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Plan of the course

@ Preference relations
© Preference queries
© Preference management

@ Advanced topics
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Outline of Part |

@ Preference relations
Preference

@ Equivalence

@ Preference specification
@ Combining preferences
@ Skylines
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Preference relations

Universe of objects

@ constants: uninterpreted, numbers,...
e individuals (entities)
@ tuples

@ sets
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nce relations

Universe of objects

@ constants: uninterpreted, numbers,...
e individuals (entities)
@ tuples

@ sets

Preference relation >

@ binary relation between objects

@ X > y = x Is_better_than y = x dominates y

@ an abstract, uniform way of talking about desirability, worth, cost,
timeliness,..., and their combinations

@ preference relations used in queries
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Buying a car
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Salesman: What kind of car do you prefer?
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Salesman: What kind of car do you prefer?
Customer: The newer the better, if it is the same make. And cheap, too.
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Salesman: What kind of car do you prefer?

Customer: The newer the better, if it is the same make. And cheap, too.
Salesman: Which is more important for you: the age or the price?
Customer: The age, definitely.

Salesman: Those are the best cars, according to your preferences, that we
have in stock.

Customer: Wait...it better be a BMW.

Jan Chomicki () Preference Queries 6 /68



Applications of preferences and preference queries

© decision making
@ e-commerce
© digital libraries

© personalization
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Properties of preference relations
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Properties of preference relations

Properties of >

irreflexivity: Vx. x % x

asymmetry: Vx,y. x =y =y # x
transitivity: Vx,y,z. (x = yAy = z)= x>z
negative transitivity: Vx,y,z. (x A YAy ¥ z) => x W z

connectivity: Vx,y. x > yVy = xVx=y
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Properties of preference relations

Properties of >

o irreflexivity: Vx. x % x

asymmetry: Vx,y. x =y =y # x

transitivity: Vx,y,z. (x = yAy = z)= x>z

negative transitivity: Vx,y,z. (x A YAy ¥ z) => x W z

connectivity: Vx,y. x > yVy = xVx=y

@ strict partial order (SPO): irreflexive and transitive

e weak order (WO): negatively transitive SPO

o total order: connected SPO
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Weak and total orders

ei?‘a




Order properties of preference relations
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Order properties of preference relations

Irreflexivity, asymmetry: uncontroversial.
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Order properties of preference relations

Irreflexivity, asymmetry: uncontroversial.
Transitivity:
@ captures rationality of preference

@ not always guaranteed: voting paradoxes

@ helps with preference querying

Negative transitivity:

@ scoring functions represent weak orders

We assume that preference relations are SPOs.
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When are two objects equivalent?
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When are two objects equivalent?

Relation ~
@ binary relation between objects

e x ~y=x"is equivalent to" y
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When are two objects equivalent?

Relation ~
@ binary relation between objects

e x ~y=x"is equivalent to" y

Several notions of equivalence

@ equality: x~9y = x=y
o indifference: x ~'y = x L y Ay ¥ x
@ restricted indifference:
x~y=Vz. (x<zey<z)AN(z<y & z<X)
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When are two objects equivalent?

@ binary relation between objects

e x ~y=x"is equivalent to" y

v
Several notions of equivalence

@ equality: x~®y = x=y

o indifference: x ~'y = x L y Ay ¥ x
@ restricted indifference:
x~y=Vz. (x<zey<z)A(z<y & z<x)

v
Properties of equivalence

@ equivalence relation: reflexive, symmetric, transitive

@ equality and restricted indifference (if > is an SPQO) are equivalence
relations

o indifference is reflexive and symmetric; transitive for WO
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Example
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bmw

/TN

ford VW mazda

kia
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bmw Preference:
bmw = ford, bmw >~ vw
bmw = mazda, bmw = kia
ford VW mazda mazda > kia

Indifference:

ford ~" vw, vw ~' ford,

kia ) ford ~' mazda, mazda ~'
ford,
vw ~' mazda, mazda ~'
vw,

ford ~' kia, kia ~' ford,

vw ~' kia, kia ~' vw

Restricted indifference:
ford ~" vw, vw ~" ford

Jan Chomicki () Preference Queries 12 / 68



bmw Preference:
bmw = ford, bmw >~ vw
bmw = mazda, bmw = kia
ford VW mazda mazda > kia

