Data Salmon: A Greedy Mobile Basestation
Protocol for Efficient Data Collection in
Wireless Sensor Networks

Murat Demirbas', Onur Soysal', and Ali Saman Tosun?*

! Dept. of Computer Science & Engineering, University at Buffalo, SUNY
{demirbas, osoysal}@cse.buffalo.edu
2 Dept. of Computer Science, The University of Texas at San Antonio
tosun@cs.utsa.edu

Abstract. Our work addresses the spatiotemporally varying nature of
data traffic in environmental monitoring and surveillance applications.
By employing a network-controlled mobile basestation (MB), we present
a simple energy-efficient data collection protocol for wireless sensor net-
works (WSNs). In contrast to the existing MB-based solutions where
WSN nodes buffer data passively until visited by an MB, our protocol
maintains an always-on multihop connectivity to the MB by means of an
efficient distributed tracking mechanism. This allows the nodes to for-
ward their data in a timely fashion, avoiding latencies due to long-term
buffering. Our protocol progressively relocates the MB closer to the re-
gions that produce higher data rates and reduces the average weighted
multihop traffic, enabling energy savings. Using the convexity of the cost
function, we prove that our local and greedy protocol is in fact optimal.

1 Introduction

A wireless sensor network (WSN) consists of potentially hundreds of sensor nodes
and is deployed in an ad hoc manner for collecting data from a region of interest
over a period of time [1,2]. Even though the technology is new, WSNs received
an enthusiastic reception in the science community as WSNs enable precise and
fine-grain monitoring of a large region in real-time. Some examples of successful
large-scale deployments of WSNs to date are in the context of ecology monitoring
(monitoring of micro-climate forming in redwood forests [3]), habitat monitoring
(monitoring of nesting behavior of seabirds [4]), and military surveillance (de-
tection and classification of an intruder as a civilian, soldier, car, or SUV [5,6]).

In traditional WSN deployments (including all of the above deployments),
the data collection is achieved by using a multihop data forwarding mechanism
toward a static basestation (SB), which has the computational power to store
and process all the collected data. A major shortcoming of this approach is that
it neglects the spatiotemporal nature of data generation in the WSN. That the
WSN data generation rates are local both in time and space has been observed

* Partially supported by Center for Infrastructure Assurance and Security at UTSA

’ H Mobility \ Buffering \Latency\Energy consumed‘

Data mules random long-term | high low

Predictable MB periodic long-term | high low

MES self-controlled |long-term |medium low
Data salmon ||network-controlled|short-term| low medium

Table 1. Comparison of MB protocols

in several WSN deployments. Investigations of natural phenomena in forest envi-
ronments have validated spatiotemporal distribution of solar illumination, tem-
perature, and humidity [3,7,8]. This effect is especially prevalent in intrusion
detection applications [5, 6].

As the observed environmental phenomena changes inevitably with time,
the performance of data collection in the WSN suffer using the SB approach.
In typical WSN applications most of the time the network remains idle, and
when there is an interesting event (such as a rapid change in ambient features or
detection of an intruder), a bursty generation of traffic occurs at a region of the
network for some time. Fixing the location of the SB as the center or one corner
of the network penalizes these bursts of data generation. Multihop relaying of
this high data-rate traffic from the originating region toward the SB results in
the depletion of energy at the relaying nodes for the duration of the traffic. Also
collisions and message losses occur as this high data-rate traffic contends with
itself over multiple hops. Clustering and aggregation techniques [9,10] help to
alleviate these contention and surge conditions, but they fail to address the root
cause of the problem.

In order to address the drawbacks of the SB approach, there has been a
flurry of work on employing a mobile basestation (MB) for data collection. The
data mules [11] work exploit random movement of MBs to opportunistically
collect data from a sparse WSN. Here, the nodes buffer all their data locally,
and upload the data only when the MB arrives within direct communication
distance. Although this approach is energy-efficient (in that the nodes do not
engage in multihop data forwarding), the tradeoff is the very high latency and
buffering costs. A similar approach is investigated in the context of predictable
movement of the MB. Here sensors are assumed to know the trajectory of the MB
and predict when the data transfer will occur accordingly. This work also shares
similar drawbacks as the data mules work: since the data rate may be varying in
time among the regions, buffer overflows may occur due to high data-rate traffic.

