Beyond TrueTime: Using AugmentedTime for Improving Spanner

Murat Demirbas Sandeep Kulkarni
University at Buffalo, SUNY Michigan State University,
demirbas@cse.buffalo.edu sandeep@cse.msu.edu

Spanner [1] is Google’s scalable, multi-version, globally-distributed, and synchronously-replicated
database. In order to support distributed transactions at global scale, Spanner leverages on a novel
TrueTime (TT) API that exposes clock uncertainty. In this paper, we discuss how Spanner’s
TT-based approach relates to the concepts of causality and consistent cuts in the distributed sys-
tems literature. Then, armed with a better understanding of the tradeoffs made by the TT-based
approach, we discuss how to eliminate its shortcomings.

We consider two main issues with Spanner’s TT-based approach. First, it requires access
to special hardware for maintaining tightly-synchronized clocks and minimizing uncertainty in
TT. And second, transactions in Spanner are still delayed at commit time to compensate for the
remaining TT uncertainty. To eliminate these shortcomings, we propose the use of AugmentedTime
(AT), which combines the best of TT-based wallclock ordering with causality-based ordering in
asynchronous distributed systems. We show that the size of AT can be kept small and AT can be
added to Spanner in a backward-compatible fashion, and as such, AT can be used in lieu of (or in
addition to) TT in Spanner for timestamping and querying data efficiently.

1 Brief review of Spanner and TrueTime

Spanner supports general-purpose long-lived transactions and provides a SQL-based query lan-
guage. Data is stored in semi-relational tables, and is versioned. Each version is automatically
timestamped with its commit time by the TT API. Spanner provides externally-consistent (lin-
earizable) reads and writes. Using T'T, Spanner assigns globally-meaningful commit timestamps to
transactions reflecting the serialization order: if a transaction T'1 commits (in absolute time) before
another transaction T2 starts, then T'1’s assigned commit timestamp is smaller than T2’s.

TrueTime API. TT.now() returns a TTinterval:[earliest, latest] that is guaranteed to contain
the absolute time during which TT.now() was invoked. The error bound is denoted as €, which is
half of TTinterval’s width. Google keeps € less than 6ms by using a set of dedicated time masters
(with GPS and atomic clock references) per datacenter and by running a time slave daemon (that
polls the masters) per machine.

Spanner implementation. A zone is the unit of administrative deployment, and has 1 zone-
master and 100 to 1000s of spanservers. Zonemaster assigns data to spanservers; spanserver serves
data to clients. Each spanserver is responsible for 100 to 1000 tablets. A tablet implements a bag
of the mappings: (key:string, timestamp:int64) — string.

To support replication, each spanserver implements a Paxos state machine on top of each
tablet. At every replica that is a leader, each spanserver implements: a lock table (mapping
ranges of keys to lock states) to implement concurrency control, and a transaction manager to
support distributed transactions. If a transaction involves only one Paxos group (as is the case for
most transactions), it can bypass the transaction manager, since the lock table and Paxos together

provide transactionality. If a transaction involves more than one Paxos group, those groups’ leaders
coordinate to perform 2-phase commit. One of the participant groups is chosen as the coordinator,
and its leader is referred to as the coordinator leader.

Read-Write transactions. Spanner supports read-write transactions, read-only transactions,
and snapshot reads. Standalone writes are implemented as read-write transactions; non-snapshot
standalone reads are implemented as read-only transactions. A snapshot read is a read in the past.

Read-write transactions use 2-phase locking and 2-phase commit. First, the client issues reads
to the leader of the appropriate group, which acquires read locks and reads the most recent data.
When a client has completed all reads and buffered all writes, it starts 2-phase commit. Read-write
transactions can be assigned commit timestamps by the coordinator leader at any time when all
locks have been acquired, but before any locks have been released. For a given transaction, Spanner
gives it the timestamp s; =TT.now().latest that the coordinating leader assigns to the Paxos write
which represents the transaction commit. To wait out the uncertainty in TT, there is a Commit
Wait: The coordinator leader ensures that clients cannot see any data committed by 7; until s; <
TT.now().earliest.