Indifference:

ford ~" vw, vw ~' ford,

kia ) ford ~' mazda, mazda ~'
ford,
This is a strict partial vw ~' mazda, mazda ~'
order which is not a vw, .
weak order. ford ~' kia, kia ~' ford,

I

vw ~' kia, kia ~' vw

Restricted indifference:
ford ~" vw, vw ~" ford
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Not every SPO is a WO

Canonical example

mazda = kia, mazda ~' vw, kia ~' vw

Violation of negative transitivity

mazda ¥ vw, vw ¥ kia, mazda - kia
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Preference specification
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Preference specification

Explicit preference relations

Finite sets of pairs: bmw > mazda, mazda > kia,...
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Preference specification

Explicit preference relations

Finite sets of pairs: bmw > mazda, mazda > kia,...

Implicit preference relations
@ can be infinite but finitely representable

@ defined using logic formulas in some constraint theory:

(m1,y1,p1) =1 (M2,y2,p2) = y1 > Y2V (y1 = y2 A p1 < p2)

for relation Car(Make, Year, Price).
o defined using preference constructors (Preference SQL)

o defined using real-valued scoring functions: F(m,y,p)=a-y+8-p
(m1,y1,p1) =2 (M2, y2, p2) = F(my, y1,p1) > F(m2,y2, p2)
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Logic formulas
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Logic formulas

The language of logic formulas

constants

object (tuple) attributes
comparison operators: =, #, <,>,...
arithmetic operators: +, -, ...

Boolean connectives: —, A, V

quantifiers:
e V, 4
o usually can be eliminated (quantifier elimination)
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Representability
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Representability

Definition

A scoring function f represents a preference relation > if for all x, y

x =y ="f(x)>f(y).
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Representability

Definition

A scoring function f represents a preference relation > if for all x, y

x =y ="f(x)>f(y).

Necessary condition for representability

The preference relation >~ is a weak order.

Sufficient condition for representability

@ > is a weak order

@ the domain is countable or some continuity conditions are satisfied
(studied in decision theory)
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Not every WO can be represented using a scoring function
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Not every WO can be represented using a scoring function

Lexicographic order in R x R

(x1,51) = (x2,y2) =x1 > x2 V (x1 = x2 A y1 > y2)
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v
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@ Assume there is a real-valued function f such that
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v
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Not every WO can be represented using a scoring function

Lexicographic order in R x R

(x1,51) = (x2,y2) =x1 > % V (x1 = x2 A y1 > y2)

v

Proof
© Assume there is a real-valued function f such that
x =0y = f(x) > f(y).
@ For every xp, (x0,1) =" (x0,0).
© Thus f(xp,1) > f(xo,0).
@ Consider now x; > Xxp.
@ Clearly f(x1,1) > f(x1,0) > f(x0,1) > f(x0,0).
@ So there are uncountably many nonempty disjoint intervals in R.

@ Each such interval contains a rational number: contradiction with the
countability of the set of rational numbers.
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Preference constructors [Kie02, KK02]
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Preference constructors [Kie02, KK02]
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Prefer v € 51 over v € 55.
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Preference constructors [Kie02, KK02]

—
—

Good values P0OS (Make, {mazda,vw}) )
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Preference encoded by a finite
directed graph.
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Preference constructors [Kie02, KK02]

Good values
Prefer v € 51 over v € 55.

Bad values
Prefer v € S; over v € S;.

I

Explicit preference

Preference encoded by a finite
directed graph.

Value comparison

Prefer larger/smaller values.

I

Prefer values closer to vp.

P0OS (Make, {mazda,vw})

NEG (Make, {yugo})

EXP (Make, { (bmw,ford),...,
(mazda,kia)})

v

HIGHEST (Year)
LOWEST (Price)
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Preference constructors [Kie02, KK02]

Good values
Prefer v € 51 over v € 55.

Bad values
Prefer v & 51 over v € S;.

I

Explicit preference

Preference encoded by a finite
directed graph.

Value comparison

Prefer larger/smaller values.

I

Prefer values closer to vp.