Mobile element scheduling (MES) work [12] considers controlled mobility of
the MB in order to reduce latency and serve the varying data-rates in the WSNs
effectively. The MES work shows that the problem of planning a path for the MB
to visit the nodes before their buffers overflow is NP-complete. Although some
heuristic based solutions are proposed to address this problem [12-14], these
solutions ignore the problem of communicating the status of the spatiotemporally
varying data-rates to the MB.

Contributions. Our work addresses the spatiotemporally varying nature of
data traffic in environmental monitoring and surveillance applications. In con-
trast to previous MB-based solutions, we avoid indefinite buffering of data at

the sensor nodes and let them forward the data toward the MB to avoid any
latencies. In order to reduce the energy-consumption due to multihop data for-
warding, our MB protocol, namely the Data Salmon, progressively relocates the
MB to minimize the average weighted-multihop distance from the data produc-
ing nodes to the MB. To this end, our protocol directs the MB closer to the
regions that produce higher data rates so that most of the traffic arrives to
the MB via a small number of hops. Intuitively speaking our MB always tends
toward the center of mass of the network based on the data rate distribution.

Secondly, we prove that it suffices to design a local and greedy protocol
to achieve an optimal relocation of the MB, minimizing the average weighted-
multihop distance in the WSN. This proof involves showing that the cost function
is convex and a local minima is a global minima. Our Data Salmon protocol
exploits this result in that at each position in the network it decides on the next
position via a simple greedy decision, using only the information available at
that node. Our protocol relocates the MB toward the edge with the largest flow.
3 Another implication of such a greedy approach is that it is easy to parallelize
the solution via divide and conquer technique: Adding more MBs to the network
is easy since the MBs do not need to coordinate, yet each by optimizing its own
gain implicitly cooperates to achieve a desirable global behavior. We present an
extension of our Data Salmon protocol to multiple MBs along these lines.

Thirdly, our work demonstrates a synergistic cooperation of the MB and
the underlying WSN for achieving efficient and effective data collection. In our
protocol, the MB uses an underlying spanning tree structure to receive the data
and to decide which direction to move on this backbone tree. In return when
the MB moves along one edge of the tree, it updates the direction of the edge to
point to its new location to ensure that a dynamic tree is always rooted at the
MB. This way it is possible to keep the MB always reachable from the backbone
tree structure, and the movement of MB also becomes relatively simple (by
following one edge on the backbone tree). Although previous work assumed that
the data-rates in the WSN is known and fixed [12], our protocol addresses this
problem explicitly and discovers the current data-rates on-the-fly by means of
this distributed dynamic tree structure.

Finally, we simulate our Data Salmon protocol using real WSN data (col-
lected from an intrusion detection application) and some synthetic data. Via
these simulation results, we compare the improvements gained by using Data
Salmon over using SB under various configurations.

Applications. Since the Data Salmon protocol action for the MB is sim-
ple and the MB is virtually controlled by the network, our protocol does not
require a fully-autonomous robot to implement the MB. Thus, it is practical to
implement and deploy Data Salmon in real-world environmental monitoring and
surveillance applications using semi-autonomous MBs. A suspended cableway
infrastructure for MB mobility would provide a suitable framework for the de-
ployment of the Data Salmon protocol. For example, the Networked Infomechan-

3 Due to this greedy behavior to move toward the largest flow, we name our protocol
after the Salmon fish which swim upstream to lay eggs.

ical Systems (NIMS) architecture [7] successfully avoids surface-based obstacles
found in natural environments by employing a horizontally mobile node sus-
pended via an aerial cable, and achieves adaptive sampling and effective solar
radiation mapping in microclimate monitoring applications. Another example
of such a system is the SkyCam platform [15], which is suitable for intrusion
detection and surveillance applications.

In our model, we have not included the energy required for moving the MB.
The reason behind our willingness to generously tradeoff the energy required for
relocating the MB with the energy gain in data collection is that it is much easier
to replenish and maintain the batteries of one MB than those of the sensor nodes
in the entire network. As it was observed through the NIMS deployment [16],
by using a solar panel attached to the mobile node it is possible to harvest an
average of 250 Watt hours of energy per day and sustain the mobility of the
node. Such an alternative energy source creates a virtual flow of energy into the
system, hence, the WSN lifetime is also elongated. Another benefit a network
controlled MB provides is the increased traffic capacity and network throughput
as mentioned in [17].