Read-only transactions. A read-only transaction executes in two phases: assign a timestamp
Sread, and then execute the transaction’s reads as snapshot reads at s,eqq (without locking, so that
incoming writes are not blocked). The simple assignment of $,.qq = TT.now().latest to a read-
only transaction preserves external consistency. The snapshot reads can execute at any replicas
that are sufficiently up-to-date. Every replica tracks a value called 4z, which is the maximum
timestamp at which a replica is up-to-date, and can satisfy a read at a timestamp ¢t if t < t,45. Each
replica maintains ¢y, = min(te®os | ¢TM) where t£%%°% is the timestamp of the highest-applied
Paxos write known and 7™ is the request timestamp of the earliest prepared but not committed
transaction. t7™ is 0o at a replica if there are no prepared transactions.

2 How TrueTime translates to distributed systems concepts

Spanner’s TT-based approach and the causality tracking approach of asynchronous distributed sys-
tems sit in two extreme opposite ends of the spectrum. The literature on asynchronous distributed
systems ignores wallclock information completely (i.e., it assumes an infinite uncertainty interval),
and orders events by just tracking logical causality relations between them based on applying these
two rules transitively: 1) if events e and f are in the same site and e occurred before f, then
e happened-before f, and 2) if e is a sending of a message m and f is the receipt of m, then e
happened-before f. Events e and f are concurrent, if both e happened-before f and f happened-
before e are false. This causality information is maintained, typically using vector clocks (VCs),
at each site with respect to all the other sites. As the number of sites (spanservers) in Spanner
can be on the order of tens of thousands, the causality information maintained as such is highly
prohibitive to store in the multiversion database, and very hard to query as well.

In the other end of the spectrum, Spanner’s T'T-based approach discards the tracking of causality
information completely. Instead it goes for an engineering solution of using highly-precise dedicated
clock sources to reduce the size of the uncertainty intervals to be negligible and order events using
wallclock time—provided that the uncertainty intervals of the events are non-overlapping. This
wallclock ordering in TT is in one sense stronger than the causal happened-before relation in
traditional distributed systems since it does not require any communication to take place between

the two events to be ordered; sufficient progression of the wallclock between the two events is
enough for ordering them. However, when the uncertainty intervals are overlapping TT cannot
order events, and that is why in order to ensure external consistency it has to explicitly wait-out
these uncertainty intervals. Moreover this approach also requires access to GPS and atomic clocks
to maintain very tightly synchronized time at each spanserver.

TrueTime, what is it good for? What exactly TT buys for Spanner is not discussed in the
Spanner paper. Although most readers may have the impression that TT enables lock-free reads
in Spanner, lock-free reads (i.e., read-only transactions) could in fact be implemented without TT:
Since read-only transactions are also serialized by coordinating leaders and Paxos groups along
with read-write transactions, the client will obtain as an answer the latest (and consistent) version
numbers for the data items it requested, and the read can then get these specific versions of the
data from the spanservers.

We propose that T'T benefits snapshot reads (reads in the past) the most! By just giving a time
in the past, the snapshot read can get a consistent-cut reading of all the variables requested at
that given time. This is not an easy feat to accomplish in a distributed system without using T'T
and tightly-synchronized time. This would then require capturing and recording causality between
different versions of variables using VC, so that a consistent cut can be identified for all the variables
requested in the snapshot read. However using VC is infeasible in Spanner as we discussed above.
TT provides a convenient and succinct way of encoding and accessing consistent-cuts of the Spanner
multiversion database in the past. (We discuss this further in the next section.)

In sum, TT’s conciseness and universality are its most useful features. Next we show how AT
can achieve the same features without the disadvantages of TT.