Jan Chomicki ()

Preference Queries

P0OS (Make, {mazda,vw}) J

NEG (Make, {yugo}) ]

EXP (Make, { (bmw,ford),...,
(mazda,kia)})

HIGHEST (Year)
LOWEST (Price)

AROUND (Price, 12K) J
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Combining preferences
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Combining preferences

Preference composition

@ combining preferences about objects of the same kind
@ dimensionality is not increased

@ representing preference aggregation, revision, ...
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Combining preferences

Preference composition

@ combining preferences about objects of the same kind
@ dimensionality is not increased

@ representing preference aggregation, revision, ...

Preference accumulation

o defining preferences over objects in terms of preferences over simpler
objects

e dimensionality is increased (preferences over Cartesian product).
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Combining preferences: composition
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Combining preferences: composition

Boolean composition

x>—UyEx>-1y V X>=2y

and similarly for .
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Combining preferences: composition

Boolean composition

x>—UyEx>-1y V X>=2y

and similarly for .

Prioritized composition

X =1y =x1yV(y #1xAx =2 y).

Pareto composition

Pa

X=" Ty =(x=1y ANy Fox)V(x =2y Ay #1x).
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Preference composition
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Preference composition

Preference relation >4

bmw

AN

ford mazda
N

kia
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Preference composition

Preference relation >4 Preference relation >»

bmw ford kia
AN NS
ford mazda mazda
NS |
kia bmw
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Preference composition

Preference relation =,

Preference relation >4

bmw ford kia

AN NS
ford mazda mazda
N |

kia bmw

vy v

Prioritized composition

bmw

ford

mazda
|
kia
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Preference composition

Preference relation =,

Preference relation >4

bmw ford kia
AN NS
ford mazda mazda
NS |

kia bmw

bmw ford bmw

| VAN

ford kia mazda

‘ W

mazda

|

kia
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Combining preferences: accumulation [Kie02]
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Combining preferences: accumulation [Kie02]

Prioritized accumulation: =P"= (-1 & >»)

(x1,x2) =P (y1,y2) =x1 =11 V(X1 = y1 A x2 =2 y0).
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Combining preferences: accumulation [Kie02]

Prioritized accumulation: =P"= (-1 & >»)

(x1,x2) =P (y1,y2) =x1 =11 V(X1 = y1 A x2 =2 y0).

Pareto accumulation: == (>-; ® >»)

(x1,x2) =P? (y1,02) = (x1 =1 y1 Ax2 =2 y2) V (X1 =1 y1 A X2 =2 y2).
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Combining preferences: accumulation [Kie02]

Prioritized accumulation: =P"= (-1 & >»)

(x1,x2) =P (y1,y2) =x1 =11 V(X1 = y1 A x2 =2 y0).

Pareto accumulation: == (>-; ® >»)

(x1,x2) =P? (y1,02) = (x1 =1 y1 Ax2 =2 y2) V (X1 =1 y1 A X2 =2 y2).

Properties

@ closure
@ associativity

@ commutativity of Pareto accumulation
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Skylines
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Skylines

Skyline
Given single-attribute total preference relations >4,,..., >4, for a

relational schema R(Ay, ..., A,), the skyline preference relation = is
defined as

>5ky:>A1 R=p Q@ -® >a, -

Unfolding the definition

(X155 %) =" (y1,..,yn) = /\Xi ZA; Vi N \/Xi =A; Yi-

1 1
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Skyline in Euclidean space
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Skyline in Euclidean space

Two-dimensional Euclidean space

(31, %) = (y1,y2) Ex1 > 1 A2 >y Vx> y1 Axa > yo

Skyline consists of > g, -maximal vectors
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Skyline properties
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Skyline properties

A skyline preference relation is unaffacted by scaling or shifting in any
dimension.
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Skyline properties

A skyline preference relation is unaffacted by scaling or shifting in any
dimension.

A skyline consists of the maxima of monotonic scoring functions. \

Skyline is not a weak order

(2,0) #sky (0,2),(0,2) #sky (1,0),(2,0) =g (1,0)
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Skyline in SQL
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Skyline in SQL

Grouping

Designating attributes not used in comparisons (DIFF).

SELECT * FROM Car
SKYLINE Price MIN,
Year MAX,
Make DIFF
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Skyline in SQL

Grouping

Designating attributes not used in comparisons (DIFF).