2 Model

We consider a dense, connected, multihop WSN. The sensor nodes are static
after the initial deployment. There is a distinguished MB in the network whose
current location (the node it resides on) is denoted by m.

We assume that a spanning tree structure is overlaid over the WSN during
the network initialization phase. To reduce the height of the tree, the tree root
(denoted as root) may be a node in the center of the network. By using a flooding
protocol initiated by the root it is easy to construct this backbone tree structure
[5,6]. We denote the set of neighbors of node ¢ on the tree as N (i), and use
d(i,m) to denote the hop distance over the tree structure between a node i and
the MB at node m. We denote the data rate generated by a node i at a given
time as w;. For a node m we define M (m), the cost of forwarding all the data
to m from the entire network, as M(m) = >, w; * d(i,m). Then the problem
of finding the optimal location for the MB reduces to finding a node m* with
minimal M (m).

3 The Data Salmon Protocol

After discussing how we maintain a dynamic tree rooted at the MB, we give our
greedy MB relocation protocol and prove its optimality.
3.1 The Dynamic Tree Maintenance Protocol

Keeping the MB always reachable from the backbone tree structure is essential to
guarantee always-on data forwarding to the MB. In order to maintain a dynamic

tree that is always rooted at the MB over the static backbone tree, we adopt the
distributed arrow protocol [18].

After the backbone tree structure is set up as discussed in the Model section,
we assume that the tree edges all point to the MB initially. As the MB moves
over one of the tree edges, the arrow protocol prescribes flipping the direction of
the edge. This way the tree is always rooted at the MB. By locally updating a
tree edge, a dynamic tree rooted at MB can be thus maintained over the static
backbone tree.

Of course, embedding a tree constrains how nodes can forward the traffic
to the MB. For example, shortest path forwarding may not be achievable for
some nodes as they are constrained to follow the tree while forwarding data to
the MB. However using a backbone tree for forwarding of the traffic reduces the
tracking cost of the MB drastically: In our scheme as the MB moves only one
edge needs to be updated. Had we not used a tree backbone for data forwarding
toward the MB, the tracking of the MB would incur an expensive (nonlocal)
communication cost for updating the tracking structure as the MB relocates.
Investigating update-efficient and local tracking structures is an active topic of
research, and we give some pointers to this work in Section 5.

3.2 The Greedy Data Salmon Protocol

Our Data Salmon protocol for the MB runs on top of the dynamic tree structure,
and uses the incoming data rates from neighboring nodes for deciding which
neighbor to move the MB next. For each neighbor ¢ of the current node m, we
denote the forwarded data rate from ¢ with €;. Note that, €; corresponds to the
cumulative weights of all nodes in the subtree rooted at i. We denote the total
data rate in the WSN with e, which is calculated at m as (3_;c n(n) €i) + Wi

To minimize the cost function M, it is natural for the MB to move toward a
neighbor ¢ with a lower cost function M (7). We prove in Theorem 1 that in fact
such a neighbor 7 is unique since the ¢; is at least more than half of the total
data rate ¢ in the WSN if and only if M (i) < M(m).

Fig. 1. Conceptual representation for Fig. 2. Visual Representation of The-
proof of Theorem 1 orem 2

Theorem 1. Let MB be at node v,, and vy € N(v,),

then M(vy) < M(va) <= &y, > 5.

Proof: Consider Figure 1, where MB is at v,. If MB is moved from v, to vy,
since this graph is a tree, all data generated at nodes in set A has to be forwarded
through edge (vp,v,) toward vp. That is, the distance to the MB increases by
1 for all nodes in set A, and the distance decreases by 1 for all nodes in set B.
Thus, we can write the following:

M(vy) = M(ve) + 64 —€p (1)
Since A U B contains all the nodes, the following also holds:

cEat+ep=c¢ (2)

Case (=): Using the assumption M (vy) < M (v,), from (1) we can write,
ea—ep = M(vy) — M(v,) < 0. So subtracting (2) from this term we can write
—2ep < —¢ and thus conclude e > %

Case (+<=): Using the assumption ¢,, > 5, from equation (2) we have
ea < § < ep. This entails M (vy) — M(vq) = €4 —ep < 0. So M(vp) has smaller
cost. U

Algorithm 1 MB control action at m

Ie = (Xienm) &) + Wm

2: if Jie N(m):e; > 5 then
3: move to 1

4: end if

5

: // else stay at m, since m is optimal

Therefore, the MB control action at node m is given as in Algorithm 1. We
prove the optimality of this protocol in the next section.