3 AugmentedTime: Extending TrueTime with causal information

AT fills the void in the spectrum between TT and causality-tracking in asynchronous distributed
systems [2]. When e is infinity, AT behaves more like vector clocks (VCs) [3] used for causality
tracking in asynchronous distributed systems. When ¢ is small, AT behaves more like TT, but also
combines the benefits of TT with causality tracking in uncertainty intervals.

In the worst case an AT at spanserver j, denoted as at.j, is a vector that contains an entry for
each spanserver in the system: at.j[j] denotes the wallclock at j and at.j[k] denotes the knowledge
j has about the wallclock of spanserver k. Since the wallclocks are strictly increasing, we have
Vi, k,at.j[k] < at.k[k]. Any message sent by j includes its AT. And, any message received by
j updates its own AT to reflect the maximum clock value that j is aware of as in the updating
procedure in VC. However, in contrast to VC, at.j[j] is updated by the wallclock maintained at j.

AT reduces the overhead of causality tracking in VC by utilizing the fact that the clocks are
reasonably synchronized. Although the worst case size for AT is very large, we observe that if j
does not hear (directly or transitively) from k within e time then at.j[k] need not be explicitly
maintained. In that case, we still infer implicitly that at.j[k] equals at.j[j]—e, because at.j[k]
can never be less than at.j[j]—e thanks to the clock synchronization assumption. ! Therefore,
in practice the size of at.j would only depend on the number of spanservers that communicated
with j within the last € time. For spanservers that are far apart (e.g., across continents) from

I This approach also helps support dynamically created spanservers.

7, the minimum communication latency will typically exceed €, and hence, at.j would never need
to include information for them, but would include information only for nearby spanservers that
communicated with j in the last e time and provided a fresh timestamp that is higher than at.j[j]—e.
Thus at.j will reduce to only one entry, at.j[j], for the periods that do not involve communication
with nearby spanservers.

Read/Write transactions with AT. Using AT, a read-write transaction would be executed
the same way except that the timestamp assigned to the transaction at the coordinating leader is
the leader’s AT timestamp instead of a single int64 TTstamp. The size of this AT timestamp will
be usually very small, because in many scenarios the extra information that the leader has about
other spanservers is likely to be the same as that described by the clock synchronization limit €, and
hence, this information is not stored explicitly. AT can readily be integrated to Spanner’s tablet
mappings of (key:string, timestamp:int64) — string. The coordinating leader’s own single clock
entry (or TT) is entered in the single int64 TTstamp area as before, and the AT itself is included
in the value (string) part. This placement makes AT backwards compatible with the TT-based
implementation, and also accommodates how AT-based snapshot reads are executed.

Using AT, a transaction would commit without delay: even though the leader clock is not
sufficiently advanced (beyond the uncertainty interval), it can leverage the knowledge about clocks
of other relevant spanservers for ordering events. Using this causality information captured in AT
we have the guarantee that if transaction 72 utilizes variables updated by transaction 7'1 then the
commit timestamp of T2 will still be strictly higher than the commit timestamp of 7'1.

Snapshot reads with AT. Using AT, a snapshot read would also be executed the same way as
in TT-based Spanner. For a snapshot read of data items x and y at absolute time ¢, the client
executes the reads at spanservers, say j and k, that are hosting and y, and that are sufficiently
up to date (i.e., updated to at least t—€). Let t, (respectively t,) denote the timestamp of the latest
update to x (resp. y) before t—e at j (resp. k). Reading the values of = at ¢, and y at ¢, give a
consistent cut/snapshot, because at time t the values of x and y are still the same as those at t,
and t, by definition of ¢, and t,,.

If = does not have another update within the uncertainty interval of ¢, (i.e., within € of at.j[j]),
then returning ¢, works the same in AT as in TT, because wallclock comparison is enough to identify
and return t, in this case. This case should actually cover a large percentage of all snapshot reads
in practical deployments, and for this case AT does not introduce any overhead over TT.