SELECT * FROM Car
SKYLINE Price MIN,
Year MAX,
Make DIFF

Dynamic skylines

@ dimensions defined using dimension functions g1, ..., &n

@ variable query point.
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Dynamic skylines

Relation Hotel(XCoord, YCoord, Price)

o tuple p = (px, py, Pz), query point (ux, uy)
@ dimension functions based on 2D Euclidean distance:

81(Px: py) = \/(px — ux)?+ (py — uy)?

&(pz) = p:
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Dynamic skylines

Relation Hotel(XCoord, YCoord, Price)

o tuple p = (px, py, Pz), query point (ux, uy)
@ dimension functions based on 2D Euclidean distance:

81(Px: py) = \/(px — ux)?+ (py — uy)?

&(pz) = p:

XCoord YCoord Price Query point: (3,4). |
0 5 80

2 6 100

5 3 120

’
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Combining scoring functions

Scoring functions can be combined using numerical operators. J
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Combining scoring functions

Scoring functions can be combined using numerical operators. J

Common scenario

@ scoring functions fi,...,f,
@ aggregate scoring function: F(t) = E(fi(t),..., (1))

@ linear scoring function: ¥, «;f;
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Combining scoring functions

Scoring functions can be combined using numerical operators. J

Common scenario

@ scoring functions fi,...,f,
@ aggregate scoring function: F(t) = E(fi(t),..., (1))

@ linear scoring function: ¥, «;f;

Numerical vs. logical combination

@ logical combination cannot be defined numerically

@ numerical combination cannot be defined logically (unless arithmetic
operators are available)
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Outline of Part Il

© Preference queries
@ Retrieving non-dominated elements
@ Rewriting queries with winnow
@ Retrieving Top-K elements
@ Optimizing Top-K queries
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Winnow[ChoO3]

@ new relational algebra operator w (other names: Best, BMO [Kie02])

@ retrieves the non-dominated (best) elements in a database relation

@ can be expressed in terms of other operators
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Winnow[ChoO3]

Winnow

@ new relational algebra operator w (other names: Best, BMO [Kie02])
@ retrieves the non-dominated (best) elements in a database relation

@ can be expressed in terms of other operators

Definition
Given a preference relation > and a database relation r:

we(ry={ter|-3t' er. t' =t}
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Winnow[ChoO3]

Winnow

@ new relational algebra operator w (other names: Best, BMO [Kie02])

@ retrieves the non-dominated (best) elements in a database relation

@ can be expressed in terms of other operators

Definition
Given a preference relation > and a database relation r:

we(r)y={ter|-3t er. t' -t}

Notation: If a preference relation ¢ is defined using a formula C, then
we write wc(r), instead of wy (r).
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Winnow[ChoO3]

Winnow

@ new relational algebra operator w (other names: Best, BMO [Kie02])
@ retrieves the non-dominated (best) elements in a database relation

@ can be expressed in terms of other operators

Definition
Given a preference relation > and a database relation r:

we(r)y={ter|-3t er. t' -t}

Notation: If a preference relation ¢ is defined using a formula C, then
we write wc(r), instead of wy (r).

Skyline query

Wy sk (r) computes the set of maximal vectors in r (the skyline set).
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Example of winnow

Relation Car(Make, Year, Price)

Preference relation:

(m,y,p) =1 (m,y, p)=y>y' Vy=y Ap<p).
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Example of winnow

Relation Car(Make, Year, Price)

Preference relation:

(m,y,p) =1 (m,y, p)=y>y' Vy=y Ap<p).

Make  Year Price
mazda 2009 20K
ford 2009 15K
ford 2007 12K
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Example of winnow

Relation Car(Make, Year, Price)

Preference relation:

(m,y,p) =1 (m,y, p)=y>y' Vy=y Ap<p).