3.3 Proof of Optimality

Our optimality discussion depends on some properties of the cost function over
the backbone tree. We first show that the cost function is convex in Theorem 2,
and that the rate of increase of the cost function is non-decreasing in Theorem 3.
We use these two properties to conclude that the Data Salmon protocol is indeed
optimal over the backbone tree.

Theorem 2. Let vy be an optimal location for MB. Consider a path vg, v1,. . .,
vg over the backbone tree. M(vo) < M(v1) < ... < M(vg) holds for the path.

Proof: Consider Figure 2. Since vg is an optimal location of MB, M (vg) <
M (v1), and this proves the first inequality. If the MB is moved from vy to vy,
the distance increases by 1 for all nodes in set A, and the distance decreases by
1 for all nodes in the set B = U¥_, B;. So,

M(vl):M(vo)Jrzwi*Zwi 3)

i€A i€EB

Since we have M (vy) < M (v1) we get
i€A i€B
If the MB is moved from v; to vs, similarly, the distance increases by 1 for all

nodes in set A U B; and the distance decreases by 1 for all nodes in the set
B — B;. We can write M (vg) using M (v;) as follows:

M(vp)=M@w)+ > wi— Y w (5)
i€ AUB, i€ B—B1

This can be rewritten as

M(UQ)ZM(U1)+Z7Ui+ Zwi—Zwﬁ- sz

i€EA 1€ By i€B 1€B;
M(Ug) :M(Ul) —|—sz —Zwi—I—Q Z W;
i€EA i€B i€B;

Since all weights are non-negative, the last term is non-negative. First two terms
are shown to be non-negative in equation 4, so we get M (ve) > M (vq1). This can
be generalized to the following using the same approach:

k-1
M(Uk):M(Uk_l)—FZ’LUi—Zwi—FQZZwi (6)
icA i€B j=14€B,
Thus, we have M (vg) < M(v1) < ... < M(vg) O
Since we use this result later we introduce g, which corresponds to the sum
of weights of all members of set S, as e = >, g w;. Hence, equation (6) can be

rewritten as:
k—1

M(vg) = M(vg—1) +ea—c5+2) _cp, (7)
j=1
Theorem 2 shows that the cost function is convex, but in order to guarantee
that there are no oscillations in the MB control protocol we need to show that
the rate of increase is also non-decreasing.

Theorem 3. Let vy be the optimal location of MB. Quer the backbone tree con-
sider a path v, V1,..., Vg, .., Up,..., Uk, where 0 < a < b < k.
M(vy) — M(vq—1) < M(vp) — M(vp—1) holds for the path.
Proof: By using equation (7), we get the following:
a—1
M(va) = M(va_y) =ca—ep+2)_cp,
j=1
b—1
M(’Ub)_M('Ubfl):EA_53+2ZEBj (8)

j=1

b—1 a—1
(M (o12) = M) = M(vars) = M| =2 Y en, 2Y en, (9)

Since b > a, and all weights are non-negative, we can rewrite above as:
b—1
(M (0p1) = M()] — [M(var) = M(va)] =23 e, 2 0
j=a

a

As a corollary to these theorems, we observe that when the data rates are
stable for a sufficient enough period, the MB progressively relocates to the op-
timal location in the WSN. Our corollary follows by using M (m) as the variant
function. From Theorem 2, we know that there are no local optimum points,
and M (m) is non-increasing toward the direction of the optimal location. Fur-
thermore, Theorem 3 states that equality among M (m) values is only possible
between optimal nodes, so at any suboptimal node we are guaranteed to have a
neighbor with lower cost. The decrease of M (m) is bounded below by M (m*),
so the MB eventually reaches and comes to a rest at an optimal location m*.

