CSE 4/589 2007 Fall NS-2 Project

Due: 11/25/2007 (Sunday)

In this project, we will use the network simulator NS-2 to better understand the transport layer protocols (TCP, UDP) and application layer protocols (e.g. FTP, CBR). This project has two phases. At the first phase, we will learn the basic of NS-2, for example, creating the network topology and TCP/UDP connections using Tcl script. You will also have a chance to examine NS-2 trace file. At the second phase, you will add a new transport layer protocol to NS2.

To start, you may need to install the NS-2 (should be NS-2 version 2.26) in your CSE account directory. For NS-2 installation instruction, refer to the Appendix I. Before starting the project, you are advised to study an NS-2 tutorial (e.g. Marc Greis’s tutorial, especially from section I to section VIII). Refer to Appendix II for the URL of the tutorial and other useful sites including NS-2 manual. Also note that you are to work individually for this NS-2 project.
Phase 1: NS-2 Basic

You are to implement network fed with TCP traffic and background traffic. The objective of this project is to observe the performance of TCP when the bottleneck link is shared by the background traffic.
-The reference network model is shown in Figure 1, which is a simple network consisting of 8 nodes (node 2 and node 5 can be also seen as routers). The queue size of the link between node 2 and node 5 is limited to 10 packets, and all other links have a limitation of 50 queue size.
-Create a FTP source (at node 1) and a FTP sink (at node 7). For the file transfer service, you need to establish a TCP connection between node 1 and node 7 using TCP Reno. The TCP connection’s maximum congestion window size is 50 packets, and the packet size is 300 bytes. Make sure the minimum timeout period of the TCP is set to 0.2 second. The FTP starts at 0.0 second and ends at 15 seconds.
-Add CBR service on top of a UDP connection between node 0 and node 7. The CBR service generates and sends packets at the rate of 30 packets per second. The CBR source starts at 3.0 second and lasts for 7 seconds.
-Add a VBR video traffic with rate of 500kbps, use On/Off exponential traffic, set On period as 150ms, and Off period as 100ms. The size of each CBR and VBR packet is 200 bytes. The VBR starts at 7.0 seconds and ends at 12 seconds.
The congestion window size should be monitored and plotted over the time. The bandwidth (here the bandwidth is defined to be the number bytes received over a given time interval, say 0.5 seconds) of CBR and VBR traffic should also monitored and plotted during the entire simulation time. The throughput of TCP, CBR, and VBR should also be obtained. For the throughput calculation of TCP, the NS-2 trace file will be needed to be examined by using a script or a programming language (e.g. awk, perl, java, c/c++ or matlab).

[image: image1]

Phase 1 Results Presentation

Your project report (should be .doc or .pdf file) will include followings

1. A snapshot of your network topology that can be captured from NAM.

2. Average TCP throughput, average CBR throughput, and average VBR throughput. (Throughput here is defined to be (the number of bytes received / time period of the service)).
3. A Plot for congestion windows monitoring.
4. Plots for the bandwidth of CBR and VBR. (For more information on plotting and xgraph, you may refer to Section VIII in the tutorial)
5. A table for instantaneous throughput for TCP connection. To simplify this, divide the entire simulation period into 1 second-long intervals, and calculate the average throughput for each time interval.
	0-1sec
	1-2
	2-3
	
	
	
	
	
	
	
	
	
	
	
	14-15

	x Bytes/sec
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Phase 2: NS-2 extension

Phase 2 requires you to create/modify C++ or OTCL objects in NS-2.

You are to implement a simple transport layer protocol (or SAW protocol) which is similar to the stop-and-wait protocol (rdt 2.0).

The SAW protocol is the same as the stop-and-wait protocol in Chapter 3.4 except that
1) it does NOT send or receive NAK packets (in the network under consideration, it is assumed that packets are not corrupted.)
2) Timeout is used to detect the packet loss, and in case of packet loss, a retransmission of packet occurs

SAW implementation in NS-2

To implement SAW, you need to define SAW packet format, create SAW sender (SAW Agent), which sends out SAW packets, and SAW receiver (SAW Sink).
The name of SAW packet format should be SAWXX, where XX represents your last two digits of your UB person number. Similarly, the name of SAW Agent and SAW sink should be SAWAgentXX and SAWSinkXX.
To define the SAW Agent, you need to write sawXX.cc and sawXX.h, which contains functions that
1. receive ACK from a SAW receiver

2. send out the next SAW data packet

3. when the retransmission timer expires, retransmits the packet on the fly.