Make  Year Price
mazda 2009 20K
ford 2009 15K
ford 2007 12K
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Computing winnow using BNL [BKS01]

Require: SPO -, database relation r

1: initialize window W and temporary file F to empty
2: repeat
3:  for every tuple t in the input do

4: if t is dominated by a tuple in W then

5: ignore t

6: else if ¢ dominates some tuples in W then
7: eliminate them and insert t into W

8: else if there is room in W then

9: insert t into W

10: else

11: add t to F

12: end if

13:  end for

14:  output tuples from W that were added when F was empty
15: make F the input, clear F
16: until empty input

v
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Preference relation: a > c,a > d, b = e. )
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Preference relation: a > c,a > d, b = e. )

Temporary file

Window

Input

c,ed,a,b
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Preference relation: a > c,a > d, b = e. )

Temporary file

Window
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Preference relation: a > c,a > d, b = e. )

Temporary file

Window
Input
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d,a,b
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Window
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Computing winnow with presorting

SFS: adding presorting step to BNL [CGGLO3]

@ topologically sort the input:

e if x dominates y, then x precedes y in the sorted input
e window contains only winnow points and can be output after every pass

o for skylines: sort the input using a monotonic scoring function, for
example T x;.
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Computing winnow with presorting

SFS: adding presorting step to BNL [CGGLO3]

@ topologically sort the input:
e if x dominates y, then x precedes y in the sorted input
e window contains only winnow points and can be output after every pass
o for skylines: sort the input using a monotonic scoring function, for
example T x;.

LESS: integrating different techniques [GSG07]

@ adding an elimination filter to the first external sort pass

@ combining the last external sort pass with the first SFS pass

@ average running time: O(kn)
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Preference relation: a > c,a > d, b = e. )

Temporary file

Window

Input

a,b,c,d,e
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Preference relation: a > c,a > d, b = e. )

Temporary file

Window

Input

b,c,d,e

Jan Chomicki () Preference Queries 36 / 68



Preference relation: a > c,a > d, b = e. )

Temporary file

Window
Input
a
c,d,e
b

Jan Chomicki () Preference Queries 36 / 68



Preference relation: a > c,a > d, b = e. )

Temporary file

Window
Input
a
d,e
b

Jan Chomicki () Preference Queries 36 / 68



Preference relation: a > c,a > d, b = e. )

Temporary file

Window
Input
a
e
b

Jan Chomicki () Preference Queries 36 / 68



Preference relation: a > c,a > d, b = e. )

Temporary file

Window

Input

Jan Chomicki () Preference Queries 36 / 68



Generalizations of winnow

Jan Chomicki () Preference Queries 37 /68



Generalizations of winnow

Iterating winnow

wl (r) = w(r)

. ,
wITH(r) = Wi (r = Ur<icp @i (1))
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Generalizations of winnow

Iterating winnow

wl (r) = w(r)

. ,
wITH(r) = Wi (r = Ur<icp @i (1))

Ranking

Rank tuples by their minimum distance from a winnow tuple:

n-(r) = {(t,1) | t € we(r)}-
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Generalizations of winnow

Iterating winnow

wl (r) = w(r)

wIH(r) = we (r = Ur<icawl (1))

Ranking

Rank tuples by their minimum distance from a winnow tuple:

n-(r) = {(t,1) | t € we(r)}-

Return the tuples dominated by at most k tuples:

we(r)y={ter|#{t' er|t =t} <k}
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Preference SQL

The language

@ basic preference constructors

e Pareto/prioritized accumulation
new SQL clause PREFERRING

o
@ groupwise preferences
°

implementation: translation to SQL
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Preference SQL

The language

basic preference constructors
Pareto/prioritized accumulation
new SQL clause PREFERRING

groupwise preferences

implementation: translation to SQL

Winnow in Preference SQL

SELECT * FROM Car
PREFERRING HIGHEST(Year)
CASCADE LOWEST(Price)
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Algebraic laws [Cho03]
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Algebraic laws [Cho03]

Commutativity of winnow with selection

If the formula

Vi, to.[a(t2) A y(t1, 22)] = a(t)

is valid, then for every r

Ta(wy(r)) = wy(oa(r)).
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Algebraic laws [Cho03]

Commutativity of winnow with selection

If the formula

Vi, to.[a(t2) A y(t1, 22)] = a(t)
is valid, then for every r

Ta(wy(r)) = wy(aa(r)).

Under the preference relation

(m,y,p) =, (M, y',p)=y>y Ap<p'Vy>y np<p

the selection oprice<20k commutes with w¢, but oprices20k does not.
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Other algebraic laws
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Other algebraic laws

Distributivity of winnow over Cartesian product

For every r; and n

we(n X ) =wc(n) X rn

if C refers only to the attributes of r;.