4 Simulation Results

In order to evaluate the performance of our protocol, we use real-world WSN
deployment data from the “Catch Me if You Can” project [19]. This project
implements a multiple-pursuer, multiple-evader tracking application by utilizing
the WSN to help the pursuers in protecting an asset from the evaders. Fig-
ure 3 shows the topology of the 60 nodes deployed for this project. The distance
between any neighboring nodes in the topology is 10 meters.

The Catch Me if You Can project collected data sets for over 50 experiments.
Each data set contains onsets and offsets of detection for the nodes: during
these detection periods, the sensor nodes generate detection data. In order to
simulate our Data Salmon protocol for collecting the generated detection data,
we overlay a randomly generated backbone tree over the WSN as shown in
Figure 3. This way, we calculate the approximate energy consumption for the
SB and MB approaches using the durations of detections and the distances on
the backbone tree.

[L ® ® [*—0 <0< 0<—0<—0 []
*—0 L L ® @ L L]
*—0 *—0—0 [] *<—0 0 <—0<—0<—0
*—0—0—>0—0—0—0 ° 0<—0<—0<—0<—0<—0<—0

Fig. 3. The topology of sensors in Catch Me if You Can experiments. Dots
denote the sensors. Embedded random backbone tree on the topology is shown
by arrows and the root is indicated with a plus

The introduced locomotion model for the MB is a high-level abstraction of
the mobile platform details. We assume that the MB moves following the tree
edges, with constant speed. The MB only makes decisions at nodes, so it can
not change direction during transitions between nodes.

We developed a Java application named SalmonSim* to interpret and emulate
the data sets from the Catch Me if You Can experiments. The Java application
uses constant time steps to measure the performance. During these time steps,
the MB is simulated and the events from experiment logs are emulated. The
Java application also provides a user interface to visualize the progress of the
MB running the Data Salmon protocol. Using this simulator, we compare the
performance of the SB positioned in the root of the tree with the MB using the
Data Salmon protocol. For the comparisons, we use the same cost metric defined
in the Section 3.

g

o sB
B —MB
5

o

Cost Difference

-50 0 250 500 750 1000 1250 1500 1750 2000
Time (seconds) Time (seconds)

(a) (b)

Fig. 4. (a) Difference between costs of SB and MB at any given time in a refer-
ence data set. (b) Total costs of SB and MB in a reference data set

We first compare the performance of the Data Salmon protocol with the
SB using data from a reference data set. Figure 4(a) shows the instantaneous
cost difference between the SB and the MB approaches. In the figure, the areas
below the y = 0 baseline show that the MB may become disadvantageous (albeit,
briefly) due to some abrupt changes in data rate. Since the cost difference stay
above the y = 0 baseline most of the time, we observe that the cost of MB is less
than that of SB. The cumulative of these differences, which gives us the total
energy costs of each approach, are graphed in Figure 4(b).

Secondly, we investigate the effect of the MB speed. For chosen speed values
the average of total cost for all data sets is shown in Figure 5(a). This graph
shows that even with low speeds the MB approach can outperform the SB.

Since the emulation dataset does not lend itself well for controlling the data
generation, we devised a second set of experiments using a synthetic data set.

4 An applet version of the simulator is available in
http://www.cse.buffalo.edu/~osoysal/salmonSim/.

12000 80000

70000
10000

5 bbbt
R I — 60000
8000
50000 /

——SB
—=-MB

——SB
6000
e MB 40000

Total cost
Total Cost

30000
4000

20000

2000
10000

0 02 0.4 06 08 1 0 05 1 15 2
Average Speed (m/second) Speed of Region of Interest (m/seconds)

(a) (b)

Fig.5. (a) Total cost with respect to varying MB speed (b) Total cost with
respect to varying region of interest speed

We chose the value of a normal distribution function, to represent the region
of interest(ROI). The nodes have a threshold value to determine whether they
should send messages or not depending on their interest level. Interest level of
nodes correspond to the value of a normal distribution function at their position.
We simulate the change in region of interest by moving the mean of a normal
distribution function randomly. We start from a random point and choose an-
other random point for mean. The mean is moved at a constant speed toward
this random point until it reaches there. Then we choose another random point
and repeat this process until the end of simulations.