· timeout_value = min(max(0.2sec, rtt*2), 2sec)
4. implement a retransmission timer to perform exponential backoff for consecutively timeouts (note that the maximum timeout value is 2 seconds)
To define SAW sink, you need to write sawsinkXX.cc and sawsinkXX.h

1. receive data from SAW sender and send ACK

Note that XX in the phase 2 should be replaced with your last two digits of your UB person number.

Classes and functions that you may add or modify include:
struct hdr_sawXX{…}

class SAWAgentXX::public Agent{

…
int command(int argc, const char*const* argv);

void recv_... (…);

void send_...(…);
…
}

static class SAWHeaderClass : public PacketHeaderClass {…}
static class SAWClass : public TclClass {…}
static class SAWSinkHeaderClass : public PacketHeaderClass {…}
static class SAWSinkClass : public TclClass {…}

class SAW_Timer : public TimerHandler {…};
class SAWSinkXXAgent : public Agent {

…

int command(int argc, const char*const* argv);

void recv…(…);

void send…(…);

…

};
Other modifications include

1. modify packet.h:

enum packet_t {

PT_TCP,

...

PT_SAWXX,

PT_NTYPE

}

class p_info {

public:

p_info() {

name_[PT_TCP] = "tcp";

...

name_[PT_SAWXX] = "sawXX";

name_[PT_NTYPE] = "undefined";

}

2. Initialize variables in tcl/lib/ns-default.tcl
Agent/SAWAgentXX set packetSize_ 300

Agent/SAWAgentXX set initial_timeout_ 0.2

3. modify Makefile

add .o

e.g.

OBJ_CC = \

……
saw/sawXX.o saw/sawsinkXX.o

$(OBJ_STL)

4. make depend

5. make

6. run local ns by define the correct path: “alias ns2 ./ns2/ns”.
To verify your result, you should create a TCL script saw.tcl, which establishes the same network topology and background traffic as you did in Phase 1. (Replace TCP Agent and TCP sink with SAW Agent and SAW sink respectively)

Repeat the steps from 1 to 5 (except step 1 and 3) described in Phase 1 Results Presentation, and compare and discuss the results.
Phase 2 Results Presentation

1. Average SAW throughput, average CBR throughput, and average VBR throughput.

2. Plots for the bandwidth of CBR and VBR.

3. A table for instantaneous throughput for SAW connection.

	0-1sec
	1-2
	
	
	
	
	
	
	
	
	
	
	
	
	14-15

	x Bytes/sec
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Submission guideline
1. Create project.tar file which includes all your sources (including .cc, .h.) and scripts files. Verify that the files can be extracted correctly before submitting the tar file.
2. Also, using a submission command, submit a project report in a pdf or doc file (no other file format will be accepted) which clearly shows the results required.

3. The hardcopy of the project report should also be submitted.

 APPENDIX I
NS-2 Installation Instructions
1. Determine where you want the ns2 source to live. You should guarantee that you have at least 30M space for NS-2. We'll assume this is your home directory. cd into that location.

2. Run the command "/util/ns-setup/dup ns ns2". This will create a directory called "ns2" that contains the ns2 source.
3. To build the code, cd into ns2, and run "./configure --with-tcl=/util --with-tk=/util --with-tclcl=/util --with-otcl=/util". This will create the needed Makefile.
4. Run make.
5. Once make completes, you can run ns2 by executing "./ns".
6. By default, most of the files in this source tree are symlinks to read-only copies of the ns2 source. If you need to modify any of the default files, you should delete the symlink, and then copy the default file from /src/util/bin/ns-2.26.

APPENDIX II

Useful web sites

http://www.isi.edu/nsnam/ns/tutorial/
http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/ns-documentation.html
3Mbps/1ms

5Mbps/1ms

5Mbps/1ms

1Mbps/5ms

5Mbps/1ms

5Mbps/1ms

5Mbps/1ms

7

6

4

5

3

2

0

1

Fig 1. The network model