Commutativity of winnow

If Vt1, to.[Ci(t1, t2) = Go(t1, t2)] is valid and ¢, and >, are SPOs, then
for all finite instances r:

wa (we(r)) = we(wg (r)) = we(r).
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Semantic query optimization [ChoO7b]
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Semantic query optimization [ChoO7b]

Using information about integrity constraints to:
@ eliminate redundant occurrences of winnow.

@ make more efficient computation of winnow possible.

Eliminating redundancy

Given a set of integrity constraints F, wc¢ is redundant w.r.t. F iff F
implies the formula

Vtq, to. R(tl) N R(t2) = 11 ~¢ b.
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Integrity constraints
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Integrity constraints

Constraint-generating dependencies (CGD) [BCW99, Z097]

Vtr. .. . Vtg. [R(t1) A AR(th) Ay(tr, .. ta)] = 7 (t1, ... tn).
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Integrity constraints

Constraint-generating dependencies (CGD) [BCW99, Z097]

Vtr. .. . Vtg. [R(t1) A AR(th) Ay(tr, .. ta)] = 7 (t1, ... tn).

CGD entailment

Decidable by reduction to the validity of V-formulas in the constraint
theory (assuming the theory is decidable).
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Top-K queries

Scoring functions

@ each tuple t in a relation has numeric scores fi(t),. .., fm(t) assigned
by numeric component scoring functions f1,. .., fy

o the aggregate score of t is F(t) = E(fi(t),..., fm(t)) where E is a
numeric-valued expression

e F is monotone if E(x1,...,xm) < E(y1,-..,Ym) whenever x; < y; for
all 7
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Top-K queries

Scoring functions

@ each tuple t in a relation has numeric scores fi(t),. .., f,(t) assigned
by numeric component scoring functions f1,. .., fy

o the aggregate score of t is F(t) = E(fi(t),..., fm(t)) where E is a
numeric-valued expression

@ F is monotone if E(x1,...,%Xm) < E(y1,...,¥m) whenever x; < y; for
all 7

Top-K queries
@ return K elements having top F-values in a database relation R
@ query expressed in an extension of SQL:
SELECT =
FROM R

ORDER BY F DESC
LIMIT K
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Top-K sets
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Definition

Given a scoring function F and a database relation r, s is a Top-K set if:
@sCr
e |s| = min(K,|r|)
o Vtes. Vt' er—s. F(t) > F(t)

There may be more than one Top-K set: one is selected
non-deterministically.
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Example of Top-2

Relation Car(Make, Year, Price)
@ component scoring functions:
fi(m, y, p) = (y — 2005)

@ aggregate scoring function:
F(m,y,p) =1000- f(m,y,p) + f2(m,y, p)
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Example of Top-2

Relation Car(Make, Year, Price)
@ component scoring functions:
fi(m, y, p) = (y — 2005)

@ aggregate scoring function:
F(m,y,p) =1000- f(m,y,p) + f2(m,y, p)

Make  Year Price | Aggregate score
mazda 2009 20000 4000
ford 2009 15000 9000
ford 2007 12000 10000
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Example of Top-2

Relation Car(Make, Year, Price)
@ component scoring functions:
fi(m, y, p) = (y — 2005)

@ aggregate scoring function:
F(m,y,p) =1000- f(m,y,p) + f2(m,y, p)

Make  Year Price | Aggregate score
mazda 2009 20000 4000
ford 2009 15000 9000
ford 2007 12000 10000
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Computing Top-K
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Computing Top-K

Naive approaches

@ sort, output the first K-tuples
@ scan the input maintaining a priority queue of size K
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Computing Top-K

Naive approaches

@ sort, output the first K-tuples
@ scan the input maintaining a priority queue of size K

Better approaches

@ the entire input does not need to be scanned...
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Computing Top-K

Naive approaches

@ sort, output the first K-tuples
@ scan the input maintaining a priority queue of size K

Better approaches

@ the entire input does not need to be scanned...