We first investigate the speed of ROI by fixing the speed of MB to 0.4
m/second and varying the speed of ROI to obtain Figure 5(b). The graph shows
that MB performs better than SB when the ROI moves up to two times faster
than MB. After this point, MB cannot keep up with the sudden changes in ROI
and falls beyond the SB case. Still the difference in performance is much less
than the cases where ROI moves slowly.

We also replicated the experiments in Figure 4(a), Figure 4(b) and Figure 5(a)
and obtained similar results. Synthetic results are more regular than regular data
set which can be explained by the effect of the normal function used in modeling
activation.

The Data Salmon protocol banks on the spatio-temporal nature of the data
in WSNs. Through our experiments, we have seen that even for the rare cases
this locality assumption does not hold, our protocol performs at least as good
as the SB approach most of the time. For example, if the data rate is uniform
throughout the network, our Data Salmon protocol fixes the location of the
MB in an optimal location in the center of the WSN and acts more like an
SB approach. The Data Salmon performs worse than the SB approach only in
extremely pathological cases, where an adversary lures the MB toward one corner
of the network only to follow it up with a large but short-lived surge of data
from the opposite corner.

10

5 Discussion

Fault-tolerance. The backbone tree structure we use does not provide any
redundancy to the face of node failures. When one node goes down, the result is a
partitioned network. Fortunately, there has been a lot of work on self-stabilizing
tree maintenance protocols [20-22] that enable the tree to recover itself upon
node failure or corruption of the pointer structure at the nodes. (This is, of
course, provided that the network is not physically partitioned.)

After the backbone tree is fixed as discussed above, we also need to con-
sider the recovery of the distributed-arrow protocol. In [23], it is shown that by
adding some self-stabilizing actions, it is possible to achieve self-stabilization of
the distributed arrow protocol in a local and efficient way. Finally, when the
underlying static tree and the distributed-arrow protocol stabilizes, the Data
Salmon protocol stabilize trivially by virtue of being stateless.

Another issue for fault-tolerance is the collision-free collection of data packets.
Since the tree structure is commonly used for data collection, there has been
several work on collision-avoidance protocols for tree structures [24,25].

Load-balancing. The static backbone tree imposes a strain on the static root
and core of the tree as there is always considerable amount of traffic routed
through the core toward the MB. Improving load-balancing in the network and
reducing the hot-spot in the core would help elongate the network lifetime. Exist-
ing work in reducing uneven energy consumption in WSNs by using a MB [26,27)
show that the optimum movement strategy for the MB is to follow the periph-
ery of the network when the deployment area is circular. However, since these
work assume uniform data generation by the sensor nodes every time unit, and
reducing the average weighted multihop in the face of varying traffic is not a
goal, these work are inapplicable in our context.

Modifying the backbone tree as the MB relocates may help reduce hot-spots
in the tree. It is important to keep such modifications to be as localized around
the MB as possible in order not to introduce excessive communication, hence,
excessive energy-consumption into the WSN. A relatively local tree reconfigura-
tion algorithm for bounded-length (4-5 hops) trees is presented in [28]. However,
local reconfigurations alone are insufficient for maintaining a globally desirable
tracking tree structure, and in the worst case local modifications may—over
time—result in pathological cases where the height of the tree can be several
orders of magnitude larger than the diameter of the network.

Relaxing the backbone tree structure by replacing it with a more permissive
and load-balanced topology, such as a grid topology, may alleviate the hot-spot
issue, as this allows multiple forwarding paths between any two points in the
structure. Unfortunately, such a replacement introduces the problem of efficient
tracking of the MB over the structure. Except for simple structures, such as a
linear topology or a tree structure—as in our case—, designing update-efficient
and local tracking protocols is a challenging problem. A tracking protocol for grid
topology is investigated in [29] and several tracking protocols for more general
network topologies are proposed in the literature [21,30]. However, when adopt-

11

ing such an approach, it is unclear whether the overhead involved in tracking
would be commensurate with the gains achieved from using a MB.