If 2 has another update with timestamp ¢/ within the uncertainty interval of t,, then we use
AT comparison to order t, and ¢/, and identify the latest version to return from j. This ordering of
t, and t!, with overlapping uncertainty intervals was not possible in TT, because TT timestamped
using only one clock value: that of the coordinating leader’s. That was why TT had to wait-
out uncertainty intervals with commit-wait so that it does not need to compare t, and t/, with
overlapping uncertainty intervals. Using AT, on the other hand, ¢, and t are timestamped with
their corresponding coordinating leader’s AT values at commit. These AT timestamps include
entries for spanservers involved in the transactions and include the spanserver hosting z, since x
was updated by both transactions. So, using AT comparison (as in VC comparison), we can simply
order ¢, and ¢/, and return the latest one as the value to be included in the snapshot read. Thus
even in the handling of this case, the overhead of AT is very small. This same argument applies
for y as well, if y has another update within € of ¢,,.

4 Concluding remarks

A major advantage of the AT-based implementation is that it is wait-free and allows higher through-
put. Since TT requires waiting-out uncertainty intervals for the transaction commit, € determines
the throughput of read-write transactions on a tablet (actually at a sub-tablet) level. While TT’s
commit-wait can be overlapped with Paxos communication, the Spanner paper states in the future
work section that: “Given that we expect many applications to replicate their data across datacen-
ters that are relatively close to each other, TrueTime ¢ may noticeably affect performance.” The
AT-based implementation, on the other hand, does not require waiting € out, instead it records finer-
grain causality relations within this uncertainty interval. Therefore, the AT-based implementation
will not restrict performance and will allow higher throughput.

In return, AT provides a slightly relaxed version of the external-consistency guarantee in TT-
based implementation of Spanner. In AT, when a transaction 7’1 commits (in absolute time) before
another transaction 72 starts, it is still possible to have a overlap between the uncertainty intervals
of T1 and T2. (This is avoided in TT because TT waits-out these uncertainty intervals.) In case
T'1 and T2 are causally-related (e.g., T2 uses data updated by 7'1), then AT will still give the same
guarantee as T'T because T2’s assigned AT commit timestamp will be bigger than T'1’s. Otherwise
(if T1 and T2 are not causally-related), then AT will give a slightly relaxed guarantee, and will
only ensure that T2’s assigned AT commit timestamp will not be smaller than T'1’s.

A criticism against using AT could be that AT may not be able to capture hidden backchannel
dependencies (e.g., an observer uses T'1’s commit to write to a message queue outside Spanner,
another system reads that and starts a transaction 7'2). Even in the presence of hidden backchan-
nel dependencies, the external-consistency guarantee AT provides is still sufficient for consistent
snapshots because it is able to capture the latest value of each data item to be included in the
consistent snapshot. It is also possible to eliminate the backchannel dependencies problem by
introducing client-notification-waits when using AT. Recall that TT uses commit-waits to prevent
the backchannel dependencies problem to the extent of reducing the throughput on writes. Instead
in AT we can add a client-notification-wait after a transaction ends, so that the hidden dependencies
via client backchannels are prevented while the throughput on writes remains unrestricted for Span-
ner transactions. AT can still avoid commit-waits and another transaction 73 can start before the
client-notification-time of T'1 expires (as such T3 is guaranteed to be free of hidden-dependencies
to T'1). If T3 then uses data written by T'1 then AT will detect that due to its causality tracking.

As another advantage, AT obviates the need for dedicated GPS or atomic clock references, and
can work with NTP servers that provide an e of several tens of milliseconds. Since the size of AT
is dynamically bounded by the number of nearby spanservers that this spanserver communicated
with within the last € time, the size of AT using NTP will still be reasonably small and manageable.

Acknowledgment. We thank the Google Spanner authors for useful feedback and discussion.

References

[1] J. Corbett, J. Dean, et al. Spanner: Google’s globally-distributed database. In OSDI, 2012.
[2] S. Kulkarni and Ravikant. Stabilizing causal deterministic merge. J. High Speed Networks, 2005.
[3] F. Mattern. Virtual time & global states of distributed systems. Parallel and Distrib. Algorithms, 1989.