@ ... provided additional data structures are available
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Computing Top-K

Naive approaches

@ sort, output the first K-tuples
@ scan the input maintaining a priority queue of size K

Better approaches

@ the entire input does not need to be scanned...
@ ... provided additional data structures are available

@ variants of the threshold algorithm
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Threshold algorithm (TA)[FLNO3]

@ a monotone scoring function F(t) = E(f(t),..., fm(t))

@ lists S;, i =1,..., m, each sorted on f; (descending) and representing a
different ranking of the same set of objects

@ For each list S; in parallel, retrieve the current object w in sorted order:

o (random access) for every j # i, retrieve v; = fj(w) from the list S;
o if d = E(v,...,Vn) is among the highest K scores seen so far,
remember w and d (ties broken arbitrarily)

@ Thresholding:

e for each i, w; is the last object seen under sorted access in S;

o if there are already K top-K objects with score at least equal to the
threshold T = E(fi(w1), ..., fm(Wm)), return collected objects sorted
by F and terminate

o otherwise, go to step 1.
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Aggregate score

F(t) = Pi(t) + Pa(t)

Priority queue

OID | P, OID | P,
5 |50 3 |50
1 |35 2 |40
3 130 1 |30
2 120 4 120
4 110 5 10
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Aggregate score

F(t) = Pu(t) + Pa(t)

OID | P,

A NN W -
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o
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Aggregate score

F(t) = Pu(t) + Pa(t)

OID

Py

50

E- N SRV o &

35
30
20
10

OID | P,
3 |50
2 |40
1 |30
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5 |10
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Aggregate score

F(t) = Pu(t) + Pa(t)
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Aggregate score

F(t) = Pi(t) + Pa(t)

OIb | A,

5 |50

3 130
2 120
4 |10
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Aggregate score

F(t) = Pi(t) + Pa(t)

Jan Chomicki ()

OID | P, OID | P,
5 |50 3 |50
1 |35 2 |40
3 130 1 |30
2 120 4 120
4 110 5 10
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Aggregate score

F(t) = Pi(t) + Pa(t)

Priority queue

OID | P, oID | P, 3:80
5 |50 3 |50 1:65
1 |35 2 | 40 5:60
3 130 1 |30 2:60
2 |20 4 |20
4 |10 5 |10 T=15
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TA in databases
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TA in databases

objects: tuples of a single relation r
single-attribute component scoring functions

sorted list access implemented through indexes

random access to all lists implemented by primary index access to r
that retrieves entire tuples
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Optimizing Top-K queries [LCISO5]
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Optimizing Top-K queries [LCISO5]

@ integrating Top-K with relational query evaluation and optimization

@ replacing blocking by pipelining
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Optimizing Top-K queries [LCISO5]

@ integrating Top-K with relational query evaluation and optimization

@ replacing blocking by pipelining

Example

SELECT =

FROM Hotel h, Restaurant r, Museum m
WHERE ¢; AND ¢, AND c3

ORDER BY A+ + f3

LIMIT K
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Optimizing Top-K queries [LCISO5]

@ integrating Top-K with relational query evaluation and optimization

@ replacing blocking by pipelining

Example

SELECT =

FROM Hotel h, Restaurant r, Museum m
WHERE ¢; AND ¢, AND c3

ORDER BY A+ + f3

LIMIT K

Is there a better evaluation plan than materialize-then-sort?
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Partial ranking of tuples
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Partial ranking of tuples

@ set of component scoring functions P = {fi,..., f,} such that
fi(t) <1forall t

@ aggregate scoring function F(t) = E(f(t),..., fm(t))
@ how to rank intermediate tuples?
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Partial ranking of tuples

@ set of component scoring functions P = {fi,..., f,} such that
fi(t) <1 forall t

@ aggregate scoring function F(t) = E(f(t),..., fm(t))

@ how to rank intermediate tuples?

Ranking principle
Given Py C P,

Feo(t) = E(ga(t), ..., &m(t))

where

f;(t) if f; € Py
gi(t) =
1 otherwise
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Relations with rank
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Relations with rank

Rank-relation Rp,

@ relation R

@ monotone aggregate scoring function F (the same for all relations)
@ set of component scoring functions Py C P
°

order:

tL >Rp, 2 = Fpy(t1) > Fpy(t2)
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Ranking intermediate results
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Ranking intermediate results

Operators
@ rank operator us: ranks tuples according to an additional component
scoring function f
@ standard relational algebra operators suitably extended to work on
rank-relations
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Ranking intermediate results

Operators
@ rank operator us: ranks tuples according to an additional component
scoring function f