Multiple MB extension. An implication of our greedy protocol is that it is
easy to parallelize the solution via divide and conquer: Adding more MBs to the
network is easy since the MBs do not need to coordinate, yet each by optimizing
its own gain implicitly cooperates to achieve a desirable global behavior. As a
demonstration of this claim, we present a simple scheme to extend our Data
Salmon protocol to support multiple MBs. This scheme is based on the observa-
tion that when there are multiple MBs on the backbone tree, the arrow protocol
maintains a dynamic directed acyclic graph (DAG) structure with multiple sinks
instead of a tree structure with one root. A DAG structure implies that some
nodes in the backbone tree now have multiple outgoing edges. Our modifica-
tion, then, is to divide the incoming traffic at a node in an equal manner among
the outgoing edges of the node. The MBs decide on their relocation in a local,
greedy manner as before and, as before, an edge direction is reversed when a MB
traverses the edge. This simple protocol leaves it solely to the discretion of the
MBs to sort out how to share the network traffic and is not optimal. Devising
optimal solutions for the multiple MB case is part of our ongoing work.

6 Concluding Remarks

We presented a simple, low-latency, and energy-efficient protocol for data col-
lection in WSNs using a network controlled MB. In contrast to the existing
MB-based solutions where WSN nodes buffer data passively until visited by an
MB, our protocol overlays a spanning backbone tree and maintains an always-on
multihop connectivity to the MB by employing the distributed-arrow tracking
protocol on top of this tree. This enables the nodes to forward their data to the
MB anytime, in a timely, and efficient fashion avoiding latencies due to long-term
buffering. Our protocol achieves energy-efficiency for the WSN by greedily relo-
cating the MB toward the direction of the tree that produce higher data rates
and, hence, reducing the average weighted multihop traffic. Using the convexity
of the cost function in this problem, we were able to prove that our local greedy
protocol also optimizes the network-wide energy-efficiency metrics. An implica-
tion of this local, greedy, and optimal protocol is that it is easy to parallelize the
data collection by adding more MBs to the WSN.

Devising and proving optimal solutions for the multiple MB case is part of
our ongoing work. In future work we will focus on relaxing the underlying static
backbone tree structure by replacing it with a less restrictive variant, such as
a grid structure. Another extension we will pursue for alleviating the hot-spots
problem is the inclusion of the energy constraints and the remaining lifetime of
nodes (in addition to the data rates) for the calculation of the cost function.

12

References

10.

11.

12.

13.

14.

15.
16.

Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor
networks. IEEE Communications Magazine 38 (2002) 393-422

Estrin, D., Govindan, R., Heidemann, J.S., Kumar, S.: Next century challenges:
Scalable coordination in sensor networks. In: Mobile Computing and Networking.
(1999) 263-270

Tolle, G., Polastre, J., Szewczyk, R., Turner, N., Tu, K., Buonadonna, P., Burgess,
S., Gay, D., Hong, W., Dawson, T., Culler, D.: A macroscope in the redwoods.
In: Proceedings of the Third ACM Conference on Embedded Networked Sensor
Systems. (2005) 51-63

Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D., Anderson, J.: Wireless
sensor networks for habitat monitoring. In: ACM Int. Workshop on Wireless Sensor
Networks and Applications. (2002) 83 — 97

. Arora, A., et. al.: A line in the sand: A wireless sensor network for target detection,

classification, and tracking. Computer Networks (Elsevier) 46(5) (2004) 605-634
Arora, A., et. al.: Exscal: Elements of an extreme scale wireless sensor network.
In: 11th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications. (2005) 102-108

Batalin, M., Rahimi, M., Yu, Y., Liu, D., Kansal, A., Sukhatme, G., Kaiser, W.,
Hansen, M., Pottie, G., Srivastava, M., Estrin, D.: Call and response: experiments
in sampling the environment. In: Proceedings of the 2nd international conference
on Embedded networked sensor systems. (2004) 25-38

Yu, Y., Ganesan, D., Girod, L., Estrin, D., Govindan, R.: Synthetic data generation
to support irregular sampling in sensor networks. In: Geo Sensor Networks, Taylor
and Francis Publishers (Oct 2003)

Pattem, S., Krishnamachari, B., Govindan, R.: The impact of spatial correlation
on routing with compression in wireless sensor networks. In: Proceedings of the
third int. symposium on Information processing in sensor networks. (2004) 28-35
Krishnamachari, B., Estrin, D., Wicker, S.B.: The impact of data aggregation in
wireless sensor networks. In: Proceedings of the 22nd International Conference on
Distributed Computing Systems. (2002) 575-578

