intractable queries

Tractable(P):

• under any denial constraints:

SELECT * FROM P

UNION (SELECT * FROM Q

EXCEPT SELECT * FROM R)
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Schema:

CREATE TABLE P(A PRIMARY KEY, B);

CREATE TABLE Q(C PRIMARY KEY, D)

Tractable (P):

SELECT Q.D

FROM P, Q

WHERE P.B = Q.C

Intractable (co-NP-complete):

SELECT Q.D

FROM P, Q

WHERE P.B = Q.D
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Alternative frameworks

Different assumptions about databasecompletenessandcorrectness(in

the presence ofinclusion dependencies):

• possibly incorrect but complete: repairs by deletion only [Ch.,

Marcinkowski, I&C’05]

• possibly incorrect and incomplete: fix FDs by deletion, INDsby

insertion [Cali, Lembo, Rosati, PODS’03].
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Different notions ofminimal repairs:

• minimal cardinality changes [Lopatenko, Bertossi, ’06]:

– tractability ofincremental CQA:

given a consistent databaseD and a fixed sequence of

updatesU , what is the complexity of computing CQA over

U(DB)?

• repairing attribute values.
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Attribute-based repairs

Several different approaches:

(A) groundandnon-groundrepairs [Wijsen, TODS’05]

(B) project-joinrepairs [Wijsen, FQAS’06]

(C) repairs minimizingEuclidean distance[Bertossi et al., DBPL’05]

(D) repairs of minimumcost[Bohannon et al., SIGMOD’05].

Computational complexity:

• (A) and(B): similar to tuple based repairs

• (C) and(D): checking existence of a repair of cost< K

NP-complete.
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Project-join repairs

PJ-repairs: repairs of alossless join decomposition.

EmpDept

Name Dept Location

John Sales Buffalo

Mary Sales Toronto

Functional dependencies:

Name → Dept

Dept → Location

Repairs:

John Sales Buffalo Mary Sales Toronto
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Decomposition

πName,Dept(EmpDept) ⋊⋉ πDept,Location(EmpDept)

Name Dept Location

John Sales Buffalo

John Sales Toronto

Mary Sales Buffalo

Mary Sales Toronto

PJ-repairs:

John Sales Buffalo

Mary Sales Buffalo

John Sales Toronto

Mary Sales Toronto
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Probabilistic framework for “dirty” databases

[Andritsos, Fuxman, Miller, ICDE’06].

Framework:

• potentialduplicatesidentified and grouped intoclusters

• worlds≈ repairs: one tuple from each cluster

• world probability: product of tuple probabilities

• clean answers: in the query result in some (supporting) world

• clean answer probability: sum of the probabilities of supporting

worlds
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EmpSal

EmpName Salary prob

B. Gates 20M 0.7

B. Gates 30M 0.3

A. Grove 10M 0.5

A. Grove 20M 0.5

Functional dependency:

EmpName→ Salary
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Query rewriting:

SELECT Name

FROM Emp

WHERE Salary > 15M

7−→

SELECT Name, SUM(e.prob)

FROM Emp e

WHERE Salary > 15M

GROUP BY Name

Evaluation of the rewritten query:

B. Gates 20M 0.7

B. Gates 30M 0.3

A. Grove 10M 0.5

A. Grove 20M 0.5

⇒
B. Gates 1

A. Grove 0.5
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Further active topics

SQL queries:

• aggregation:glb/lubanswers

• grouping

Data integration:

• GAV, LAV, GLAV,...

• tension betweenrepairingand satisfyingsource-to-target
dependencies

P2P:

• how to isolate aninconsistent peer
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Nulls:

• repairs with nulls?

• clean semantics vs. SQL conformance

Priorities:

• preferred repairs

• conflict resolution

XML:

• what is anintegrity constraint?

• what is arepair?

• minimumedit distance
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Related work

Belief revision:

• revising database with integrity constraints

• revised theory changes with each database update

• emphasis on semantics (AGM postulates), not computation

• complexity results [Eiter, Gottlob, AI’92] do not quite transfer

• beyond revision: merging, arbitration

Disjunctive information:

• repair≡ possible world (sometimes)

• consistent answer≡ certain answer (sometimes)

• using disjunctions to represent resolved conflicts

• complexity results [Imielinski et al., JCSS’95] do not quite transfer
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Lessons of CQA research

Need to tame thesemantic explosion:

• different repair semantics overwhelm the potential user

More focus onapplications:

• 99%technology,1%applications

• often onlyrepairingis needed

• heuristics

Integratewith other tools:

• schema matching/mapping

• data cleaning
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The CQA community

Some data:

• over 30 active researchers

• 80–100 publications (since 1999)

• papers in major conferences (PODS, SIGMOD, ICDT, ICDE, CIKM,

DBPL) and journals (TODS, TKDE, TCS, I&C, AMAI, JAL, TPLP)

• outreach to the AI community (qualified success)

• yearly workshop: IIDB (+LAAIC?)
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