@ standard relational algebra operators suitably extended to work on
rank-relations

Operator Order

ur(Rey) | B >p(re) B2 = Frougry(t) > Fryugry (2)

Rp, N Sp, | t1 >Rpnsp, 02 = Fp,up,(t1) > Fpup(t2)
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Example

Query

SELECT *

FROM S
ORDER BY 1 +Hh + f3
LIMIT 1

Jan Chomicki () Preference Queries 54 / 68



SELECT *
FROM S
ORDER BY 1 +Hh + f3
LIMIT 1

Unranked relation S

Alh | |f

110708 |09
2109|085 ]|038
3105|045 |0.75

4
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SELECT *
FROM S
ORDER BY i+ fHh + f3
LIMIT 1

Unranked relation S Rank-relation Sy,

IR NEE
1107108 |09 2129
210908508 1|27
3105|045 |0.75 3125
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Pipelined execution

Alh | R | B | Fg

2109|0808 |29
110708 |09 |27
3105|045 |0.75 |25

TIndexScan,c1




Pipelined execution

AlA | R | | Fgy A | Fisny
210908508 |29 ity , 2 | 275
1/07]08 |09 |27 1|25
30504507525 3| 1.95

TIndexScan,c1



Pipelined execution

AlA | R | | Fgy A | Fisny
210908508 |29 ity , 2 | 275
1/07]08 |09 |27 1|25
30504507525 3| 1.95

TIndexScan,c1 lﬂfz

A | Fispe

2 | 255

11|24
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Algebraic laws for rank-relation operators
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Algebraic laws for rank-relation operators

Splitting for u

Rty = (s ( - (s, (R)) )
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Splitting for u

Rty = (s ( - (s, (R)) )

Commutativity of u

ph, (s, (Rey ) = s (1 (R, )
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Algebraic laws for rank-relation operators

Splitting for u

Rififorotny = b (15 (- - - (£,(R)) - - )

Commutativity of u

ph, (s, (Rey ) = s (1 (R, ) )

Commutativity of p with selection

oc(ur(Re,)) = pe(oc(Re,)) )

Jan Chomicki () Preference Queries 56 / 68



Algebraic laws for rank-relation operators

Splitting for u

Rififorotny = b (15 (- - - (£,(R)) - - )

Commutativity of u

pe; (1 (Rey)) = s (s (Rey)) )
Commutativity of p with selection
oc(ur(Rry)) = pr(oc(Re))) )

Distributivity of i over Cartesian product
wr(Rp, x Sp,) = ur(Rp,) X Sp, if f refers only to the attributes of R.
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Preference management
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Outline of Part IlI

© Preference management
@ Preference modification
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Preference modification
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Preference modification

Given a preference relation - and additional preference or indifference
information Z, construct a new preference relation =’ whose contents
depend on > and 7.
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nce modification

Given a preference relation - and additional preference or indifference
information Z, construct a new preference relation =’ whose contents
depend on > and 7.

General postulates

o fulfillment: the new information Z should be completely incorporated
into >’

@ minimal change: > should be changed as little as possible
@ closure:

o order-theoretic properties of > should be preserved in =’ (SPO, WO)
o finiteness or finite representability of >~ should also be preserved in >’

v
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Preference revision [Cho07a]
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Part IV

Advanced topics
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Outline of Part IV
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Prospective research topics

Definability

Given a preference relation ¢, how to construct a definition of a scoring
function F representing >c, if such a function exists?

Extrinsic preference relations

Preference relations that are not fully defined by tuple contents:

x >y = 3dm, m. Dissatisfied(x, n1) A\ Dissatisfied(y, ny) A n1 < no.

Incomplete preferences
@ tuple scores and probabilities [SIC08, ZCO08]

@ uncertain tuple scores

@ disjunctive preferences: a = bV a > ¢
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Preference modification

@ beyond revision and contraction: merging, arbitration,...
@ general parametric framework?

@ conflict resolution
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Preference modification

@ beyond revision and contraction: merging, arbitration,...
@ general parametric framework?

@ conflict resolution

@ preference and similarity: “find the objects similar to one of the best
objects”

Applications

@ preference queries as decision components: workflows, event systems
@ personalization of query results

@ preference negotiation: applying contraction
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