Shah, R.C., Roy, S., Jain, S., Brunette, W.: Data mules: modeling a three-tier
architecture for sparse sensor networks. In: Proceedings of the First IEEE Inter-
national Workshop on Sensor Network Protocols and Applications. (2003) 3041
Somasundara, A., Ramamoorthy, A., Srivastava, M.: Mobile element scheduling
for efficient data collection in wireless sensor networks with dynamic deadlines.
In: Proceedings of the 25th IEEE International Real-Time Systems Symposium.
(2004) 296-305

Gu, Y., Bozdag, D., Ekici, E., Ozguner, F., Lee, C.: Partitioning based mobile
element scheduling in wireless sensor networks. In: IEEE SECON. (2005) 386-395
Zhao, W., Ammar, M.: Message ferrying: Proactive routing in highly-partitioned
wireless ad hoc networks. In: Proceedings of the The Ninth IEEE Workshop on
Future Trends of Distributed Computing Systems. (2003) 308— 314

Cone, L.L.: Skycam: An aerial robotic camera system. Byte 10 (1985) 122-132
Pon, R., Batalin, M., Gordon, J., Kansal, A., Liu, D., Rahimi, M., Shirachi, L.,
Yu, Y., Hansen, M., Kaiser, W., Srivastava, M., Sukhatme, G., Estrin, D.: Net-
worked infomechanical systems: a mobile embedded networked sensor platform. In:
Information Processing in Sensor Networks. (2005) 376-381

13

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Kansal, A., Rahimi, M., Estrin, D., Kaiser, W.J., Pottie, G., Srivastava, M.: Con-
trolled mobility for sustainable wireless sensor networks. In: Sensor and Ad Hoc
Communications and Networks. (2004) 1-6

Demmer, M.J., Herlihy, M.: The arrow distributed directory protocol. In: Pro-
ceedings of the 12th International Symposium on Distributed Computing. (1998)
119-133

Cao, H., Ertin, E., Kulathumani, V., Sridharan, M., Arora, A.: Differential games
in large-scale sensor-actuator networks. In: Proceedings of the fifth international
conference on Information processing in sensor networks. (2006) 77-84

Dolev, S.: Self-Stabilization. MIT Press (2000)

Demirbas, M., Arora, A., Gouda, M.: Pursuer-evader tracking in sensor networks.
Sensor Network Operations, IEEE Press (2006)

Chen, N., Huang, S.: A self-stabilizing algorithm for constructing spanning trees.
Information Processing Letters (IPL) 39 (1991) 147-151

Herlihy, M., Tirthapura, S.: Self-stabilizing distributed queueing. In: Proceedings
of 15th International Symposium on Distributed Computing. (oct 2001) 209-219
Woo, A., Culler, D.E.: A transmission control scheme for media access in sensor
networks. In: Proceedings of the 7th annual international conference on Mobile
computing and networking. (2001) 221-235

Kulkarni, S.S., Arumugam, M.: Ss-tdma: A self-stabilizing mac for sensor networks.
In: Sensor Network Operations, IEEE Press. (2005)

Gandham, S., Dawande, M., Prakash, R., Venkatesan, S.: Energy-efficient schemes
for wireless sensor networks with multiple mobile base stations. In: Proceedings of
IEEE GLOBECOM. (2003) 377— 381

Wang, Z., Basagni, S., Melachrinoudis, E., Petrioli, C.: Exploiting sink mobility for
maximizing sensor networks lifetime. In: Proceedings of the 38th Annual Hawaii
International Conference on System Sciences. (2005) 287a— 287a

Zhang, W., Cao, G.: Dctc: Dynamic convoy tree-based collaboration for target
tracking in sensor networks. IEEE Transactions on Wireless Communication 3(5)
(2004) 1689-1701

Ye, F., Luo, H., Cheng, J., Lu, S., Zhang, L.: A two-tier data dissemination
model for large-scale wireless sensor networks. In: Proceedings of the 8th annual
international conference on Mobile computing and networking. (2002) 148-159
Demirbas, M., Arora, A., Nolte, T., Lynch, N.: A hierarchy-based fault-local stabi-
lizing algorithm for tracking in sensor networks. In: 8th International Conference
on Principles of Distributed Systems (OPODIS). (2004) 299-315

14

